Databricks
zenml.integrations.databricks
Initialization of the Databricks integration for ZenML.
Attributes
DATABRICKS = 'databricks'
module-attribute
DATABRICKS_MODEL_DEPLOYER_FLAVOR = 'databricks'
module-attribute
DATABRICKS_ORCHESTRATOR_FLAVOR = 'databricks'
module-attribute
DATABRICKS_SERVICE_ARTIFACT = 'databricks_deployment_service'
module-attribute
Classes
DatabricksIntegration
Bases: Integration
Definition of Databricks Integration for ZenML.
Functions
flavors() -> List[Type[Flavor]]
classmethod
Declare the stack component flavors for the Databricks integration.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
List of stack component flavors for this integration. |
Source code in src/zenml/integrations/databricks/__init__.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/databricks/__init__.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
Flavor
Class for ZenML Flavors.
Attributes
config_class: Type[StackComponentConfig]
abstractmethod
property
Returns StackComponentConfig
config class.
Returns:
Type | Description |
---|---|
Type[StackComponentConfig]
|
The config class. |
config_schema: Dict[str, Any]
property
The config schema for a flavor.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The config schema. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[StackComponent]
abstractmethod
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[StackComponent]
|
The implementation class for this flavor. |
logo_url: Optional[str]
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
Optional[str]
|
The flavor logo. |
name: str
abstractmethod
property
The flavor name.
Returns:
Type | Description |
---|---|
str
|
The flavor name. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
service_connector_requirements: Optional[ServiceConnectorRequirements]
property
Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
Type | Description |
---|---|
Optional[ServiceConnectorRequirements]
|
Requirements for compatible service connectors, if a service |
Optional[ServiceConnectorRequirements]
|
connector is required for this flavor. |
type: StackComponentType
abstractmethod
property
Functions
from_model(flavor_model: FlavorResponse) -> Flavor
classmethod
Loads a flavor from a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flavor_model
|
FlavorResponse
|
The model to load from. |
required |
Raises:
Type | Description |
---|---|
CustomFlavorImportError
|
If the custom flavor can't be imported. |
ImportError
|
If the flavor can't be imported. |
Returns:
Type | Description |
---|---|
Flavor
|
The loaded flavor. |
Source code in src/zenml/stack/flavor.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
generate_default_docs_url() -> str
Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors, which do not have any docs in the main zenml docs.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml documentation |
Source code in src/zenml/stack/flavor.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
generate_default_sdk_docs_url() -> str
Generate SDK docs url for a flavor.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml SDK docs |
Source code in src/zenml/stack/flavor.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
to_model(integration: Optional[str] = None, is_custom: bool = True) -> FlavorRequest
Converts a flavor to a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integration
|
Optional[str]
|
The integration to use for the model. |
None
|
is_custom
|
bool
|
Whether the flavor is a custom flavor. |
True
|
Returns:
Type | Description |
---|---|
FlavorRequest
|
The model. |
Source code in src/zenml/stack/flavor.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
Integration
Base class for integration in ZenML.
Functions
activate() -> None
classmethod
Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
175 176 177 |
|
check_installation() -> bool
classmethod
Method to check whether the required packages are installed.
Returns:
Type | Description |
---|---|
bool
|
True if all required packages are installed, False otherwise. |
Source code in src/zenml/integrations/integration.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
flavors() -> List[Type[Flavor]]
classmethod
Abstract method to declare new stack component flavors.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
A list of new stack component flavors. |
Source code in src/zenml/integrations/integration.py
179 180 181 182 183 184 185 186 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
classmethod
Method to get the uninstall requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
plugin_flavors() -> List[Type[BasePluginFlavor]]
classmethod
Abstract method to declare new plugin flavors.
Returns:
Type | Description |
---|---|
List[Type[BasePluginFlavor]]
|
A list of new plugin flavors. |
Source code in src/zenml/integrations/integration.py
188 189 190 191 192 193 194 195 |
|
Modules
flavors
Databricks integration flavors.
Classes
DatabricksModelDeployerConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseModelDeployerConfig
Configuration for the Databricks model deployer.
Attributes:
Name | Type | Description |
---|---|---|
host |
str
|
Databricks host. |
secret_name |
Optional[str]
|
Secret name to use for authentication. |
client_id |
Optional[str]
|
Databricks client id. |
client_secret |
Optional[str]
|
Databricks client secret. |
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
DatabricksModelDeployerFlavor
Bases: BaseModelDeployerFlavor
Databricks Endpoint model deployer flavor.
config_class: Type[DatabricksModelDeployerConfig]
property
Returns DatabricksModelDeployerConfig
config class.
Returns:
Type | Description |
---|---|
Type[DatabricksModelDeployerConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[DatabricksModelDeployer]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[DatabricksModelDeployer]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
DatabricksOrchestratorConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseOrchestratorConfig
, DatabricksOrchestratorSettings
Databricks orchestrator base config.
Attributes:
Name | Type | Description |
---|---|---|
host |
str
|
Databricks host. |
client_id |
str
|
Databricks client id. |
client_secret |
str
|
Databricks client secret. |
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
is_local: bool
property
Checks if this stack component is running locally.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a local component, False otherwise. |
is_remote: bool
property
Checks if this stack component is running remotely.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a remote component, False otherwise. |
is_schedulable: bool
property
Whether the orchestrator is schedulable or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator is schedulable or not. |
DatabricksOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Databricks orchestrator flavor.
config_class: Type[DatabricksOrchestratorConfig]
property
Returns KubeflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[DatabricksOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[DatabricksOrchestrator]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[DatabricksOrchestrator]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
Modules
databricks_model_deployer_flavor
Databricks model deployer flavor.
DatabricksBaseConfig
Bases: BaseModel
Databricks Inference Endpoint configuration.
DatabricksModelDeployerConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseModelDeployerConfig
Configuration for the Databricks model deployer.
Attributes:
Name | Type | Description |
---|---|---|
host |
str
|
Databricks host. |
secret_name |
Optional[str]
|
Secret name to use for authentication. |
client_id |
Optional[str]
|
Databricks client id. |
client_secret |
Optional[str]
|
Databricks client secret. |
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
DatabricksModelDeployerFlavor
Bases: BaseModelDeployerFlavor
Databricks Endpoint model deployer flavor.
config_class: Type[DatabricksModelDeployerConfig]
property
Returns DatabricksModelDeployerConfig
config class.
Returns:
Type | Description |
---|---|
Type[DatabricksModelDeployerConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[DatabricksModelDeployer]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[DatabricksModelDeployer]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
databricks_orchestrator_flavor
Databricks orchestrator base config and settings.
DatabricksAvailabilityType
DatabricksOrchestratorConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseOrchestratorConfig
, DatabricksOrchestratorSettings
Databricks orchestrator base config.
Attributes:
Name | Type | Description |
---|---|---|
host |
str
|
Databricks host. |
client_id |
str
|
Databricks client id. |
client_secret |
str
|
Databricks client secret. |
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
is_local: bool
property
Checks if this stack component is running locally.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a local component, False otherwise. |
is_remote: bool
property
Checks if this stack component is running remotely.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a remote component, False otherwise. |
is_schedulable: bool
property
Whether the orchestrator is schedulable or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator is schedulable or not. |
DatabricksOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Databricks orchestrator flavor.
config_class: Type[DatabricksOrchestratorConfig]
property
Returns KubeflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[DatabricksOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[DatabricksOrchestrator]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[DatabricksOrchestrator]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
DatabricksOrchestratorSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Databricks orchestrator base settings.
Attributes:
Name | Type | Description |
---|---|---|
spark_version |
Optional[str]
|
Spark version. |
num_workers |
Optional[int]
|
Number of workers. |
node_type_id |
Optional[str]
|
Node type id. |
policy_id |
Optional[str]
|
Policy id. |
autotermination_minutes |
Optional[int]
|
Autotermination minutes. |
autoscale |
Tuple[int, int]
|
Autoscale. |
single_user_name |
Optional[str]
|
Single user name. |
spark_conf |
Optional[Dict[str, str]]
|
Spark configuration. |
spark_env_vars |
Optional[Dict[str, str]]
|
Spark environment variables. |
schedule_timezone |
Optional[str]
|
Schedule timezone. |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
model_deployers
Initialization of the Databricks model deployers.
Classes
DatabricksModelDeployer(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: BaseModelDeployer
Databricks endpoint model deployer.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: DatabricksModelDeployerConfig
property
Config class for the Databricks Model deployer settings class.
Returns:
Type | Description |
---|---|
DatabricksModelDeployerConfig
|
The configuration. |
validator: Optional[StackValidator]
property
Validates the stack.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A validator that checks that the stack contains a remote artifact |
Optional[StackValidator]
|
store. |
get_model_server_info(service_instance: DatabricksDeploymentService) -> Dict[str, Optional[str]]
staticmethod
Return implementation specific information that might be relevant to the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service_instance
|
DatabricksDeploymentService
|
Instance of a DatabricksDeploymentService |
required |
Returns:
Type | Description |
---|---|
Dict[str, Optional[str]]
|
Model server information. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
perform_delete_model(service: BaseService, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT, force: bool = False) -> None
Method to delete all configuration of a model server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service
|
BaseService
|
The service to delete. |
required |
timeout
|
int
|
Timeout in seconds to wait for the service to stop. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
force
|
bool
|
If True, force the service to stop. |
False
|
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
perform_deploy_model(id: UUID, config: ServiceConfig, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT) -> BaseService
Create a new Databricks deployment service or update an existing one.
This should serve the supplied model and deployment configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
id
|
UUID
|
the UUID of the model to be deployed with Databricks. |
required |
config
|
ServiceConfig
|
the configuration of the model to be deployed with Databricks. |
required |
timeout
|
int
|
the timeout in seconds to wait for the Databricks endpoint to be provisioned and successfully started or updated. If set to 0, the method will return immediately after the Databricks server is provisioned, without waiting for it to fully start. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
Returns:
Type | Description |
---|---|
BaseService
|
The ZenML Databricks deployment service object that can be used to |
BaseService
|
interact with the remote Databricks inference endpoint server. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
perform_start_model(service: BaseService, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT) -> BaseService
Method to start a model server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service
|
BaseService
|
The service to start. |
required |
timeout
|
int
|
Timeout in seconds to wait for the service to start. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
Returns:
Type | Description |
---|---|
BaseService
|
The started service. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
perform_stop_model(service: BaseService, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT, force: bool = False) -> BaseService
Method to stop a model server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service
|
BaseService
|
The service to stop. |
required |
timeout
|
int
|
Timeout in seconds to wait for the service to stop. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
force
|
bool
|
If True, force the service to stop. |
False
|
Returns:
Type | Description |
---|---|
BaseService
|
The stopped service. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
Modules
databricks_model_deployer
Implementation of the Databricks Model Deployer.
DatabricksModelDeployer(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: BaseModelDeployer
Databricks endpoint model deployer.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: DatabricksModelDeployerConfig
property
Config class for the Databricks Model deployer settings class.
Returns:
Type | Description |
---|---|
DatabricksModelDeployerConfig
|
The configuration. |
validator: Optional[StackValidator]
property
Validates the stack.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A validator that checks that the stack contains a remote artifact |
Optional[StackValidator]
|
store. |
get_model_server_info(service_instance: DatabricksDeploymentService) -> Dict[str, Optional[str]]
staticmethod
Return implementation specific information that might be relevant to the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service_instance
|
DatabricksDeploymentService
|
Instance of a DatabricksDeploymentService |
required |
Returns:
Type | Description |
---|---|
Dict[str, Optional[str]]
|
Model server information. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
perform_delete_model(service: BaseService, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT, force: bool = False) -> None
Method to delete all configuration of a model server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service
|
BaseService
|
The service to delete. |
required |
timeout
|
int
|
Timeout in seconds to wait for the service to stop. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
force
|
bool
|
If True, force the service to stop. |
False
|
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
perform_deploy_model(id: UUID, config: ServiceConfig, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT) -> BaseService
Create a new Databricks deployment service or update an existing one.
This should serve the supplied model and deployment configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
id
|
UUID
|
the UUID of the model to be deployed with Databricks. |
required |
config
|
ServiceConfig
|
the configuration of the model to be deployed with Databricks. |
required |
timeout
|
int
|
the timeout in seconds to wait for the Databricks endpoint to be provisioned and successfully started or updated. If set to 0, the method will return immediately after the Databricks server is provisioned, without waiting for it to fully start. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
Returns:
Type | Description |
---|---|
BaseService
|
The ZenML Databricks deployment service object that can be used to |
BaseService
|
interact with the remote Databricks inference endpoint server. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
perform_start_model(service: BaseService, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT) -> BaseService
Method to start a model server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service
|
BaseService
|
The service to start. |
required |
timeout
|
int
|
Timeout in seconds to wait for the service to start. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
Returns:
Type | Description |
---|---|
BaseService
|
The started service. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
perform_stop_model(service: BaseService, timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT, force: bool = False) -> BaseService
Method to stop a model server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
service
|
BaseService
|
The service to stop. |
required |
timeout
|
int
|
Timeout in seconds to wait for the service to stop. |
DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT
|
force
|
bool
|
If True, force the service to stop. |
False
|
Returns:
Type | Description |
---|---|
BaseService
|
The stopped service. |
Source code in src/zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
orchestrators
Initialization of the Databricks ZenML orchestrator.
Classes
DatabricksOrchestrator(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: WheeledOrchestrator
Base class for Orchestrator responsible for running pipelines remotely in a VM.
This orchestrator does not support running on a schedule.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: DatabricksOrchestratorConfig
property
Returns the DatabricksOrchestratorConfig
config.
Returns:
Type | Description |
---|---|
DatabricksOrchestratorConfig
|
The configuration. |
pipeline_directory: str
property
Returns path to a directory in which the kubeflow pipeline files are stored.
Returns:
Type | Description |
---|---|
str
|
Path to the pipeline directory. |
root_directory: str
property
Path to the root directory for all files concerning this orchestrator.
Returns:
Type | Description |
---|---|
str
|
Path to the root directory. |
settings_class: Type[DatabricksOrchestratorSettings]
property
Settings class for the Databricks orchestrator.
Returns:
Type | Description |
---|---|
Type[DatabricksOrchestratorSettings]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates the stack.
In the remote case, checks that the stack contains a container registry, image builder and only remote components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If no run id exists. This happens when this method gets called while the orchestrator is not running a pipeline. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the run id cannot be read from the environment. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
get_pipeline_run_metadata(run_id: UUID) -> Dict[str, MetadataType]
Get general component-specific metadata for a pipeline run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
UUID
|
The ID of the pipeline run. |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
A dictionary of metadata. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str], placeholder_run: Optional[PipelineRunResponse] = None) -> Any
Creates a wheel and uploads the pipeline to Databricks.
This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.
How it works:
Before this method is called the prepare_pipeline_deployment()
method builds a docker image that contains the code for the
pipeline, all steps the context around these files.
Based on this docker image a callable is created which builds
task for each step (_construct_databricks_pipeline
).
To do this the entrypoint of the docker image is configured to
run the correct step within the docker image. The dependencies
between these task are then also configured onto each
task by pointing at the downstream steps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
placeholder_run
|
Optional[PipelineRunResponse]
|
An optional placeholder run for the deployment. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the schedule is not set or if the cron expression is not set. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
|
setup_credentials() -> None
Set up credentials for the orchestrator.
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
193 194 195 196 197 |
|
Modules
databricks_orchestrator
Implementation of the Databricks orchestrator.
DatabricksOrchestrator(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: WheeledOrchestrator
Base class for Orchestrator responsible for running pipelines remotely in a VM.
This orchestrator does not support running on a schedule.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: DatabricksOrchestratorConfig
property
Returns the DatabricksOrchestratorConfig
config.
Returns:
Type | Description |
---|---|
DatabricksOrchestratorConfig
|
The configuration. |
pipeline_directory: str
property
Returns path to a directory in which the kubeflow pipeline files are stored.
Returns:
Type | Description |
---|---|
str
|
Path to the pipeline directory. |
root_directory: str
property
Path to the root directory for all files concerning this orchestrator.
Returns:
Type | Description |
---|---|
str
|
Path to the root directory. |
settings_class: Type[DatabricksOrchestratorSettings]
property
Settings class for the Databricks orchestrator.
Returns:
Type | Description |
---|---|
Type[DatabricksOrchestratorSettings]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates the stack.
In the remote case, checks that the stack contains a container registry, image builder and only remote components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If no run id exists. This happens when this method gets called while the orchestrator is not running a pipeline. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the run id cannot be read from the environment. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
get_pipeline_run_metadata(run_id: UUID) -> Dict[str, MetadataType]
Get general component-specific metadata for a pipeline run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
UUID
|
The ID of the pipeline run. |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
A dictionary of metadata. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str], placeholder_run: Optional[PipelineRunResponse] = None) -> Any
Creates a wheel and uploads the pipeline to Databricks.
This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.
How it works:
Before this method is called the prepare_pipeline_deployment()
method builds a docker image that contains the code for the
pipeline, all steps the context around these files.
Based on this docker image a callable is created which builds
task for each step (_construct_databricks_pipeline
).
To do this the entrypoint of the docker image is configured to
run the correct step within the docker image. The dependencies
between these task are then also configured onto each
task by pointing at the downstream steps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
placeholder_run
|
Optional[PipelineRunResponse]
|
An optional placeholder run for the deployment. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the schedule is not set or if the cron expression is not set. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
|
setup_credentials() -> None
Set up credentials for the orchestrator.
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
193 194 195 196 197 |
|
databricks_orchestrator_entrypoint_config
Entrypoint configuration for ZenML Databricks pipeline steps.
DatabricksEntrypointConfiguration(arguments: List[str])
Bases: StepEntrypointConfiguration
Entrypoint configuration for ZenML Databricks pipeline steps.
The only purpose of this entrypoint configuration is to reconstruct the environment variables that exceed the maximum length of 256 characters allowed for Databricks Processor steps from their individual components.
Source code in src/zenml/entrypoints/base_entrypoint_configuration.py
60 61 62 63 64 65 66 |
|
get_entrypoint_arguments(**kwargs: Any) -> List[str]
classmethod
Gets all arguments that the entrypoint command should be called with.
The argument list should be something that
argparse.ArgumentParser.parse_args(...)
can handle (e.g.
["--some_option", "some_value"]
or ["--some_option=some_value"]
).
It needs to provide values for all options returned by the
get_entrypoint_options()
method of this class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
Any
|
Kwargs, must include the step name. |
{}
|
Returns:
Type | Description |
---|---|
List[str]
|
The superclass arguments as well as arguments for the wheel package. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
get_entrypoint_options() -> Set[str]
classmethod
Gets all options required for running with this configuration.
Returns:
Type | Description |
---|---|
Set[str]
|
The superclass options as well as an option for the wheel package. |
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py
41 42 43 44 45 46 47 48 49 50 51 52 |
|
run() -> None
Runs the step.
Source code in src/zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
services
Initialization of the Databricks Service.
Classes
Modules
databricks_deployment
Implementation of the Databricks Deployment service.
DatabricksDeploymentConfig(**data: Any)
Bases: DatabricksBaseConfig
, ServiceConfig
Databricks service configurations.
Source code in src/zenml/services/service.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
get_databricks_deployment_labels() -> Dict[str, str]
Generate labels for the Databricks deployment from the service configuration.
These labels are attached to the Databricks deployment resource and may be used as label selectors in lookup operations.
Returns:
Type | Description |
---|---|
Dict[str, str]
|
The labels for the Databricks deployment. |
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
DatabricksDeploymentService(config: DatabricksDeploymentConfig, **attrs: Any)
Bases: BaseDeploymentService
Databricks model deployment service.
Attributes:
Name | Type | Description |
---|---|---|
SERVICE_TYPE |
a service type descriptor with information describing the Databricks deployment service class |
|
config |
DatabricksDeploymentConfig
|
service configuration |
Initialize the Databricks deployment service.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
DatabricksDeploymentConfig
|
service configuration |
required |
attrs
|
Any
|
additional attributes to set on the service |
{}
|
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
113 114 115 116 117 118 119 120 |
|
databricks_client: DatabricksClient
property
Get the deployed Databricks inference endpoint.
Returns:
Type | Description |
---|---|
WorkspaceClient
|
databricks inference endpoint. |
databricks_endpoint: ServingEndpointDetailed
property
Get the deployed Hugging Face inference endpoint.
Returns:
Type | Description |
---|---|
ServingEndpointDetailed
|
Databricks inference endpoint. |
prediction_url: Optional[str]
property
The prediction URI exposed by the prediction service.
Returns:
Type | Description |
---|---|
Optional[str]
|
The prediction URI exposed by the prediction service, or None if |
Optional[str]
|
the service is not yet ready. |
check_status() -> Tuple[ServiceState, str]
Check the the current operational state of the Databricks deployment.
Returns:
Type | Description |
---|---|
ServiceState
|
The operational state of the Databricks deployment and a message |
str
|
providing additional information about that state (e.g. a |
Tuple[ServiceState, str]
|
description of the error, if one is encountered). |
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
deprovision(force: bool = False) -> None
Deprovision the remote Databricks deployment instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
force
|
bool
|
if True, the remote deployment instance will be forcefully deprovisioned. |
False
|
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
get_client_id_and_secret() -> Tuple[str, str, str]
Get the Databricks client id and secret.
Raises:
Type | Description |
---|---|
ValueError
|
If client id and secret are not found. |
Returns:
Type | Description |
---|---|
Tuple[str, str, str]
|
Databricks client id and secret. |
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
get_logs(follow: bool = False, tail: Optional[int] = None) -> Generator[str, bool, None]
Retrieve the service logs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
follow
|
bool
|
if True, the logs will be streamed as they are written |
False
|
tail
|
Optional[int]
|
only retrieve the last NUM lines of log output. |
None
|
Yields:
Type | Description |
---|---|
str
|
A generator that can be accessed to get the service logs. |
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
predict(request: Union[NDArray[Any], pd.DataFrame]) -> NDArray[Any]
Make a prediction using the service.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
request
|
Union[NDArray[Any], DataFrame]
|
The input data for the prediction. |
required |
Returns:
Type | Description |
---|---|
NDArray[Any]
|
The prediction result. |
Raises:
Type | Description |
---|---|
Exception
|
if the service is not running |
ValueError
|
if the endpoint secret name is not provided. |
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
provision() -> None
Provision or update remote Databricks deployment instance.
Source code in src/zenml/integrations/databricks/services/databricks_deployment.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
DatabricksServiceStatus
utils
Utilities for Databricks integration.
Modules
databricks_utils
Databricks utilities.
convert_step_to_task(task_name: str, command: str, arguments: List[str], libraries: Optional[List[str]] = None, depends_on: Optional[List[str]] = None, zenml_project_wheel: Optional[str] = None, job_cluster_key: Optional[str] = None) -> DatabricksTask
Convert a ZenML step to a Databricks task.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_name
|
str
|
Name of the task. |
required |
command
|
str
|
Command to run. |
required |
arguments
|
List[str]
|
Arguments to pass to the command. |
required |
libraries
|
Optional[List[str]]
|
List of libraries to install. |
None
|
depends_on
|
Optional[List[str]]
|
List of tasks to depend on. |
None
|
zenml_project_wheel
|
Optional[str]
|
Path to the ZenML project wheel. |
None
|
job_cluster_key
|
Optional[str]
|
ID of the Databricks job_cluster_key. |
None
|
Returns:
Type | Description |
---|---|
Task
|
Databricks task. |
Source code in src/zenml/integrations/databricks/utils/databricks_utils.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
sanitize_labels(labels: Dict[str, str]) -> None
Update the label values to be valid Kubernetes labels.
See: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Dict[str, str]
|
the labels to sanitize. |
required |
Source code in src/zenml/integrations/databricks/utils/databricks_utils.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|