Langchain
zenml.integrations.langchain
Initialization of the langchain integration.
Attributes
LANGCHAIN = 'langchain'
module-attribute
logger = get_logger(__name__)
module-attribute
Classes
Integration
Base class for integration in ZenML.
Functions
activate() -> None
classmethod
Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
175 176 177 |
|
check_installation() -> bool
classmethod
Method to check whether the required packages are installed.
Returns:
Type | Description |
---|---|
bool
|
True if all required packages are installed, False otherwise. |
Source code in src/zenml/integrations/integration.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
flavors() -> List[Type[Flavor]]
classmethod
Abstract method to declare new stack component flavors.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
A list of new stack component flavors. |
Source code in src/zenml/integrations/integration.py
179 180 181 182 183 184 185 186 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
classmethod
Method to get the uninstall requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
plugin_flavors() -> List[Type[BasePluginFlavor]]
classmethod
Abstract method to declare new plugin flavors.
Returns:
Type | Description |
---|---|
List[Type[BasePluginFlavor]]
|
A list of new plugin flavors. |
Source code in src/zenml/integrations/integration.py
188 189 190 191 192 193 194 195 |
|
LangchainIntegration
Bases: Integration
Definition of langchain integration for ZenML.
Functions
activate() -> None
classmethod
Activates the integration.
Source code in src/zenml/integrations/langchain/__init__.py
36 37 38 39 |
|
Functions
get_logger(logger_name: str) -> logging.Logger
Main function to get logger name,.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logger_name
|
str
|
Name of logger to initialize. |
required |
Returns:
Type | Description |
---|---|
Logger
|
A logger object. |
Source code in src/zenml/logger.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
Modules
materializers
Initialization of the langchain materializer.
Classes
Modules
document_materializer
Implementation of ZenML's Langchain Document materializer.
LangchainDocumentMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
Bases: BaseMaterializer
Handle Langchain Document objects.
Source code in src/zenml/materializers/base_materializer.py
125 126 127 128 129 130 131 132 133 134 135 |
|
extract_metadata(data: Document) -> Dict[str, MetadataType]
Extract metadata from the given BaseModel object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Document
|
The BaseModel object to extract metadata from. |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
The extracted metadata as a dictionary. |
Source code in src/zenml/integrations/langchain/materializers/document_materializer.py
59 60 61 62 63 64 65 66 67 68 |
|
load(data_type: Type[Document]) -> Any
Reads BaseModel from JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type
|
Type[Document]
|
The type of the data to read. |
required |
Returns:
Type | Description |
---|---|
Any
|
The data read. |
Source code in src/zenml/integrations/langchain/materializers/document_materializer.py
37 38 39 40 41 42 43 44 45 46 47 48 |
|
save(data: Document) -> None
Serialize a BaseModel to JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Document
|
The data to store. |
required |
Source code in src/zenml/integrations/langchain/materializers/document_materializer.py
50 51 52 53 54 55 56 57 |
|
openai_embedding_materializer
Implementation of the Langchain OpenAI embedding materializer.
LangchainOpenaiEmbeddingMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
Bases: CloudpickleMaterializer
Materializer for Langchain OpenAI Embeddings.
Source code in src/zenml/materializers/base_materializer.py
125 126 127 128 129 130 131 132 133 134 135 |
|
load(data_type: Type[Any]) -> Any
Loads the embeddings model and lets it recreate clients when needed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type
|
Type[Any]
|
The type of the data to load. |
required |
Returns:
Type | Description |
---|---|
Any
|
The loaded embeddings model. |
Source code in src/zenml/integrations/langchain/materializers/openai_embedding_materializer.py
47 48 49 50 51 52 53 54 55 56 |
|
save(embeddings: Any) -> None
Saves the embeddings model after clearing non-picklable clients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embeddings
|
Any
|
The embeddings model to save. |
required |
Source code in src/zenml/integrations/langchain/materializers/openai_embedding_materializer.py
34 35 36 37 38 39 40 41 42 43 44 45 |
|
vector_store_materializer
Implementation of the langchain vector store materializer.
LangchainVectorStoreMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
Bases: CloudpickleMaterializer
Handle langchain vector store objects.
Source code in src/zenml/materializers/base_materializer.py
125 126 127 128 129 130 131 132 133 134 135 |
|