Lightning
zenml.integrations.lightning
Initialization of the Lightning integration for ZenML.
Attributes
LIGHTNING = 'lightning'
module-attribute
LIGHTNING_ORCHESTRATOR_FLAVOR = 'lightning'
module-attribute
Classes
Flavor
Class for ZenML Flavors.
Attributes
config_class: Type[StackComponentConfig]
abstractmethod
property
Returns StackComponentConfig
config class.
Returns:
Type | Description |
---|---|
Type[StackComponentConfig]
|
The config class. |
config_schema: Dict[str, Any]
property
The config schema for a flavor.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The config schema. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[StackComponent]
abstractmethod
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[StackComponent]
|
The implementation class for this flavor. |
logo_url: Optional[str]
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
Optional[str]
|
The flavor logo. |
name: str
abstractmethod
property
The flavor name.
Returns:
Type | Description |
---|---|
str
|
The flavor name. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
service_connector_requirements: Optional[ServiceConnectorRequirements]
property
Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
Type | Description |
---|---|
Optional[ServiceConnectorRequirements]
|
Requirements for compatible service connectors, if a service |
Optional[ServiceConnectorRequirements]
|
connector is required for this flavor. |
type: StackComponentType
abstractmethod
property
Functions
from_model(flavor_model: FlavorResponse) -> Flavor
classmethod
Loads a flavor from a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flavor_model
|
FlavorResponse
|
The model to load from. |
required |
Raises:
Type | Description |
---|---|
CustomFlavorImportError
|
If the custom flavor can't be imported. |
ImportError
|
If the flavor can't be imported. |
Returns:
Type | Description |
---|---|
Flavor
|
The loaded flavor. |
Source code in src/zenml/stack/flavor.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
generate_default_docs_url() -> str
Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors, which do not have any docs in the main zenml docs.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml documentation |
Source code in src/zenml/stack/flavor.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
generate_default_sdk_docs_url() -> str
Generate SDK docs url for a flavor.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml SDK docs |
Source code in src/zenml/stack/flavor.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
to_model(integration: Optional[str] = None, is_custom: bool = True) -> FlavorRequest
Converts a flavor to a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integration
|
Optional[str]
|
The integration to use for the model. |
None
|
is_custom
|
bool
|
Whether the flavor is a custom flavor. |
True
|
Returns:
Type | Description |
---|---|
FlavorRequest
|
The model. |
Source code in src/zenml/stack/flavor.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
Integration
Base class for integration in ZenML.
Functions
activate() -> None
classmethod
Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
175 176 177 |
|
check_installation() -> bool
classmethod
Method to check whether the required packages are installed.
Returns:
Type | Description |
---|---|
bool
|
True if all required packages are installed, False otherwise. |
Source code in src/zenml/integrations/integration.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
flavors() -> List[Type[Flavor]]
classmethod
Abstract method to declare new stack component flavors.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
A list of new stack component flavors. |
Source code in src/zenml/integrations/integration.py
179 180 181 182 183 184 185 186 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
classmethod
Method to get the uninstall requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
plugin_flavors() -> List[Type[BasePluginFlavor]]
classmethod
Abstract method to declare new plugin flavors.
Returns:
Type | Description |
---|---|
List[Type[BasePluginFlavor]]
|
A list of new plugin flavors. |
Source code in src/zenml/integrations/integration.py
188 189 190 191 192 193 194 195 |
|
LightningIntegration
Bases: Integration
Definition of Lightning Integration for ZenML.
Functions
flavors() -> List[Type[Flavor]]
classmethod
Declare the stack component flavors for the Lightning integration.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
List of stack component flavors for this integration. |
Source code in src/zenml/integrations/lightning/__init__.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
Modules
flavors
Lightning integration flavors.
Classes
LightningOrchestratorConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseOrchestratorConfig
, LightningOrchestratorSettings
Lightning orchestrator base config.
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
is_local: bool
property
Checks if this stack component is running locally.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a local component, False otherwise. |
is_schedulable: bool
property
Whether the orchestrator is schedulable or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator is schedulable or not. |
is_synchronous: bool
property
Whether the orchestrator runs synchronous or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator runs synchronous or not. |
supports_client_side_caching: bool
property
Whether the orchestrator supports client side caching.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator supports client side caching. |
LightningOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Lightning orchestrator flavor.
config_class: Type[LightningOrchestratorConfig]
property
Returns KubeflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[LightningOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[LightningOrchestrator]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[LightningOrchestrator]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
Modules
lightning_orchestrator_flavor
Lightning orchestrator base config and settings.
LightningOrchestratorConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseOrchestratorConfig
, LightningOrchestratorSettings
Lightning orchestrator base config.
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
is_local: bool
property
Checks if this stack component is running locally.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a local component, False otherwise. |
is_schedulable: bool
property
Whether the orchestrator is schedulable or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator is schedulable or not. |
is_synchronous: bool
property
Whether the orchestrator runs synchronous or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator runs synchronous or not. |
supports_client_side_caching: bool
property
Whether the orchestrator supports client side caching.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator supports client side caching. |
LightningOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Lightning orchestrator flavor.
config_class: Type[LightningOrchestratorConfig]
property
Returns KubeflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[LightningOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[LightningOrchestrator]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[LightningOrchestrator]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
LightningOrchestratorSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Lightning orchestrator base settings.
Attributes:
Name | Type | Description |
---|---|---|
main_studio_name |
Optional[str]
|
Main studio name. |
machine_type |
Optional[str]
|
Machine type. |
user_id |
Optional[str]
|
User id. |
api_key |
Optional[str]
|
api_key. |
username |
Optional[str]
|
Username. |
teamspace |
Optional[str]
|
Teamspace. |
organization |
Optional[str]
|
Organization. |
custom_commands |
Optional[List[str]]
|
Custom commands to run. |
synchronous |
bool
|
If |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
orchestrators
Initialization of the Lightning ZenML orchestrator.
Classes
LightningOrchestrator(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: WheeledOrchestrator
Base class for Orchestrator responsible for running pipelines remotely in a VM.
This orchestrator does not support running on a schedule.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: LightningOrchestratorConfig
property
Returns the LightningOrchestratorConfig
config.
Returns:
Type | Description |
---|---|
LightningOrchestratorConfig
|
The configuration. |
pipeline_directory: str
property
Returns path to a directory in which the kubeflow pipeline files are stored.
Returns:
Type | Description |
---|---|
str
|
Path to the pipeline directory. |
root_directory: str
property
Path to the root directory for all files concerning this orchestrator.
Returns:
Type | Description |
---|---|
str
|
Path to the root directory. |
settings_class: Type[LightningOrchestratorSettings]
property
Settings class for the Lightning orchestrator.
Returns:
Type | Description |
---|---|
Type[LightningOrchestratorSettings]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates the stack.
In the remote case, checks that the stack contains a container registry, image builder and only remote components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If no run id exists. This happens when this method gets called while the orchestrator is not running a pipeline. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the run id cannot be read from the environment. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str], placeholder_run: Optional[PipelineRunResponse] = None) -> Any
Creates a wheel and uploads the pipeline to Lightning.
This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.
How it works:
Before this method is called the prepare_pipeline_deployment()
method builds a docker image that contains the code for the
pipeline, all steps the context around these files.
Based on this docker image a callable is created which builds
task for each step (_construct_lightning_pipeline
).
To do this the entrypoint of the docker image is configured to
run the correct step within the docker image. The dependencies
between these task are then also configured onto each
task by pointing at the downstream steps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
placeholder_run
|
Optional[PipelineRunResponse]
|
An optional placeholder run for the deployment. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the schedule is not set or if the cron expression is not set. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
setup_credentials() -> None
Set up credentials for the orchestrator.
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator.py
191 192 193 194 195 |
|
LightningOrchestratorEntrypointConfiguration
Entrypoint configuration for the Lightning master/orchestrator VM.
get_entrypoint_arguments(run_name: str, deployment_id: UUID) -> List[str]
classmethod
Gets all arguments that the entrypoint command should be called with.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_name
|
str
|
Name of the ZenML run. |
required |
deployment_id
|
UUID
|
ID of the deployment. |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List of entrypoint arguments. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint_configuration.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
get_entrypoint_command() -> List[str]
classmethod
Returns a command that runs the entrypoint module.
Returns:
Type | Description |
---|---|
List[str]
|
Entrypoint command. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint_configuration.py
41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
get_entrypoint_options() -> Set[str]
classmethod
Gets all the options required for running this entrypoint.
Returns:
Type | Description |
---|---|
Set[str]
|
Entrypoint options. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint_configuration.py
28 29 30 31 32 33 34 35 36 37 38 39 |
|
Modules
lightning_orchestrator
Implementation of the Lightning orchestrator.
LightningOrchestrator(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: WheeledOrchestrator
Base class for Orchestrator responsible for running pipelines remotely in a VM.
This orchestrator does not support running on a schedule.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: LightningOrchestratorConfig
property
Returns the LightningOrchestratorConfig
config.
Returns:
Type | Description |
---|---|
LightningOrchestratorConfig
|
The configuration. |
pipeline_directory: str
property
Returns path to a directory in which the kubeflow pipeline files are stored.
Returns:
Type | Description |
---|---|
str
|
Path to the pipeline directory. |
root_directory: str
property
Path to the root directory for all files concerning this orchestrator.
Returns:
Type | Description |
---|---|
str
|
Path to the root directory. |
settings_class: Type[LightningOrchestratorSettings]
property
Settings class for the Lightning orchestrator.
Returns:
Type | Description |
---|---|
Type[LightningOrchestratorSettings]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates the stack.
In the remote case, checks that the stack contains a container registry, image builder and only remote components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If no run id exists. This happens when this method gets called while the orchestrator is not running a pipeline. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the run id cannot be read from the environment. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str], placeholder_run: Optional[PipelineRunResponse] = None) -> Any
Creates a wheel and uploads the pipeline to Lightning.
This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.
How it works:
Before this method is called the prepare_pipeline_deployment()
method builds a docker image that contains the code for the
pipeline, all steps the context around these files.
Based on this docker image a callable is created which builds
task for each step (_construct_lightning_pipeline
).
To do this the entrypoint of the docker image is configured to
run the correct step within the docker image. The dependencies
between these task are then also configured onto each
task by pointing at the downstream steps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
placeholder_run
|
Optional[PipelineRunResponse]
|
An optional placeholder run for the deployment. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the schedule is not set or if the cron expression is not set. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
setup_credentials() -> None
Set up credentials for the orchestrator.
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator.py
191 192 193 194 195 |
|
lightning_orchestrator_entrypoint
Entrypoint of the Lightning master/orchestrator STUDIO.
main() -> None
Entrypoint of the Lightning master/orchestrator STUDIO.
This is the entrypoint of the Lightning master/orchestrator STUDIO. It is responsible for provisioning the STUDIO and running the pipeline steps in separate STUDIO.
Raises:
Type | Description |
---|---|
TypeError
|
If the active stack's orchestrator is not an instance of LightningOrchestrator. |
ValueError
|
If the active stack's container registry is None. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
parse_args() -> argparse.Namespace
Parse entrypoint arguments.
Returns:
Type | Description |
---|---|
Namespace
|
Parsed args. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint.py
47 48 49 50 51 52 53 54 55 56 |
|
lightning_orchestrator_entrypoint_configuration
Entrypoint configuration for the Lightning master/orchestrator VM.
LightningOrchestratorEntrypointConfiguration
Entrypoint configuration for the Lightning master/orchestrator VM.
get_entrypoint_arguments(run_name: str, deployment_id: UUID) -> List[str]
classmethod
Gets all arguments that the entrypoint command should be called with.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_name
|
str
|
Name of the ZenML run. |
required |
deployment_id
|
UUID
|
ID of the deployment. |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List of entrypoint arguments. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint_configuration.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
get_entrypoint_command() -> List[str]
classmethod
Returns a command that runs the entrypoint module.
Returns:
Type | Description |
---|---|
List[str]
|
Entrypoint command. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint_configuration.py
41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
get_entrypoint_options() -> Set[str]
classmethod
Gets all the options required for running this entrypoint.
Returns:
Type | Description |
---|---|
Set[str]
|
Entrypoint options. |
Source code in src/zenml/integrations/lightning/orchestrators/lightning_orchestrator_entrypoint_configuration.py
28 29 30 31 32 33 34 35 36 37 38 39 |
|
utils
Utility functions for the Lightning orchestrator.
gather_requirements(docker_settings: DockerSettings) -> List[str]
Gather the requirements files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docker_settings
|
DockerSettings
|
Docker settings. |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List of requirements. |
Source code in src/zenml/integrations/lightning/orchestrators/utils.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
sanitize_studio_name(studio_name: str) -> str
Sanitize studio_names so they conform to Kubernetes studio naming convention.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
studio_name
|
str
|
Arbitrary input studio_name. |
required |
Returns:
Type | Description |
---|---|
str
|
Sanitized pod name. |
Source code in src/zenml/integrations/lightning/orchestrators/utils.py
27 28 29 30 31 32 33 34 35 36 37 38 |
|