Skip to content

Client

zenml.client

Client implementation.

Attributes

AnyResponse = TypeVar('AnyResponse', bound=BaseIdentifiedResponse) module-attribute

ENV_ZENML_ACTIVE_PROJECT_ID = 'ZENML_ACTIVE_PROJECT_ID' module-attribute

ENV_ZENML_ACTIVE_STACK_ID = 'ZENML_ACTIVE_STACK_ID' module-attribute

ENV_ZENML_ENABLE_REPO_INIT_WARNINGS = 'ZENML_ENABLE_REPO_INIT_WARNINGS' module-attribute

ENV_ZENML_REPOSITORY_PATH = 'ZENML_REPOSITORY_PATH' module-attribute

ENV_ZENML_SERVER = 'ZENML_SERVER' module-attribute

F = TypeVar('F', bound=Callable[..., Any]) module-attribute

MetadataType = Union[str, int, float, bool, Dict[Any, Any], List[Any], Set[Any], Tuple[Any, ...], Uri, Path, DType, StorageSize] module-attribute

PAGE_SIZE_DEFAULT: int = handle_int_env_var(ENV_ZENML_PAGINATION_DEFAULT_LIMIT, default=20) module-attribute

PAGINATION_STARTING_PAGE: int = 1 module-attribute

REPOSITORY_DIRECTORY_NAME = '.zen' module-attribute

TEXT_FIELD_MAX_LENGTH = 65535 module-attribute

logger = get_logger(__name__) module-attribute

Classes

APIKeyFilter

Bases: BaseFilter

Filter model for API keys.

Functions
apply_filter(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Override to apply the service account scope as an additional filter.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the filter.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with filter applied.

Source code in src/zenml/models/v2/core/api_key.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def apply_filter(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Override to apply the service account scope as an additional filter.

    Args:
        query: The query to which to apply the filter.
        table: The query table.

    Returns:
        The query with filter applied.
    """
    query = super().apply_filter(query=query, table=table)

    if self.service_account:
        scope_filter = (
            getattr(table, "service_account_id") == self.service_account
        )
        query = query.where(scope_filter)

    return query
set_service_account(service_account_id: UUID) -> None

Set the service account by which to scope this query.

Parameters:

Name Type Description Default
service_account_id UUID

The service account ID.

required
Source code in src/zenml/models/v2/core/api_key.py
377
378
379
380
381
382
383
def set_service_account(self, service_account_id: UUID) -> None:
    """Set the service account by which to scope this query.

    Args:
        service_account_id: The service account ID.
    """
    self.service_account = service_account_id

APIKeyRequest

Bases: BaseRequest

Request model for API keys.

APIKeyResponse

Bases: BaseIdentifiedResponse[APIKeyResponseBody, APIKeyResponseMetadata, APIKeyResponseResources]

Response model for API keys.

Attributes
active: bool property

The active property.

Returns:

Type Description
bool

the value of the property.

description: str property

The description property.

Returns:

Type Description
str

the value of the property.

key: Optional[str] property

The key property.

Returns:

Type Description
Optional[str]

the value of the property.

last_login: Optional[datetime] property

The last_login property.

Returns:

Type Description
Optional[datetime]

the value of the property.

last_rotated: Optional[datetime] property

The last_rotated property.

Returns:

Type Description
Optional[datetime]

the value of the property.

retain_period_minutes: int property

The retain_period_minutes property.

Returns:

Type Description
int

the value of the property.

service_account: ServiceAccountResponse property

The service_account property.

Returns:

Type Description
ServiceAccountResponse

the value of the property.

Functions
get_hydrated_version() -> APIKeyResponse

Get the hydrated version of this API key.

Returns:

Type Description
APIKeyResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/api_key.py
198
199
200
201
202
203
204
205
206
207
208
209
def get_hydrated_version(self) -> "APIKeyResponse":
    """Get the hydrated version of this API key.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_api_key(
        service_account_id=self.service_account.id,
        api_key_name_or_id=self.id,
    )
set_key(key: str) -> None

Sets the API key and encodes it.

Parameters:

Name Type Description Default
key str

The API key value to be set.

required
Source code in src/zenml/models/v2/core/api_key.py
212
213
214
215
216
217
218
def set_key(self, key: str) -> None:
    """Sets the API key and encodes it.

    Args:
        key: The API key value to be set.
    """
    self.get_body().key = APIKey(id=self.id, key=key).encode()

APIKeyRotateRequest

Bases: BaseRequest

Request model for API key rotation.

APIKeyUpdate

Bases: BaseUpdate

Update model for API keys.

ActionFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all actions.

ActionRequest

Bases: ProjectScopedRequest

Model for creating a new action.

ActionResponse

Bases: ProjectScopedResponse[ActionResponseBody, ActionResponseMetadata, ActionResponseResources]

Response model for actions.

Attributes
auth_window: int property

The auth_window property.

Returns:

Type Description
int

the value of the property.

configuration: Dict[str, Any] property

The configuration property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

description: str property

The description property.

Returns:

Type Description
str

the value of the property.

flavor: str property

The flavor property.

Returns:

Type Description
str

the value of the property.

plugin_subtype: PluginSubType property

The plugin_subtype property.

Returns:

Type Description
PluginSubType

the value of the property.

service_account: UserResponse property

The service_account property.

Returns:

Type Description
UserResponse

the value of the property.

Functions
get_hydrated_version() -> ActionResponse

Get the hydrated version of this action.

Returns:

Type Description
ActionResponse

An instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/action.py
184
185
186
187
188
189
190
191
192
def get_hydrated_version(self) -> "ActionResponse":
    """Get the hydrated version of this action.

    Returns:
        An instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_action(self.id)
set_configuration(configuration: Dict[str, Any]) -> None

Set the configuration property.

Parameters:

Name Type Description Default
configuration Dict[str, Any]

The value to set.

required
Source code in src/zenml/models/v2/core/action.py
240
241
242
243
244
245
246
def set_configuration(self, configuration: Dict[str, Any]) -> None:
    """Set the `configuration` property.

    Args:
        configuration: The value to set.
    """
    self.get_metadata().configuration = configuration

ActionUpdate

Bases: BaseUpdate

Update model for actions.

Functions
from_response(response: ActionResponse) -> ActionUpdate classmethod

Create an update model from a response model.

Parameters:

Name Type Description Default
response ActionResponse

The response model to create the update model from.

required

Returns:

Type Description
ActionUpdate

The update model.

Source code in src/zenml/models/v2/core/action.py
116
117
118
119
120
121
122
123
124
125
126
127
128
@classmethod
def from_response(cls, response: "ActionResponse") -> "ActionUpdate":
    """Create an update model from a response model.

    Args:
        response: The response model to create the update model from.

    Returns:
        The update model.
    """
    return ActionUpdate(
        configuration=copy.deepcopy(response.configuration),
    )

ArtifactFilter

Bases: ProjectScopedFilter, TaggableFilter

Model to enable advanced filtering of artifacts.

Functions
apply_sorting(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Apply sorting to the query for Artifacts.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the sorting.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with sorting applied.

Source code in src/zenml/models/v2/core/artifact.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def apply_sorting(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Apply sorting to the query for Artifacts.

    Args:
        query: The query to which to apply the sorting.
        table: The query table.

    Returns:
        The query with sorting applied.
    """
    from sqlmodel import asc, case, col, desc, func, select

    from zenml.enums import SorterOps
    from zenml.zen_stores.schemas import (
        ArtifactSchema,
        ArtifactVersionSchema,
    )

    sort_by, operand = self.sorting_params

    if sort_by == SORT_BY_LATEST_VERSION_KEY:
        # Subquery to find the latest version per artifact
        latest_version_subquery = (
            select(
                ArtifactSchema.id,
                case(
                    (
                        func.max(ArtifactVersionSchema.created).is_(None),
                        ArtifactSchema.created,
                    ),
                    else_=func.max(ArtifactVersionSchema.created),
                ).label("latest_version_created"),
            )
            .outerjoin(
                ArtifactVersionSchema,
                ArtifactSchema.id == ArtifactVersionSchema.artifact_id,  # type: ignore[arg-type]
            )
            .group_by(col(ArtifactSchema.id))
            .subquery()
        )

        query = query.add_columns(
            latest_version_subquery.c.latest_version_created,
        ).where(ArtifactSchema.id == latest_version_subquery.c.id)

        # Apply sorting based on the operand
        if operand == SorterOps.ASCENDING:
            query = query.order_by(
                asc(latest_version_subquery.c.latest_version_created),
                asc(ArtifactSchema.id),
            )
        else:
            query = query.order_by(
                desc(latest_version_subquery.c.latest_version_created),
                desc(ArtifactSchema.id),
            )
        return query

    # For other sorting cases, delegate to the parent class
    return super().apply_sorting(query=query, table=table)

ArtifactResponse

Bases: ProjectScopedResponse[ArtifactResponseBody, ArtifactResponseMetadata, ArtifactResponseResources]

Artifact response model.

Attributes
has_custom_name: bool property

The has_custom_name property.

Returns:

Type Description
bool

the value of the property.

latest_version_id: Optional[UUID] property

The latest_version_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

latest_version_name: Optional[str] property

The latest_version_name property.

Returns:

Type Description
Optional[str]

the value of the property.

tags: List[TagResponse] property

The tags property.

Returns:

Type Description
List[TagResponse]

the value of the property.

versions: Dict[str, ArtifactVersionResponse] property

Get a list of all versions of this artifact.

Returns:

Type Description
Dict[str, ArtifactVersionResponse]

A list of all versions of this artifact.

Functions
get_hydrated_version() -> ArtifactResponse

Get the hydrated version of this artifact.

Returns:

Type Description
ArtifactResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/artifact.py
119
120
121
122
123
124
125
126
127
def get_hydrated_version(self) -> "ArtifactResponse":
    """Get the hydrated version of this artifact.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_artifact(self.id)

ArtifactType

Bases: StrEnum

All possible types an artifact can have.

ArtifactUpdate

Bases: BaseUpdate

Artifact update model.

ArtifactVersionFilter

Bases: ProjectScopedFilter, TaggableFilter, RunMetadataFilterMixin

Model to enable advanced filtering of artifact versions.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[Union[ColumnElement[bool]]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[Union[ColumnElement[bool]]]

A list of custom filters.

Source code in src/zenml/models/v2/core/artifact_version.py
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List[Union["ColumnElement[bool]"]]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import and_, or_, select

    from zenml.zen_stores.schemas import (
        ArtifactSchema,
        ArtifactVersionSchema,
        ModelSchema,
        ModelVersionArtifactSchema,
        ModelVersionSchema,
        PipelineRunSchema,
        StepRunInputArtifactSchema,
        StepRunOutputArtifactSchema,
        StepRunSchema,
    )

    if self.artifact:
        value, operator = self._resolve_operator(self.artifact)
        artifact_filter = and_(
            ArtifactVersionSchema.artifact_id == ArtifactSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.artifact, table=ArtifactSchema
            ),
        )
        custom_filters.append(artifact_filter)

    if self.only_unused:
        unused_filter = and_(
            ArtifactVersionSchema.id.notin_(  # type: ignore[attr-defined]
                select(StepRunOutputArtifactSchema.artifact_id)
            ),
            ArtifactVersionSchema.id.notin_(  # type: ignore[attr-defined]
                select(StepRunInputArtifactSchema.artifact_id)
            ),
        )
        custom_filters.append(unused_filter)

    if self.model_version_id:
        value, operator = self._resolve_operator(self.model_version_id)

        model_version_filter = and_(
            ArtifactVersionSchema.id
            == ModelVersionArtifactSchema.artifact_version_id,
            ModelVersionArtifactSchema.model_version_id
            == ModelVersionSchema.id,
            FilterGenerator(ModelVersionSchema)
            .define_filter(column="id", value=value, operator=operator)
            .generate_query_conditions(ModelVersionSchema),
        )
        custom_filters.append(model_version_filter)

    if self.has_custom_name is not None:
        custom_name_filter = and_(
            ArtifactVersionSchema.artifact_id == ArtifactSchema.id,
            ArtifactSchema.has_custom_name == self.has_custom_name,
        )
        custom_filters.append(custom_name_filter)

    if self.model:
        model_filter = and_(
            ArtifactVersionSchema.id
            == ModelVersionArtifactSchema.artifact_version_id,
            ModelVersionArtifactSchema.model_version_id
            == ModelVersionSchema.id,
            ModelVersionSchema.model_id == ModelSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.model, table=ModelSchema
            ),
        )
        custom_filters.append(model_filter)

    if self.pipeline_run:
        pipeline_run_filter = and_(
            or_(
                and_(
                    ArtifactVersionSchema.id
                    == StepRunOutputArtifactSchema.artifact_id,
                    StepRunOutputArtifactSchema.step_id
                    == StepRunSchema.id,
                ),
                and_(
                    ArtifactVersionSchema.id
                    == StepRunInputArtifactSchema.artifact_id,
                    StepRunInputArtifactSchema.step_id == StepRunSchema.id,
                ),
            ),
            StepRunSchema.pipeline_run_id == PipelineRunSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.pipeline_run, table=PipelineRunSchema
            ),
        )
        custom_filters.append(pipeline_run_filter)

    return custom_filters

ArtifactVersionResponse

Bases: ProjectScopedResponse[ArtifactVersionResponseBody, ArtifactVersionResponseMetadata, ArtifactVersionResponseResources]

Response model for artifact versions.

Attributes
artifact: ArtifactResponse property

The artifact property.

Returns:

Type Description
ArtifactResponse

the value of the property.

artifact_store_id: Optional[UUID] property

The artifact_store_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

data_type: Source property

The data_type property.

Returns:

Type Description
Source

the value of the property.

materializer: Source property

The materializer property.

Returns:

Type Description
Source

the value of the property.

name: str property

The name property.

Returns:

Type Description
str

the value of the property.

producer_pipeline_run_id: Optional[UUID] property

The producer_pipeline_run_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

producer_step_run_id: Optional[UUID] property

The producer_step_run_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

run: PipelineRunResponse property

Get the pipeline run that produced this artifact.

Returns:

Type Description
PipelineRunResponse

The pipeline run that produced this artifact.

run_metadata: Dict[str, MetadataType] property

The metadata property.

Returns:

Type Description
Dict[str, MetadataType]

the value of the property.

save_type: ArtifactSaveType property

The save_type property.

Returns:

Type Description
ArtifactSaveType

the value of the property.

step: StepRunResponse property

Get the step that produced this artifact.

Returns:

Type Description
StepRunResponse

The step that produced this artifact.

tags: List[TagResponse] property

The tags property.

Returns:

Type Description
List[TagResponse]

the value of the property.

type: ArtifactType property

The type property.

Returns:

Type Description
ArtifactType

the value of the property.

uri: str property

The uri property.

Returns:

Type Description
str

the value of the property.

version: Union[str, int] property

The version property.

Returns:

Type Description
Union[str, int]

the value of the property.

visualizations: Optional[List[ArtifactVisualizationResponse]] property

The visualizations property.

Returns:

Type Description
Optional[List[ArtifactVisualizationResponse]]

the value of the property.

Functions
download_files(path: str, overwrite: bool = False) -> None

Downloads data for an artifact with no materializing.

Any artifacts will be saved as a zip file to the given path.

Parameters:

Name Type Description Default
path str

The path to save the binary data to.

required
overwrite bool

Whether to overwrite the file if it already exists.

False

Raises:

Type Description
ValueError

If the path does not end with '.zip'.

Source code in src/zenml/models/v2/core/artifact_version.py
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def download_files(self, path: str, overwrite: bool = False) -> None:
    """Downloads data for an artifact with no materializing.

    Any artifacts will be saved as a zip file to the given path.

    Args:
        path: The path to save the binary data to.
        overwrite: Whether to overwrite the file if it already exists.

    Raises:
        ValueError: If the path does not end with '.zip'.
    """
    if not path.endswith(".zip"):
        raise ValueError(
            "The path should end with '.zip' to save the binary data."
        )
    from zenml.artifacts.utils import (
        download_artifact_files_from_response,
    )

    download_artifact_files_from_response(
        self,
        path=path,
        overwrite=overwrite,
    )
get_hydrated_version() -> ArtifactVersionResponse

Get the hydrated version of this artifact version.

Returns:

Type Description
ArtifactVersionResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/artifact_version.py
262
263
264
265
266
267
268
269
270
def get_hydrated_version(self) -> "ArtifactVersionResponse":
    """Get the hydrated version of this artifact version.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_artifact_version(self.id)
load() -> Any

Materializes (loads) the data stored in this artifact.

Returns:

Type Description
Any

The materialized data.

Source code in src/zenml/models/v2/core/artifact_version.py
424
425
426
427
428
429
430
431
432
def load(self) -> Any:
    """Materializes (loads) the data stored in this artifact.

    Returns:
        The materialized data.
    """
    from zenml.artifacts.utils import load_artifact_from_response

    return load_artifact_from_response(self)
visualize(title: Optional[str] = None) -> None

Visualize the artifact in notebook environments.

Parameters:

Name Type Description Default
title Optional[str]

Optional title to show before the visualizations.

None
Source code in src/zenml/models/v2/core/artifact_version.py
460
461
462
463
464
465
466
467
468
def visualize(self, title: Optional[str] = None) -> None:
    """Visualize the artifact in notebook environments.

    Args:
        title: Optional title to show before the visualizations.
    """
    from zenml.utils.visualization_utils import visualize_artifact

    visualize_artifact(self, title=title)

ArtifactVersionUpdate

Bases: BaseUpdate

Artifact version update model.

AuthorizationException(message: Optional[str] = None, url: Optional[str] = None)

Bases: ZenMLBaseException

Raised when an authorization error occurred while trying to access a ZenML resource .

Source code in src/zenml/exceptions.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def __init__(
    self,
    message: Optional[str] = None,
    url: Optional[str] = None,
):
    """The BaseException used to format messages displayed to the user.

    Args:
        message: Message with details of exception. This message
                 will be appended with another message directing user to
                 `url` for more information. If `None`, then default
                 Exception behavior is used.
        url: URL to point to in exception message. If `None`, then no url
             is appended.
    """
    if message and url:
        message += f" For more information, visit {url}."
    super().__init__(message)

BaseIdentifiedResponse

Bases: BaseResponse[AnyDatedBody, AnyMetadata, AnyResources], Generic[AnyDatedBody, AnyMetadata, AnyResources]

Base domain model for resources with DB representation.

Attributes
created: datetime property

The created property.

Returns:

Type Description
datetime

the value of the property.

updated: datetime property

The updated property.

Returns:

Type Description
datetime

the value of the property.

Functions
get_analytics_metadata() -> Dict[str, Any]

Fetches the analytics metadata for base response models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in src/zenml/models/v2/base/base.py
456
457
458
459
460
461
462
463
464
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for base response models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata["entity_id"] = self.id
    return metadata
get_body() -> AnyDatedBody

Fetch the body of the entity.

Returns:

Type Description
AnyDatedBody

The body field of the response.

Raises:

Type Description
IllegalOperationError

If the user lacks permission to access the entity represented by this response.

Source code in src/zenml/models/v2/base/base.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def get_body(self) -> "AnyDatedBody":
    """Fetch the body of the entity.

    Returns:
        The body field of the response.

    Raises:
        IllegalOperationError: If the user lacks permission to access the
            entity represented by this response.
    """
    if self.permission_denied:
        raise IllegalOperationError(
            f"Missing permissions to access {type(self).__name__} with "
            f"ID {self.id}."
        )

    return super().get_body()
get_hydrated_version() -> BaseIdentifiedResponse[AnyDatedBody, AnyMetadata, AnyResources]

Abstract method to fetch the hydrated version of the model.

Raises:

Type Description
NotImplementedError

in case the method is not implemented.

Source code in src/zenml/models/v2/base/base.py
406
407
408
409
410
411
412
413
414
415
416
417
def get_hydrated_version(
    self,
) -> "BaseIdentifiedResponse[AnyDatedBody, AnyMetadata, AnyResources]":
    """Abstract method to fetch the hydrated version of the model.

    Raises:
        NotImplementedError: in case the method is not implemented.
    """
    raise NotImplementedError(
        "Please implement a `get_hydrated_version` method before "
        "using/hydrating the model."
    )
get_metadata() -> AnyMetadata

Fetch the metadata of the entity.

Returns:

Type Description
AnyMetadata

The metadata field of the response.

Raises:

Type Description
IllegalOperationError

If the user lacks permission to access this entity represented by this response.

Source code in src/zenml/models/v2/base/base.py
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
def get_metadata(self) -> "AnyMetadata":
    """Fetch the metadata of the entity.

    Returns:
        The metadata field of the response.

    Raises:
        IllegalOperationError: If the user lacks permission to access this
            entity represented by this response.
    """
    if self.permission_denied:
        raise IllegalOperationError(
            f"Missing permissions to access {type(self).__name__} with "
            f"ID {self.id}."
        )

    return super().get_metadata()

BaseZenStore(skip_default_registrations: bool = False, **kwargs: Any)

Bases: BaseModel, ZenStoreInterface, ABC

Base class for accessing and persisting ZenML core objects.

Attributes:

Name Type Description
config StoreConfiguration

The configuration of the store.

Create and initialize a store.

Parameters:

Name Type Description Default
skip_default_registrations bool

If True, the creation of the default stack and user in the store will be skipped.

False
**kwargs Any

Additional keyword arguments to pass to the Pydantic constructor.

{}
Source code in src/zenml/zen_stores/base_zen_store.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def __init__(
    self,
    skip_default_registrations: bool = False,
    **kwargs: Any,
) -> None:
    """Create and initialize a store.

    Args:
        skip_default_registrations: If `True`, the creation of the default
            stack and user in the store will be skipped.
        **kwargs: Additional keyword arguments to pass to the Pydantic
            constructor.
    """
    super().__init__(**kwargs)

    self._initialize()

    if not skip_default_registrations:
        logger.debug("Initializing database")
        self._initialize_database()
    else:
        logger.debug("Skipping database initialization")
Attributes
type: StoreType property

The type of the store.

Returns:

Type Description
StoreType

The type of the store.

url: str property

The URL of the store.

Returns:

Type Description
str

The URL of the store.

Functions
convert_config(data: Dict[str, Any]) -> Dict[str, Any] classmethod

Method to infer the correct type of the config and convert.

Parameters:

Name Type Description Default
data Dict[str, Any]

The provided configuration object, can potentially be a generic object

required

Raises:

Type Description
ValueError

If the provided config object's type does not match any of the current implementations.

Returns:

Type Description
Dict[str, Any]

The converted configuration object.

Source code in src/zenml/zen_stores/base_zen_store.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@model_validator(mode="before")
@classmethod
@before_validator_handler
def convert_config(cls, data: Dict[str, Any]) -> Dict[str, Any]:
    """Method to infer the correct type of the config and convert.

    Args:
        data: The provided configuration object, can potentially be a
            generic object

    Raises:
        ValueError: If the provided config object's type does not match
            any of the current implementations.

    Returns:
        The converted configuration object.
    """
    if data["config"].type == StoreType.SQL:
        from zenml.zen_stores.sql_zen_store import SqlZenStoreConfiguration

        data["config"] = SqlZenStoreConfiguration(
            **data["config"].model_dump()
        )

    elif data["config"].type == StoreType.REST:
        from zenml.zen_stores.rest_zen_store import (
            RestZenStoreConfiguration,
        )

        data["config"] = RestZenStoreConfiguration(
            **data["config"].model_dump()
        )
    else:
        raise ValueError(
            f"Unknown type '{data['config'].type}' for the configuration."
        )

    return data
create_store(config: StoreConfiguration, skip_default_registrations: bool = False, **kwargs: Any) -> BaseZenStore staticmethod

Create and initialize a store from a store configuration.

Parameters:

Name Type Description Default
config StoreConfiguration

The store configuration to use.

required
skip_default_registrations bool

If True, the creation of the default stack and user in the store will be skipped.

False
**kwargs Any

Additional keyword arguments to pass to the store class

{}

Returns:

Type Description
BaseZenStore

The initialized store.

Source code in src/zenml/zen_stores/base_zen_store.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
@staticmethod
def create_store(
    config: StoreConfiguration,
    skip_default_registrations: bool = False,
    **kwargs: Any,
) -> "BaseZenStore":
    """Create and initialize a store from a store configuration.

    Args:
        config: The store configuration to use.
        skip_default_registrations: If `True`, the creation of the default
            stack and user in the store will be skipped.
        **kwargs: Additional keyword arguments to pass to the store class

    Returns:
        The initialized store.
    """
    store_class = BaseZenStore.get_store_class(config.type)
    store = store_class(
        config=config,
        skip_default_registrations=skip_default_registrations,
        **kwargs,
    )

    return store
get_default_store_config(path: str) -> StoreConfiguration staticmethod

Get the default store configuration.

The default store is a SQLite store that saves the DB contents on the local filesystem.

Parameters:

Name Type Description Default
path str

The local path where the store DB will be stored.

required

Returns:

Type Description
StoreConfiguration

The default store configuration.

Source code in src/zenml/zen_stores/base_zen_store.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
@staticmethod
def get_default_store_config(path: str) -> StoreConfiguration:
    """Get the default store configuration.

    The default store is a SQLite store that saves the DB contents on the
    local filesystem.

    Args:
        path: The local path where the store DB will be stored.

    Returns:
        The default store configuration.
    """
    from zenml.zen_stores.secrets_stores.sql_secrets_store import (
        SqlSecretsStoreConfiguration,
    )
    from zenml.zen_stores.sql_zen_store import SqlZenStoreConfiguration

    config = SqlZenStoreConfiguration(
        type=StoreType.SQL,
        url=SqlZenStoreConfiguration.get_local_url(path),
        secrets_store=SqlSecretsStoreConfiguration(
            type=SecretsStoreType.SQL,
        ),
    )
    return config
get_external_user(user_id: UUID) -> UserResponse

Get a user by external ID.

Parameters:

Name Type Description Default
user_id UUID

The external ID of the user.

required

Returns:

Type Description
UserResponse

The user with the supplied external ID.

Raises:

Type Description
KeyError

If the user doesn't exist.

Source code in src/zenml/zen_stores/base_zen_store.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
def get_external_user(self, user_id: UUID) -> UserResponse:
    """Get a user by external ID.

    Args:
        user_id: The external ID of the user.

    Returns:
        The user with the supplied external ID.

    Raises:
        KeyError: If the user doesn't exist.
    """
    users = self.list_users(UserFilter(external_user_id=user_id))
    if users.total == 0:
        raise KeyError(f"User with external ID '{user_id}' not found.")
    return users.items[0]
get_store_class(store_type: StoreType) -> Type[BaseZenStore] staticmethod

Returns the class of the given store type.

Parameters:

Name Type Description Default
store_type StoreType

The type of the store to get the class for.

required

Returns:

Type Description
Type[BaseZenStore]

The class of the given store type or None if the type is unknown.

Raises:

Type Description
TypeError

If the store type is unsupported.

Source code in src/zenml/zen_stores/base_zen_store.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
@staticmethod
def get_store_class(store_type: StoreType) -> Type["BaseZenStore"]:
    """Returns the class of the given store type.

    Args:
        store_type: The type of the store to get the class for.

    Returns:
        The class of the given store type or None if the type is unknown.

    Raises:
        TypeError: If the store type is unsupported.
    """
    if store_type == StoreType.SQL:
        if os.environ.get(ENV_ZENML_SERVER):
            from zenml.zen_server.rbac.rbac_sql_zen_store import (
                RBACSqlZenStore,
            )

            return RBACSqlZenStore
        else:
            from zenml.zen_stores.sql_zen_store import SqlZenStore

            return SqlZenStore
    elif store_type == StoreType.REST:
        from zenml.zen_stores.rest_zen_store import RestZenStore

        return RestZenStore
    else:
        raise TypeError(
            f"No store implementation found for store type "
            f"`{store_type.value}`."
        )
get_store_config_class(store_type: StoreType) -> Type[StoreConfiguration] staticmethod

Returns the store config class of the given store type.

Parameters:

Name Type Description Default
store_type StoreType

The type of the store to get the class for.

required

Returns:

Type Description
Type[StoreConfiguration]

The config class of the given store type.

Source code in src/zenml/zen_stores/base_zen_store.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
@staticmethod
def get_store_config_class(
    store_type: StoreType,
) -> Type["StoreConfiguration"]:
    """Returns the store config class of the given store type.

    Args:
        store_type: The type of the store to get the class for.

    Returns:
        The config class of the given store type.
    """
    store_class = BaseZenStore.get_store_class(store_type)
    return store_class.CONFIG_TYPE
get_store_info() -> ServerModel

Get information about the store.

Returns:

Type Description
ServerModel

Information about the store.

Source code in src/zenml/zen_stores/base_zen_store.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def get_store_info(self) -> ServerModel:
    """Get information about the store.

    Returns:
        Information about the store.
    """
    from zenml.zen_stores.sql_zen_store import SqlZenStore

    server_config = ServerConfiguration.get_server_config()
    deployment_type = server_config.deployment_type
    auth_scheme = server_config.auth_scheme
    metadata = server_config.metadata
    secrets_store_type = SecretsStoreType.NONE
    if isinstance(self, SqlZenStore) and self.config.secrets_store:
        secrets_store_type = self.config.secrets_store.type
    store_info = ServerModel(
        id=GlobalConfiguration().user_id,
        active=True,
        version=zenml.__version__,
        deployment_type=deployment_type,
        database_type=ServerDatabaseType.OTHER,
        debug=IS_DEBUG_ENV,
        secrets_store_type=secrets_store_type,
        auth_scheme=auth_scheme,
        server_url=server_config.server_url or "",
        dashboard_url=server_config.dashboard_url or "",
        analytics_enabled=GlobalConfiguration().analytics_opt_in,
        metadata=metadata,
    )

    # Add ZenML Pro specific store information to the server model, if available.
    if store_info.deployment_type == ServerDeploymentType.CLOUD:
        from zenml.config.server_config import ServerProConfiguration

        pro_config = ServerProConfiguration.get_server_config()

        store_info.pro_api_url = pro_config.api_url
        store_info.pro_dashboard_url = pro_config.dashboard_url
        store_info.pro_organization_id = pro_config.organization_id
        store_info.pro_workspace_id = pro_config.workspace_id
        if pro_config.workspace_name:
            store_info.pro_workspace_name = pro_config.workspace_name
        if pro_config.organization_name:
            store_info.pro_organization_name = pro_config.organization_name

    return store_info
get_store_type(url: str) -> StoreType staticmethod

Returns the store type associated with a URL schema.

Parameters:

Name Type Description Default
url str

The store URL.

required

Returns:

Type Description
StoreType

The store type associated with the supplied URL schema.

Raises:

Type Description
TypeError

If no store type was found to support the supplied URL.

Source code in src/zenml/zen_stores/base_zen_store.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
@staticmethod
def get_store_type(url: str) -> StoreType:
    """Returns the store type associated with a URL schema.

    Args:
        url: The store URL.

    Returns:
        The store type associated with the supplied URL schema.

    Raises:
        TypeError: If no store type was found to support the supplied URL.
    """
    from zenml.zen_stores.rest_zen_store import RestZenStoreConfiguration
    from zenml.zen_stores.sql_zen_store import SqlZenStoreConfiguration

    if SqlZenStoreConfiguration.supports_url_scheme(url):
        return StoreType.SQL
    elif RestZenStoreConfiguration.supports_url_scheme(url):
        return StoreType.REST
    else:
        raise TypeError(f"No store implementation found for URL: {url}.")
is_local_store() -> bool

Check if the store is local or connected to a local ZenML server.

Returns:

Type Description
bool

True if the store is local, False otherwise.

Source code in src/zenml/zen_stores/base_zen_store.py
447
448
449
450
451
452
453
def is_local_store(self) -> bool:
    """Check if the store is local or connected to a local ZenML server.

    Returns:
        True if the store is local, False otherwise.
    """
    return self.get_store_info().is_local()
validate_active_config(active_project_id: Optional[UUID] = None, active_stack_id: Optional[UUID] = None, config_name: str = '') -> Tuple[Optional[ProjectResponse], StackResponse]

Validate the active configuration.

Call this method to validate the supplied active project and active stack values.

This method returns a valid project and stack values. If the supplied project and stack are not set or are not valid (e.g. they do not exist or are not accessible), the default project and default stack will be returned in their stead.

Parameters:

Name Type Description Default
active_project_id Optional[UUID]

The ID of the active project.

None
active_stack_id Optional[UUID]

The ID of the active stack.

None
config_name str

The name of the configuration to validate (used in the displayed logs/messages).

''

Returns:

Type Description
Tuple[Optional[ProjectResponse], StackResponse]

A tuple containing the active project and active stack.

Source code in src/zenml/zen_stores/base_zen_store.py
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def validate_active_config(
    self,
    active_project_id: Optional[UUID] = None,
    active_stack_id: Optional[UUID] = None,
    config_name: str = "",
) -> Tuple[Optional[ProjectResponse], StackResponse]:
    """Validate the active configuration.

    Call this method to validate the supplied active project and active
    stack values.

    This method returns a valid project and stack values. If the
    supplied project and stack are not set or are not valid (e.g. they
    do not exist or are not accessible), the default project and default
    stack will be returned in their stead.

    Args:
        active_project_id: The ID of the active project.
        active_stack_id: The ID of the active stack.
        config_name: The name of the configuration to validate (used in the
            displayed logs/messages).

    Returns:
        A tuple containing the active project and active stack.
    """
    active_project: Optional[ProjectResponse] = None

    if active_project_id:
        try:
            active_project = self.get_project(active_project_id)
        except (KeyError, IllegalOperationError):
            active_project_id = None
            logger.warning(
                f"The current {config_name} active project is no longer "
                f"available."
            )

    if active_project is None:
        user = self.get_user()
        if user.default_project_id:
            try:
                active_project = self.get_project(user.default_project_id)
            except (KeyError, IllegalOperationError):
                logger.warning(
                    "The default project %s for the active user is no longer "
                    "available.",
                    user.default_project_id,
                )
            else:
                logger.info(
                    f"Setting the {config_name} active project "
                    f"to '{active_project.name}'."
                )

    if active_project is None:
        try:
            projects = self.list_projects(
                project_filter_model=ProjectFilter()
            )
        except Exception:
            # There was some failure, we force the user to set the active
            # project manually
            logger.warning(
                "An active project is not set. Please set the active "
                "project by running `zenml project set <NAME>`."
            )
        else:
            if len(projects) == 0:
                logger.warning(
                    "No available projects. Please create a project by "
                    "running `zenml project register <NAME> --set`."
                )
            elif len(projects) == 1:
                active_project = projects.items[0]
                logger.info(
                    f"Setting the {config_name} active project "
                    f"to '{active_project.name}'."
                )
            else:
                logger.warning(
                    "Multiple projects are available. Please set the "
                    "active project by running `zenml project set <NAME>`."
                )

    active_stack: StackResponse

    # Sanitize the active stack
    if active_stack_id:
        # Ensure that the active stack is still valid
        try:
            active_stack = self.get_stack(stack_id=active_stack_id)
        except (KeyError, IllegalOperationError):
            logger.warning(
                "The current %s active stack is no longer available. "
                "Resetting the active stack to default.",
                config_name,
            )
            active_stack = self._get_default_stack()

    else:
        logger.warning(
            "Setting the %s active stack to default.",
            config_name,
        )
        active_stack = self._get_default_stack()

    return active_project, active_stack

Client(root: Optional[Path] = None)

ZenML client class.

The ZenML client manages configuration options for ZenML stacks as well as their components.

Initializes the global client instance.

Client is a singleton class: only one instance can exist. Calling this constructor multiple times will always yield the same instance (see the exception below).

The root argument is only meant for internal use and testing purposes. User code must never pass them to the constructor. When a custom root value is passed, an anonymous Client instance is created and returned independently of the Client singleton and that will have no effect as far as the rest of the ZenML core code is concerned.

Instead of creating a new Client instance to reflect a different repository root, to change the active root in the global Client, call Client().activate_root(<new-root>).

Parameters:

Name Type Description Default
root Optional[Path]

(internal use) custom root directory for the client. If no path is given, the repository root is determined using the environment variable ZENML_REPOSITORY_PATH (if set) and by recursively searching in the parent directories of the current working directory. Only used to initialize new clients internally.

None
Source code in src/zenml/client.py
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def __init__(
    self,
    root: Optional[Path] = None,
) -> None:
    """Initializes the global client instance.

    Client is a singleton class: only one instance can exist. Calling
    this constructor multiple times will always yield the same instance (see
    the exception below).

    The `root` argument is only meant for internal use and testing purposes.
    User code must never pass them to the constructor.
    When a custom `root` value is passed, an anonymous Client instance
    is created and returned independently of the Client singleton and
    that will have no effect as far as the rest of the ZenML core code is
    concerned.

    Instead of creating a new Client instance to reflect a different
    repository root, to change the active root in the global Client,
    call `Client().activate_root(<new-root>)`.

    Args:
        root: (internal use) custom root directory for the client. If
            no path is given, the repository root is determined using the
            environment variable `ZENML_REPOSITORY_PATH` (if set) and by
            recursively searching in the parent directories of the
            current working directory. Only used to initialize new
            clients internally.
    """
    self._root: Optional[Path] = None
    self._config: Optional[ClientConfiguration] = None

    self._set_active_root(root)
Attributes
active_project: ProjectResponse property

Get the currently active project of the local client.

If no active project is configured locally for the client, the active project in the global configuration is used instead.

Returns:

Type Description
ProjectResponse

The active project.

Raises:

Type Description
RuntimeError

If the active project is not set.

active_stack: Stack property

The active stack for this client.

Returns:

Type Description
Stack

The active stack for this client.

active_stack_model: StackResponse property

The model of the active stack for this client.

If no active stack is configured locally for the client, the active stack in the global configuration is used instead.

Returns:

Type Description
StackResponse

The model of the active stack for this client.

Raises:

Type Description
RuntimeError

If the active stack is not set.

active_user: UserResponse property

Get the user that is currently in use.

Returns:

Type Description
UserResponse

The active user.

config_directory: Optional[Path] property

The configuration directory of this client.

Returns:

Type Description
Optional[Path]

The configuration directory of this client, or None, if the

Optional[Path]

client doesn't have an active root.

root: Optional[Path] property

The root directory of this client.

Returns:

Type Description
Optional[Path]

The root directory of this client, or None, if the client

Optional[Path]

has not been initialized.

uses_local_configuration: bool property

Check if the client is using a local configuration.

Returns:

Type Description
bool

True if the client is using a local configuration,

bool

False otherwise.

zen_store: BaseZenStore property

Shortcut to return the global zen store.

Returns:

Type Description
BaseZenStore

The global zen store.

Functions
activate_root(root: Optional[Path] = None) -> None

Set the active repository root directory.

Parameters:

Name Type Description Default
root Optional[Path]

The path to set as the active repository root. If not set, the repository root is determined using the environment variable ZENML_REPOSITORY_PATH (if set) and by recursively searching in the parent directories of the current working directory.

None
Source code in src/zenml/client.py
670
671
672
673
674
675
676
677
678
679
680
def activate_root(self, root: Optional[Path] = None) -> None:
    """Set the active repository root directory.

    Args:
        root: The path to set as the active repository root. If not set,
            the repository root is determined using the environment
            variable `ZENML_REPOSITORY_PATH` (if set) and by recursively
            searching in the parent directories of the current working
            directory.
    """
    self._set_active_root(root)
activate_stack(stack_name_id_or_prefix: Union[str, UUID]) -> None

Sets the stack as active.

Parameters:

Name Type Description Default
stack_name_id_or_prefix Union[str, UUID]

Model of the stack to activate.

required

Raises:

Type Description
KeyError

If the stack is not registered.

Source code in src/zenml/client.py
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
def activate_stack(
    self, stack_name_id_or_prefix: Union[str, UUID]
) -> None:
    """Sets the stack as active.

    Args:
        stack_name_id_or_prefix: Model of the stack to activate.

    Raises:
        KeyError: If the stack is not registered.
    """
    # Make sure the stack is registered
    try:
        stack = self.get_stack(name_id_or_prefix=stack_name_id_or_prefix)
    except KeyError as e:
        raise KeyError(
            f"Stack '{stack_name_id_or_prefix}' cannot be activated since "
            f"it is not registered yet. Please register it first."
        ) from e

    if self._config:
        self._config.set_active_stack(stack=stack)

    else:
        # set the active stack globally only if the client doesn't use
        # a local configuration
        GlobalConfiguration().set_active_stack(stack=stack)
attach_tag(tag_name_or_id: Union[str, UUID], resources: List[TagResource]) -> None

Attach a tag to resources.

Parameters:

Name Type Description Default
tag_name_or_id Union[str, UUID]

name or id of the tag to be attached.

required
resources List[TagResource]

the resources to attach the tag to.

required
Source code in src/zenml/client.py
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
def attach_tag(
    self,
    tag_name_or_id: Union[str, UUID],
    resources: List[TagResource],
) -> None:
    """Attach a tag to resources.

    Args:
        tag_name_or_id: name or id of the tag to be attached.
        resources: the resources to attach the tag to.
    """
    if isinstance(tag_name_or_id, str):
        try:
            tag_model = self.create_tag(name=tag_name_or_id)
        except EntityExistsError:
            tag_model = self.get_tag(tag_name_or_id)
    else:
        tag_model = self.get_tag(tag_name_or_id)

    self.zen_store.batch_create_tag_resource(
        tag_resources=[
            TagResourceRequest(
                tag_id=tag_model.id,
                resource_id=resource.id,
                resource_type=resource.type,
            )
            for resource in resources
        ]
    )
backup_secrets(ignore_errors: bool = True, delete_secrets: bool = False) -> None

Backs up all secrets to the configured backup secrets store.

Parameters:

Name Type Description Default
ignore_errors bool

Whether to ignore individual errors during the backup process and attempt to backup all secrets.

True
delete_secrets bool

Whether to delete the secrets that have been successfully backed up from the primary secrets store. Setting this flag effectively moves all secrets from the primary secrets store to the backup secrets store.

False
Source code in src/zenml/client.py
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
def backup_secrets(
    self,
    ignore_errors: bool = True,
    delete_secrets: bool = False,
) -> None:
    """Backs up all secrets to the configured backup secrets store.

    Args:
        ignore_errors: Whether to ignore individual errors during the backup
            process and attempt to backup all secrets.
        delete_secrets: Whether to delete the secrets that have been
            successfully backed up from the primary secrets store. Setting
            this flag effectively moves all secrets from the primary secrets
            store to the backup secrets store.
    """
    self.zen_store.backup_secrets(
        ignore_errors=ignore_errors, delete_secrets=delete_secrets
    )
create_action(name: str, flavor: str, action_type: PluginSubType, configuration: Dict[str, Any], service_account_id: UUID, auth_window: Optional[int] = None, description: str = '') -> ActionResponse

Create an action.

Parameters:

Name Type Description Default
name str

The name of the action.

required
flavor str

The flavor of the action,

required
action_type PluginSubType

The action subtype.

required
configuration Dict[str, Any]

The action configuration.

required
service_account_id UUID

The service account that is used to execute the action.

required
auth_window Optional[int]

The time window in minutes for which the service account is authorized to execute the action. Set this to 0 to authorize the service account indefinitely (not recommended).

None
description str

The description of the action.

''

Returns:

Type Description
ActionResponse

The created action

Source code in src/zenml/client.py
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
@_fail_for_sql_zen_store
def create_action(
    self,
    name: str,
    flavor: str,
    action_type: PluginSubType,
    configuration: Dict[str, Any],
    service_account_id: UUID,
    auth_window: Optional[int] = None,
    description: str = "",
) -> ActionResponse:
    """Create an action.

    Args:
        name: The name of the action.
        flavor: The flavor of the action,
        action_type: The action subtype.
        configuration: The action configuration.
        service_account_id: The service account that is used to execute the
            action.
        auth_window: The time window in minutes for which the service
            account is authorized to execute the action. Set this to 0 to
            authorize the service account indefinitely (not recommended).
        description: The description of the action.

    Returns:
        The created action
    """
    action = ActionRequest(
        name=name,
        description=description,
        flavor=flavor,
        plugin_subtype=action_type,
        configuration=configuration,
        service_account_id=service_account_id,
        auth_window=auth_window,
        project=self.active_project.id,
    )

    return self.zen_store.create_action(action=action)
create_api_key(service_account_name_id_or_prefix: Union[str, UUID], name: str, description: str = '', set_key: bool = False) -> APIKeyResponse

Create a new API key and optionally set it as the active API key.

Parameters:

Name Type Description Default
service_account_name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the service account to create the API key for.

required
name str

Name of the API key.

required
description str

The description of the API key.

''
set_key bool

Whether to set the created API key as the active API key.

False

Returns:

Type Description
APIKeyResponse

The created API key.

Source code in src/zenml/client.py
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
def create_api_key(
    self,
    service_account_name_id_or_prefix: Union[str, UUID],
    name: str,
    description: str = "",
    set_key: bool = False,
) -> APIKeyResponse:
    """Create a new API key and optionally set it as the active API key.

    Args:
        service_account_name_id_or_prefix: The name, ID or prefix of the
            service account to create the API key for.
        name: Name of the API key.
        description: The description of the API key.
        set_key: Whether to set the created API key as the active API key.

    Returns:
        The created API key.
    """
    service_account = self.get_service_account(
        name_id_or_prefix=service_account_name_id_or_prefix,
        allow_name_prefix_match=False,
    )
    request = APIKeyRequest(
        name=name,
        description=description,
    )
    api_key = self.zen_store.create_api_key(
        service_account_id=service_account.id, api_key=request
    )
    assert api_key.key is not None

    if set_key:
        self.set_api_key(key=api_key.key)

    return api_key
create_code_repository(name: str, config: Dict[str, Any], source: Source, description: Optional[str] = None, logo_url: Optional[str] = None) -> CodeRepositoryResponse

Create a new code repository.

Parameters:

Name Type Description Default
name str

Name of the code repository.

required
config Dict[str, Any]

The configuration for the code repository.

required
source Source

The code repository implementation source.

required
description Optional[str]

The code repository description.

None
logo_url Optional[str]

URL of a logo (png, jpg or svg) for the code repository.

None

Returns:

Type Description
CodeRepositoryResponse

The created code repository.

Source code in src/zenml/client.py
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
def create_code_repository(
    self,
    name: str,
    config: Dict[str, Any],
    source: Source,
    description: Optional[str] = None,
    logo_url: Optional[str] = None,
) -> CodeRepositoryResponse:
    """Create a new code repository.

    Args:
        name: Name of the code repository.
        config: The configuration for the code repository.
        source: The code repository implementation source.
        description: The code repository description.
        logo_url: URL of a logo (png, jpg or svg) for the code repository.

    Returns:
        The created code repository.
    """
    self._validate_code_repository_config(source=source, config=config)
    repo_request = CodeRepositoryRequest(
        project=self.active_project.id,
        name=name,
        config=config,
        source=source,
        description=description,
        logo_url=logo_url,
    )
    return self.zen_store.create_code_repository(
        code_repository=repo_request
    )
create_event_source(name: str, configuration: Dict[str, Any], flavor: str, event_source_subtype: PluginSubType, description: str = '') -> EventSourceResponse

Registers an event source.

Parameters:

Name Type Description Default
name str

The name of the event source to create.

required
configuration Dict[str, Any]

Configuration for this event source.

required
flavor str

The flavor of event source.

required
event_source_subtype PluginSubType

The event source subtype.

required
description str

The description of the event source.

''

Returns:

Type Description
EventSourceResponse

The model of the registered event source.

Source code in src/zenml/client.py
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
@_fail_for_sql_zen_store
def create_event_source(
    self,
    name: str,
    configuration: Dict[str, Any],
    flavor: str,
    event_source_subtype: PluginSubType,
    description: str = "",
) -> EventSourceResponse:
    """Registers an event source.

    Args:
        name: The name of the event source to create.
        configuration: Configuration for this event source.
        flavor: The flavor of event source.
        event_source_subtype: The event source subtype.
        description: The description of the event source.

    Returns:
        The model of the registered event source.
    """
    event_source = EventSourceRequest(
        name=name,
        configuration=configuration,
        description=description,
        flavor=flavor,
        plugin_type=PluginType.EVENT_SOURCE,
        plugin_subtype=event_source_subtype,
        project=self.active_project.id,
    )

    return self.zen_store.create_event_source(event_source=event_source)
create_flavor(source: str, component_type: StackComponentType) -> FlavorResponse

Creates a new flavor.

Parameters:

Name Type Description Default
source str

The flavor to create.

required
component_type StackComponentType

The type of the flavor.

required

Returns:

Type Description
FlavorResponse

The created flavor (in model form).

Raises:

Type Description
ValueError

in case the config_schema of the flavor is too large.

Source code in src/zenml/client.py
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
def create_flavor(
    self,
    source: str,
    component_type: StackComponentType,
) -> FlavorResponse:
    """Creates a new flavor.

    Args:
        source: The flavor to create.
        component_type: The type of the flavor.

    Returns:
        The created flavor (in model form).

    Raises:
        ValueError: in case the config_schema of the flavor is too large.
    """
    from zenml.stack.flavor import validate_flavor_source

    flavor = validate_flavor_source(
        source=source, component_type=component_type
    )()

    if len(flavor.config_schema) > TEXT_FIELD_MAX_LENGTH:
        raise ValueError(
            "Json representation of configuration schema"
            "exceeds max length. This could be caused by an"
            "overly long docstring on the flavors "
            "configuration class' docstring."
        )

    flavor_request = flavor.to_model(integration="custom", is_custom=True)
    return self.zen_store.create_flavor(flavor=flavor_request)
create_model(name: str, license: Optional[str] = None, description: Optional[str] = None, audience: Optional[str] = None, use_cases: Optional[str] = None, limitations: Optional[str] = None, trade_offs: Optional[str] = None, ethics: Optional[str] = None, tags: Optional[List[str]] = None, save_models_to_registry: bool = True) -> ModelResponse

Creates a new model in Model Control Plane.

Parameters:

Name Type Description Default
name str

The name of the model.

required
license Optional[str]

The license under which the model is created.

None
description Optional[str]

The description of the model.

None
audience Optional[str]

The target audience of the model.

None
use_cases Optional[str]

The use cases of the model.

None
limitations Optional[str]

The known limitations of the model.

None
trade_offs Optional[str]

The tradeoffs of the model.

None
ethics Optional[str]

The ethical implications of the model.

None
tags Optional[List[str]]

Tags associated with the model.

None
save_models_to_registry bool

Whether to save the model to the registry.

True

Returns:

Type Description
ModelResponse

The newly created model.

Source code in src/zenml/client.py
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
def create_model(
    self,
    name: str,
    license: Optional[str] = None,
    description: Optional[str] = None,
    audience: Optional[str] = None,
    use_cases: Optional[str] = None,
    limitations: Optional[str] = None,
    trade_offs: Optional[str] = None,
    ethics: Optional[str] = None,
    tags: Optional[List[str]] = None,
    save_models_to_registry: bool = True,
) -> ModelResponse:
    """Creates a new model in Model Control Plane.

    Args:
        name: The name of the model.
        license: The license under which the model is created.
        description: The description of the model.
        audience: The target audience of the model.
        use_cases: The use cases of the model.
        limitations: The known limitations of the model.
        trade_offs: The tradeoffs of the model.
        ethics: The ethical implications of the model.
        tags: Tags associated with the model.
        save_models_to_registry: Whether to save the model to the
            registry.

    Returns:
        The newly created model.
    """
    return self.zen_store.create_model(
        model=ModelRequest(
            name=name,
            license=license,
            description=description,
            audience=audience,
            use_cases=use_cases,
            limitations=limitations,
            trade_offs=trade_offs,
            ethics=ethics,
            tags=tags,
            project=self.active_project.id,
            save_models_to_registry=save_models_to_registry,
        )
    )
create_model_version(model_name_or_id: Union[str, UUID], name: Optional[str] = None, description: Optional[str] = None, tags: Optional[List[str]] = None, project: Optional[Union[str, UUID]] = None) -> ModelVersionResponse

Creates a new model version in Model Control Plane.

Parameters:

Name Type Description Default
model_name_or_id Union[str, UUID]

the name or id of the model to create model version in.

required
name Optional[str]

the name of the Model Version to be created.

None
description Optional[str]

the description of the Model Version to be created.

None
tags Optional[List[str]]

Tags associated with the model.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
ModelVersionResponse

The newly created model version.

Source code in src/zenml/client.py
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
def create_model_version(
    self,
    model_name_or_id: Union[str, UUID],
    name: Optional[str] = None,
    description: Optional[str] = None,
    tags: Optional[List[str]] = None,
    project: Optional[Union[str, UUID]] = None,
) -> ModelVersionResponse:
    """Creates a new model version in Model Control Plane.

    Args:
        model_name_or_id: the name or id of the model to create model
            version in.
        name: the name of the Model Version to be created.
        description: the description of the Model Version to be created.
        tags: Tags associated with the model.
        project: The project name/ID to filter by.

    Returns:
        The newly created model version.
    """
    model = self.get_model(
        model_name_or_id=model_name_or_id, project=project
    )
    return self.zen_store.create_model_version(
        model_version=ModelVersionRequest(
            name=name,
            description=description,
            project=model.project.id,
            model=model.id,
            tags=tags,
        )
    )
create_project(name: str, description: str, display_name: Optional[str] = None) -> ProjectResponse

Create a new project.

Parameters:

Name Type Description Default
name str

Name of the project.

required
description str

Description of the project.

required
display_name Optional[str]

Display name of the project.

None

Returns:

Type Description
ProjectResponse

The created project.

Source code in src/zenml/client.py
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
def create_project(
    self,
    name: str,
    description: str,
    display_name: Optional[str] = None,
) -> ProjectResponse:
    """Create a new project.

    Args:
        name: Name of the project.
        description: Description of the project.
        display_name: Display name of the project.

    Returns:
        The created project.
    """
    return self.zen_store.create_project(
        ProjectRequest(
            name=name,
            description=description,
            display_name=display_name or "",
        )
    )
create_run_metadata(metadata: Dict[str, MetadataType], resources: List[RunMetadataResource], stack_component_id: Optional[UUID] = None, publisher_step_id: Optional[UUID] = None) -> None

Create run metadata.

Parameters:

Name Type Description Default
metadata Dict[str, MetadataType]

The metadata to create as a dictionary of key-value pairs.

required
resources List[RunMetadataResource]

The list of IDs and types of the resources for that the metadata was produced.

required
stack_component_id Optional[UUID]

The ID of the stack component that produced the metadata.

None
publisher_step_id Optional[UUID]

The ID of the step execution that publishes this metadata automatically.

None
Source code in src/zenml/client.py
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
def create_run_metadata(
    self,
    metadata: Dict[str, "MetadataType"],
    resources: List[RunMetadataResource],
    stack_component_id: Optional[UUID] = None,
    publisher_step_id: Optional[UUID] = None,
) -> None:
    """Create run metadata.

    Args:
        metadata: The metadata to create as a dictionary of key-value pairs.
        resources: The list of IDs and types of the resources for that the
            metadata was produced.
        stack_component_id: The ID of the stack component that produced
            the metadata.
        publisher_step_id: The ID of the step execution that publishes
            this metadata automatically.
    """
    from zenml.metadata.metadata_types import get_metadata_type

    values: Dict[str, "MetadataType"] = {}
    types: Dict[str, "MetadataTypeEnum"] = {}
    for key, value in metadata.items():
        # Skip metadata that is too large to be stored in the database.
        if len(json.dumps(value)) > TEXT_FIELD_MAX_LENGTH:
            logger.warning(
                f"Metadata value for key '{key}' is too large to be "
                "stored in the database. Skipping."
            )
            continue
        # Skip metadata that is not of a supported type.
        try:
            metadata_type = get_metadata_type(value)
        except ValueError as e:
            logger.warning(
                f"Metadata value for key '{key}' is not of a supported "
                f"type. Skipping. Full error: {e}"
            )
            continue
        values[key] = value
        types[key] = metadata_type

    run_metadata = RunMetadataRequest(
        project=self.active_project.id,
        resources=resources,
        stack_component_id=stack_component_id,
        publisher_step_id=publisher_step_id,
        values=values,
        types=types,
    )
    self.zen_store.create_run_metadata(run_metadata)
create_run_template(name: str, deployment_id: UUID, description: Optional[str] = None, tags: Optional[List[str]] = None) -> RunTemplateResponse

Create a run template.

Parameters:

Name Type Description Default
name str

The name of the run template.

required
deployment_id UUID

ID of the deployment which this template should be based off of.

required
description Optional[str]

The description of the run template.

None
tags Optional[List[str]]

Tags associated with the run template.

None

Returns:

Type Description
RunTemplateResponse

The created run template.

Source code in src/zenml/client.py
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
def create_run_template(
    self,
    name: str,
    deployment_id: UUID,
    description: Optional[str] = None,
    tags: Optional[List[str]] = None,
) -> RunTemplateResponse:
    """Create a run template.

    Args:
        name: The name of the run template.
        deployment_id: ID of the deployment which this template should be
            based off of.
        description: The description of the run template.
        tags: Tags associated with the run template.

    Returns:
        The created run template.
    """
    return self.zen_store.create_run_template(
        template=RunTemplateRequest(
            name=name,
            description=description,
            source_deployment_id=deployment_id,
            tags=tags,
            project=self.active_project.id,
        )
    )
create_secret(name: str, values: Dict[str, str], private: bool = False) -> SecretResponse

Creates a new secret.

Parameters:

Name Type Description Default
name str

The name of the secret.

required
values Dict[str, str]

The values of the secret.

required
private bool

Whether the secret is private. A private secret is only accessible to the user who created it.

False

Returns:

Type Description
SecretResponse

The created secret (in model form).

Raises:

Type Description
NotImplementedError

If centralized secrets management is not enabled.

Source code in src/zenml/client.py
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
def create_secret(
    self,
    name: str,
    values: Dict[str, str],
    private: bool = False,
) -> SecretResponse:
    """Creates a new secret.

    Args:
        name: The name of the secret.
        values: The values of the secret.
        private: Whether the secret is private. A private secret is only
            accessible to the user who created it.

    Returns:
        The created secret (in model form).

    Raises:
        NotImplementedError: If centralized secrets management is not
            enabled.
    """
    create_secret_request = SecretRequest(
        name=name,
        values=values,
        private=private,
    )
    try:
        return self.zen_store.create_secret(secret=create_secret_request)
    except NotImplementedError:
        raise NotImplementedError(
            "centralized secrets management is not supported or explicitly "
            "disabled in the target ZenML deployment."
        )
create_service(config: ServiceConfig, service_type: ServiceType, model_version_id: Optional[UUID] = None) -> ServiceResponse

Registers a service.

Parameters:

Name Type Description Default
config ServiceConfig

The configuration of the service.

required
service_type ServiceType

The type of the service.

required
model_version_id Optional[UUID]

The ID of the model version to associate with the service.

None

Returns:

Type Description
ServiceResponse

The registered service.

Source code in src/zenml/client.py
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
def create_service(
    self,
    config: "ServiceConfig",
    service_type: ServiceType,
    model_version_id: Optional[UUID] = None,
) -> ServiceResponse:
    """Registers a service.

    Args:
        config: The configuration of the service.
        service_type: The type of the service.
        model_version_id: The ID of the model version to associate with the
            service.

    Returns:
        The registered service.
    """
    service_request = ServiceRequest(
        name=config.service_name,
        service_type=service_type,
        config=config.model_dump(),
        project=self.active_project.id,
        model_version_id=model_version_id,
    )
    # Register the service
    return self.zen_store.create_service(service_request)
create_service_account(name: str, description: str = '') -> ServiceAccountResponse

Create a new service account.

Parameters:

Name Type Description Default
name str

The name of the service account.

required
description str

The description of the service account.

''

Returns:

Type Description
ServiceAccountResponse

The created service account.

Source code in src/zenml/client.py
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
def create_service_account(
    self,
    name: str,
    description: str = "",
) -> ServiceAccountResponse:
    """Create a new service account.

    Args:
        name: The name of the service account.
        description: The description of the service account.

    Returns:
        The created service account.
    """
    service_account = ServiceAccountRequest(
        name=name, description=description, active=True
    )
    created_service_account = self.zen_store.create_service_account(
        service_account=service_account
    )

    return created_service_account
create_service_connector(name: str, connector_type: str, resource_type: Optional[str] = None, auth_method: Optional[str] = None, configuration: Optional[Dict[str, str]] = None, resource_id: Optional[str] = None, description: str = '', expiration_seconds: Optional[int] = None, expires_at: Optional[datetime] = None, expires_skew_tolerance: Optional[int] = None, labels: Optional[Dict[str, str]] = None, auto_configure: bool = False, verify: bool = True, list_resources: bool = True, register: bool = True) -> Tuple[Optional[Union[ServiceConnectorResponse, ServiceConnectorRequest]], Optional[ServiceConnectorResourcesModel]]

Create, validate and/or register a service connector.

Parameters:

Name Type Description Default
name str

The name of the service connector.

required
connector_type str

The service connector type.

required
auth_method Optional[str]

The authentication method of the service connector. May be omitted if auto-configuration is used.

None
resource_type Optional[str]

The resource type for the service connector.

None
configuration Optional[Dict[str, str]]

The configuration of the service connector.

None
resource_id Optional[str]

The resource id of the service connector.

None
description str

The description of the service connector.

''
expiration_seconds Optional[int]

The expiration time of the service connector.

None
expires_at Optional[datetime]

The expiration time of the service connector.

None
expires_skew_tolerance Optional[int]

The allowed expiration skew for the service connector credentials.

None
labels Optional[Dict[str, str]]

The labels of the service connector.

None
auto_configure bool

Whether to automatically configure the service connector from the local environment.

False
verify bool

Whether to verify that the service connector configuration and credentials can be used to gain access to the resource.

True
list_resources bool

Whether to also list the resources that the service connector can give access to (if verify is True).

True
register bool

Whether to register the service connector or not.

True

Returns:

Type Description
Optional[Union[ServiceConnectorResponse, ServiceConnectorRequest]]

The model of the registered service connector and the resources

Optional[ServiceConnectorResourcesModel]

that the service connector can give access to (if verify is True).

Raises:

Type Description
ValueError

If the arguments are invalid.

KeyError

If the service connector type is not found.

NotImplementedError

If auto-configuration is not supported or not implemented for the service connector type.

AuthorizationException

If the connector verification failed due to authorization issues.

Source code in src/zenml/client.py
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
def create_service_connector(
    self,
    name: str,
    connector_type: str,
    resource_type: Optional[str] = None,
    auth_method: Optional[str] = None,
    configuration: Optional[Dict[str, str]] = None,
    resource_id: Optional[str] = None,
    description: str = "",
    expiration_seconds: Optional[int] = None,
    expires_at: Optional[datetime] = None,
    expires_skew_tolerance: Optional[int] = None,
    labels: Optional[Dict[str, str]] = None,
    auto_configure: bool = False,
    verify: bool = True,
    list_resources: bool = True,
    register: bool = True,
) -> Tuple[
    Optional[
        Union[
            ServiceConnectorResponse,
            ServiceConnectorRequest,
        ]
    ],
    Optional[ServiceConnectorResourcesModel],
]:
    """Create, validate and/or register a service connector.

    Args:
        name: The name of the service connector.
        connector_type: The service connector type.
        auth_method: The authentication method of the service connector.
            May be omitted if auto-configuration is used.
        resource_type: The resource type for the service connector.
        configuration: The configuration of the service connector.
        resource_id: The resource id of the service connector.
        description: The description of the service connector.
        expiration_seconds: The expiration time of the service connector.
        expires_at: The expiration time of the service connector.
        expires_skew_tolerance: The allowed expiration skew for the service
            connector credentials.
        labels: The labels of the service connector.
        auto_configure: Whether to automatically configure the service
            connector from the local environment.
        verify: Whether to verify that the service connector configuration
            and credentials can be used to gain access to the resource.
        list_resources: Whether to also list the resources that the service
            connector can give access to (if verify is True).
        register: Whether to register the service connector or not.

    Returns:
        The model of the registered service connector and the resources
        that the service connector can give access to (if verify is True).

    Raises:
        ValueError: If the arguments are invalid.
        KeyError: If the service connector type is not found.
        NotImplementedError: If auto-configuration is not supported or
            not implemented for the service connector type.
        AuthorizationException: If the connector verification failed due
            to authorization issues.
    """
    from zenml.service_connectors.service_connector_registry import (
        service_connector_registry,
    )

    connector_instance: Optional[ServiceConnector] = None
    connector_resources: Optional[ServiceConnectorResourcesModel] = None

    # Get the service connector type class
    try:
        connector = self.zen_store.get_service_connector_type(
            connector_type=connector_type,
        )
    except KeyError:
        raise KeyError(
            f"Service connector type {connector_type} not found."
            "Please check that you have installed all required "
            "Python packages and ZenML integrations and try again."
        )

    if not resource_type and len(connector.resource_types) == 1:
        resource_type = connector.resource_types[0].resource_type

    # If auto_configure is set, we will try to automatically configure the
    # service connector from the local environment
    if auto_configure:
        if not connector.supports_auto_configuration:
            raise NotImplementedError(
                f"The {connector.name} service connector type "
                "does not support auto-configuration."
            )
        if not connector.local:
            raise NotImplementedError(
                f"The {connector.name} service connector type "
                "implementation is not available locally. Please "
                "check that you have installed all required Python "
                "packages and ZenML integrations and try again, or "
                "skip auto-configuration."
            )

        assert connector.connector_class is not None

        connector_instance = connector.connector_class.auto_configure(
            resource_type=resource_type,
            auth_method=auth_method,
            resource_id=resource_id,
        )
        assert connector_instance is not None
        connector_request = connector_instance.to_model(
            name=name,
            description=description or "",
            labels=labels,
        )

        if verify:
            # Prefer to verify the connector config server-side if the
            # implementation if available there, because it ensures
            # that the connector can be shared with other users or used
            # from other machines and because some auth methods rely on the
            # server-side authentication environment
            if connector.remote:
                connector_resources = (
                    self.zen_store.verify_service_connector_config(
                        connector_request,
                        list_resources=list_resources,
                    )
                )
            else:
                connector_resources = connector_instance.verify(
                    list_resources=list_resources,
                )

            if connector_resources.error:
                # Raise an exception if the connector verification failed
                raise AuthorizationException(connector_resources.error)

    else:
        if not auth_method:
            if len(connector.auth_methods) == 1:
                auth_method = connector.auth_methods[0].auth_method
            else:
                raise ValueError(
                    f"Multiple authentication methods are available for "
                    f"the {connector.name} service connector type. Please "
                    f"specify one of the following: "
                    f"{list(connector.auth_method_dict.keys())}."
                )

        connector_request = ServiceConnectorRequest(
            name=name,
            connector_type=connector_type,
            description=description,
            auth_method=auth_method,
            expiration_seconds=expiration_seconds,
            expires_at=expires_at,
            expires_skew_tolerance=expires_skew_tolerance,
            labels=labels or {},
        )
        # Validate and configure the resources
        connector_request.validate_and_configure_resources(
            connector_type=connector,
            resource_types=resource_type,
            resource_id=resource_id,
            configuration=configuration,
        )
        if verify:
            # Prefer to verify the connector config server-side if the
            # implementation if available there, because it ensures
            # that the connector can be shared with other users or used
            # from other machines and because some auth methods rely on the
            # server-side authentication environment
            if connector.remote:
                connector_resources = (
                    self.zen_store.verify_service_connector_config(
                        connector_request,
                        list_resources=list_resources,
                    )
                )
            else:
                connector_instance = (
                    service_connector_registry.instantiate_connector(
                        model=connector_request
                    )
                )
                connector_resources = connector_instance.verify(
                    list_resources=list_resources,
                )

            if connector_resources.error:
                # Raise an exception if the connector verification failed
                raise AuthorizationException(connector_resources.error)

            # For resource types that don't support multi-instances, it's
            # better to save the default resource ID in the connector, if
            # available. Otherwise, we'll need to instantiate the connector
            # again to get the default resource ID.
            connector_request.resource_id = (
                connector_request.resource_id
                or connector_resources.get_default_resource_id()
            )

    if not register:
        return connector_request, connector_resources

    # Register the new model
    connector_response = self.zen_store.create_service_connector(
        service_connector=connector_request
    )

    if connector_resources:
        connector_resources.id = connector_response.id
        connector_resources.name = connector_response.name
        connector_resources.connector_type = (
            connector_response.connector_type
        )

    return connector_response, connector_resources
create_stack(name: str, components: Mapping[StackComponentType, Union[str, UUID]], stack_spec_file: Optional[str] = None, labels: Optional[Dict[str, Any]] = None) -> StackResponse

Registers a stack and its components.

Parameters:

Name Type Description Default
name str

The name of the stack to register.

required
components Mapping[StackComponentType, Union[str, UUID]]

dictionary which maps component types to component names

required
stack_spec_file Optional[str]

path to the stack spec file

None
labels Optional[Dict[str, Any]]

The labels of the stack.

None

Returns:

Type Description
StackResponse

The model of the registered stack.

Source code in src/zenml/client.py
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
def create_stack(
    self,
    name: str,
    components: Mapping[StackComponentType, Union[str, UUID]],
    stack_spec_file: Optional[str] = None,
    labels: Optional[Dict[str, Any]] = None,
) -> StackResponse:
    """Registers a stack and its components.

    Args:
        name: The name of the stack to register.
        components: dictionary which maps component types to component names
        stack_spec_file: path to the stack spec file
        labels: The labels of the stack.

    Returns:
        The model of the registered stack.
    """
    stack_components = {}

    for c_type, c_identifier in components.items():
        # Skip non-existent components.
        if not c_identifier:
            continue

        # Get the component.
        component = self.get_stack_component(
            name_id_or_prefix=c_identifier,
            component_type=c_type,
        )
        stack_components[c_type] = [component.id]

    stack = StackRequest(
        name=name,
        components=stack_components,
        stack_spec_path=stack_spec_file,
        labels=labels,
    )

    self._validate_stack_configuration(stack=stack)

    return self.zen_store.create_stack(stack=stack)
create_stack_component(name: str, flavor: str, component_type: StackComponentType, configuration: Dict[str, str], labels: Optional[Dict[str, Any]] = None) -> ComponentResponse

Registers a stack component.

Parameters:

Name Type Description Default
name str

The name of the stack component.

required
flavor str

The flavor of the stack component.

required
component_type StackComponentType

The type of the stack component.

required
configuration Dict[str, str]

The configuration of the stack component.

required
labels Optional[Dict[str, Any]]

The labels of the stack component.

None

Returns:

Type Description
ComponentResponse

The model of the registered component.

Source code in src/zenml/client.py
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
def create_stack_component(
    self,
    name: str,
    flavor: str,
    component_type: StackComponentType,
    configuration: Dict[str, str],
    labels: Optional[Dict[str, Any]] = None,
) -> "ComponentResponse":
    """Registers a stack component.

    Args:
        name: The name of the stack component.
        flavor: The flavor of the stack component.
        component_type: The type of the stack component.
        configuration: The configuration of the stack component.
        labels: The labels of the stack component.

    Returns:
        The model of the registered component.
    """
    from zenml.stack.utils import (
        validate_stack_component_config,
        warn_if_config_server_mismatch,
    )

    validated_config = validate_stack_component_config(
        configuration_dict=configuration,
        flavor=flavor,
        component_type=component_type,
        # Always enforce validation of custom flavors
        validate_custom_flavors=True,
    )
    # Guaranteed to not be None by setting
    # `validate_custom_flavors=True` above
    assert validated_config is not None
    warn_if_config_server_mismatch(validated_config)

    create_component_model = ComponentRequest(
        name=name,
        type=component_type,
        flavor=flavor,
        configuration=configuration,
        labels=labels,
    )

    # Register the new model
    return self.zen_store.create_stack_component(
        component=create_component_model
    )
create_tag(name: str, exclusive: bool = False, color: Optional[Union[str, ColorVariants]] = None) -> TagResponse

Creates a new tag.

Parameters:

Name Type Description Default
name str

the name of the tag.

required
exclusive bool

the boolean to decide whether the tag is an exclusive tag. An exclusive tag means that the tag can exist only for a single: - pipeline run within the scope of a pipeline - artifact version within the scope of an artifact - run template

False
color Optional[Union[str, ColorVariants]]

the color of the tag

None

Returns:

Type Description
TagResponse

The newly created tag.

Source code in src/zenml/client.py
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
def create_tag(
    self,
    name: str,
    exclusive: bool = False,
    color: Optional[Union[str, ColorVariants]] = None,
) -> TagResponse:
    """Creates a new tag.

    Args:
        name: the name of the tag.
        exclusive: the boolean to decide whether the tag is an exclusive tag.
            An exclusive tag means that the tag can exist only for a single:
                - pipeline run within the scope of a pipeline
                - artifact version within the scope of an artifact
                - run template
        color: the color of the tag

    Returns:
        The newly created tag.
    """
    request_model = TagRequest(name=name, exclusive=exclusive)

    if color is not None:
        request_model.color = ColorVariants(color)

    return self.zen_store.create_tag(tag=request_model)
create_trigger(name: str, event_source_id: UUID, event_filter: Dict[str, Any], action_id: UUID, description: str = '') -> TriggerResponse

Registers a trigger.

Parameters:

Name Type Description Default
name str

The name of the trigger to create.

required
event_source_id UUID

The id of the event source id

required
event_filter Dict[str, Any]

The event filter

required
action_id UUID

The ID of the action that should be triggered.

required
description str

The description of the trigger

''

Returns:

Type Description
TriggerResponse

The created trigger.

Source code in src/zenml/client.py
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
@_fail_for_sql_zen_store
def create_trigger(
    self,
    name: str,
    event_source_id: UUID,
    event_filter: Dict[str, Any],
    action_id: UUID,
    description: str = "",
) -> TriggerResponse:
    """Registers a trigger.

    Args:
        name: The name of the trigger to create.
        event_source_id: The id of the event source id
        event_filter: The event filter
        action_id: The ID of the action that should be triggered.
        description: The description of the trigger

    Returns:
        The created trigger.
    """
    trigger = TriggerRequest(
        name=name,
        description=description,
        event_source_id=event_source_id,
        event_filter=event_filter,
        action_id=action_id,
        project=self.active_project.id,
    )

    return self.zen_store.create_trigger(trigger=trigger)
create_user(name: str, password: Optional[str] = None, is_admin: bool = False) -> UserResponse

Create a new user.

Parameters:

Name Type Description Default
name str

The name of the user.

required
password Optional[str]

The password of the user. If not provided, the user will be created with empty password.

None
is_admin bool

Whether the user should be an admin.

False

Returns:

Type Description
UserResponse

The model of the created user.

Source code in src/zenml/client.py
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
def create_user(
    self,
    name: str,
    password: Optional[str] = None,
    is_admin: bool = False,
) -> UserResponse:
    """Create a new user.

    Args:
        name: The name of the user.
        password: The password of the user. If not provided, the user will
            be created with empty password.
        is_admin: Whether the user should be an admin.

    Returns:
        The model of the created user.
    """
    user = UserRequest(
        name=name, password=password or None, is_admin=is_admin
    )
    user.active = (
        password != "" if self.zen_store.type != StoreType.REST else True
    )
    created_user = self.zen_store.create_user(user=user)

    return created_user
deactivate_user(name_id_or_prefix: str) -> UserResponse

Deactivate a user and generate an activation token.

Parameters:

Name Type Description Default
name_id_or_prefix str

The name or ID of the user to reset.

required

Returns:

Type Description
UserResponse

The deactivated user.

Source code in src/zenml/client.py
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
@_fail_for_sql_zen_store
def deactivate_user(self, name_id_or_prefix: str) -> "UserResponse":
    """Deactivate a user and generate an activation token.

    Args:
        name_id_or_prefix: The name or ID of the user to reset.

    Returns:
        The deactivated user.
    """
    from zenml.zen_stores.rest_zen_store import RestZenStore

    user = self.get_user(name_id_or_prefix, allow_name_prefix_match=False)
    assert isinstance(self.zen_store, RestZenStore)
    return self.zen_store.deactivate_user(user_name_or_id=user.name)
delete_action(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Delete an action.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, id or prefix id of the action to delete.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
@_fail_for_sql_zen_store
def delete_action(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete an action.

    Args:
        name_id_or_prefix: The name, id or prefix id of the action
            to delete.
        project: The project name/ID to filter by.
    """
    action = self.get_action(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )

    self.zen_store.delete_action(action_id=action.id)
    logger.info("Deleted action with name '%s'.", action.name)

Delete all model version to artifact links in Model Control Plane.

Parameters:

Name Type Description Default
model_version_id UUID

The id of the model version holding the link.

required
only_links bool

If true, only delete the link to the artifact.

required
Source code in src/zenml/client.py
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
def delete_all_model_version_artifact_links(
    self, model_version_id: UUID, only_links: bool
) -> None:
    """Delete all model version to artifact links in Model Control Plane.

    Args:
        model_version_id: The id of the model version holding the link.
        only_links: If true, only delete the link to the artifact.
    """
    self.zen_store.delete_all_model_version_artifact_links(
        model_version_id, only_links
    )
delete_api_key(service_account_name_id_or_prefix: Union[str, UUID], name_id_or_prefix: Union[str, UUID]) -> None

Delete an API key.

Parameters:

Name Type Description Default
service_account_name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the service account to delete the API key for.

required
name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the API key.

required
Source code in src/zenml/client.py
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
def delete_api_key(
    self,
    service_account_name_id_or_prefix: Union[str, UUID],
    name_id_or_prefix: Union[str, UUID],
) -> None:
    """Delete an API key.

    Args:
        service_account_name_id_or_prefix: The name, ID or prefix of the
            service account to delete the API key for.
        name_id_or_prefix: The name, ID or prefix of the API key.
    """
    api_key = self.get_api_key(
        service_account_name_id_or_prefix=service_account_name_id_or_prefix,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
    )
    self.zen_store.delete_api_key(
        service_account_id=api_key.service_account.id,
        api_key_name_or_id=api_key.id,
    )
delete_artifact(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Delete an artifact.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the artifact to delete.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
def delete_artifact(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete an artifact.

    Args:
        name_id_or_prefix: The name, ID or prefix of the artifact to delete.
        project: The project name/ID to filter by.
    """
    artifact = self.get_artifact(
        name_id_or_prefix=name_id_or_prefix,
        project=project,
    )
    self.zen_store.delete_artifact(artifact_id=artifact.id)
    logger.info(f"Deleted artifact '{artifact.name}'.")
delete_artifact_version(name_id_or_prefix: Union[str, UUID], version: Optional[str] = None, delete_metadata: bool = True, delete_from_artifact_store: bool = False, project: Optional[Union[str, UUID]] = None) -> None

Delete an artifact version.

By default, this will delete only the metadata of the artifact from the database, not the actual object stored in the artifact store.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The ID of artifact version or name or prefix of the artifact to delete.

required
version Optional[str]

The version of the artifact to delete.

None
delete_metadata bool

If True, delete the metadata of the artifact version from the database.

True
delete_from_artifact_store bool

If True, delete the artifact object itself from the artifact store.

False
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
def delete_artifact_version(
    self,
    name_id_or_prefix: Union[str, UUID],
    version: Optional[str] = None,
    delete_metadata: bool = True,
    delete_from_artifact_store: bool = False,
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete an artifact version.

    By default, this will delete only the metadata of the artifact from the
    database, not the actual object stored in the artifact store.

    Args:
        name_id_or_prefix: The ID of artifact version or name or prefix of the artifact to
            delete.
        version: The version of the artifact to delete.
        delete_metadata: If True, delete the metadata of the artifact
            version from the database.
        delete_from_artifact_store: If True, delete the artifact object
                itself from the artifact store.
        project: The project name/ID to filter by.
    """
    artifact_version = self.get_artifact_version(
        name_id_or_prefix=name_id_or_prefix,
        version=version,
        project=project,
    )
    if delete_from_artifact_store:
        self._delete_artifact_from_artifact_store(
            artifact_version=artifact_version
        )
    if delete_metadata:
        self._delete_artifact_version(artifact_version=artifact_version)
delete_authorized_device(id_or_prefix: Union[str, UUID]) -> None

Delete an authorized device.

Parameters:

Name Type Description Default
id_or_prefix Union[str, UUID]

The ID or ID prefix of the authorized device.

required
Source code in src/zenml/client.py
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
def delete_authorized_device(
    self,
    id_or_prefix: Union[str, UUID],
) -> None:
    """Delete an authorized device.

    Args:
        id_or_prefix: The ID or ID prefix of the authorized device.
    """
    device = self.get_authorized_device(
        id_or_prefix=id_or_prefix,
        allow_id_prefix_match=False,
    )
    self.zen_store.delete_authorized_device(device.id)
delete_build(id_or_prefix: str, project: Optional[Union[str, UUID]] = None) -> None

Delete a build.

Parameters:

Name Type Description Default
id_or_prefix str

The id or id prefix of the build.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
def delete_build(
    self, id_or_prefix: str, project: Optional[Union[str, UUID]] = None
) -> None:
    """Delete a build.

    Args:
        id_or_prefix: The id or id prefix of the build.
        project: The project name/ID to filter by.
    """
    build = self.get_build(id_or_prefix=id_or_prefix, project=project)
    self.zen_store.delete_build(build_id=build.id)
delete_code_repository(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Delete a code repository.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the code repository.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
def delete_code_repository(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete a code repository.

    Args:
        name_id_or_prefix: The name, ID or prefix of the code repository.
        project: The project name/ID to filter by.
    """
    repo = self.get_code_repository(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )
    self.zen_store.delete_code_repository(code_repository_id=repo.id)
delete_deployment(id_or_prefix: str, project: Optional[Union[str, UUID]] = None) -> None

Delete a deployment.

Parameters:

Name Type Description Default
id_or_prefix str

The id or id prefix of the deployment.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
def delete_deployment(
    self,
    id_or_prefix: str,
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete a deployment.

    Args:
        id_or_prefix: The id or id prefix of the deployment.
        project: The project name/ID to filter by.
    """
    deployment = self.get_deployment(
        id_or_prefix=id_or_prefix,
        project=project,
        hydrate=False,
    )
    self.zen_store.delete_deployment(deployment_id=deployment.id)
delete_event_source(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Deletes an event_source.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, id or prefix id of the event_source to deregister.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
@_fail_for_sql_zen_store
def delete_event_source(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Deletes an event_source.

    Args:
        name_id_or_prefix: The name, id or prefix id of the event_source
            to deregister.
        project: The project name/ID to filter by.
    """
    event_source = self.get_event_source(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )

    self.zen_store.delete_event_source(event_source_id=event_source.id)
    logger.info("Deleted event_source with name '%s'.", event_source.name)
delete_flavor(name_id_or_prefix: str) -> None

Deletes a flavor.

Parameters:

Name Type Description Default
name_id_or_prefix str

The name, id or prefix of the id for the flavor to delete.

required
Source code in src/zenml/client.py
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
def delete_flavor(self, name_id_or_prefix: str) -> None:
    """Deletes a flavor.

    Args:
        name_id_or_prefix: The name, id or prefix of the id for the
            flavor to delete.
    """
    flavor = self.get_flavor(
        name_id_or_prefix, allow_name_prefix_match=False
    )
    self.zen_store.delete_flavor(flavor_id=flavor.id)

    logger.info(f"Deleted flavor '{flavor.name}' of type '{flavor.type}'.")
delete_model(model_name_or_id: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Deletes a model from Model Control Plane.

Parameters:

Name Type Description Default
model_name_or_id Union[str, UUID]

name or id of the model to be deleted.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
def delete_model(
    self,
    model_name_or_id: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Deletes a model from Model Control Plane.

    Args:
        model_name_or_id: name or id of the model to be deleted.
        project: The project name/ID to filter by.
    """
    model = self.get_model(
        model_name_or_id=model_name_or_id, project=project
    )
    self.zen_store.delete_model(model_id=model.id)
delete_model_version(model_version_id: UUID) -> None

Deletes a model version from Model Control Plane.

Parameters:

Name Type Description Default
model_version_id UUID

Id of the model version to be deleted.

required
Source code in src/zenml/client.py
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
def delete_model_version(
    self,
    model_version_id: UUID,
) -> None:
    """Deletes a model version from Model Control Plane.

    Args:
        model_version_id: Id of the model version to be deleted.
    """
    self.zen_store.delete_model_version(
        model_version_id=model_version_id,
    )

Delete model version to artifact link in Model Control Plane.

Parameters:

Name Type Description Default
model_version_id UUID

The id of the model version holding the link.

required
artifact_version_id UUID

The id of the artifact version to be deleted.

required

Raises:

Type Description
RuntimeError

If more than one artifact link is found for given filters.

Source code in src/zenml/client.py
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
def delete_model_version_artifact_link(
    self, model_version_id: UUID, artifact_version_id: UUID
) -> None:
    """Delete model version to artifact link in Model Control Plane.

    Args:
        model_version_id: The id of the model version holding the link.
        artifact_version_id: The id of the artifact version to be deleted.

    Raises:
        RuntimeError: If more than one artifact link is found for given filters.
    """
    artifact_links = self.list_model_version_artifact_links(
        model_version_id=model_version_id,
        artifact_version_id=artifact_version_id,
    )
    if artifact_links.items:
        if artifact_links.total > 1:
            raise RuntimeError(
                "More than one artifact link found for give model version "
                f"`{model_version_id}` and artifact version "
                f"`{artifact_version_id}`. This should not be happening and "
                "might indicate a corrupted state of your ZenML database. "
                "Please seek support via Community Slack."
            )
        self.zen_store.delete_model_version_artifact_link(
            model_version_id=model_version_id,
            model_version_artifact_link_name_or_id=artifact_links.items[
                0
            ].id,
        )
delete_pipeline(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Delete a pipeline.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or ID prefix of the pipeline.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
def delete_pipeline(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete a pipeline.

    Args:
        name_id_or_prefix: The name, ID or ID prefix of the pipeline.
        project: The project name/ID to filter by.
    """
    pipeline = self.get_pipeline(
        name_id_or_prefix=name_id_or_prefix, project=project
    )
    self.zen_store.delete_pipeline(pipeline_id=pipeline.id)
delete_pipeline_run(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Deletes a pipeline run.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

Name, ID, or prefix of the pipeline run.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
def delete_pipeline_run(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Deletes a pipeline run.

    Args:
        name_id_or_prefix: Name, ID, or prefix of the pipeline run.
        project: The project name/ID to filter by.
    """
    run = self.get_pipeline_run(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )
    self.zen_store.delete_run(run_id=run.id)
delete_project(name_id_or_prefix: str) -> None

Delete a project.

Parameters:

Name Type Description Default
name_id_or_prefix str

The name or ID of the project to delete.

required

Raises:

Type Description
IllegalOperationError

If the project to delete is the active project.

Source code in src/zenml/client.py
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
def delete_project(self, name_id_or_prefix: str) -> None:
    """Delete a project.

    Args:
        name_id_or_prefix: The name or ID of the project to delete.

    Raises:
        IllegalOperationError: If the project to delete is the active
            project.
    """
    project = self.get_project(
        name_id_or_prefix, allow_name_prefix_match=False
    )
    if self.active_project.id == project.id:
        raise IllegalOperationError(
            f"Project '{name_id_or_prefix}' cannot be deleted since "
            "it is currently active. Please set another project as "
            "active first."
        )
    self.zen_store.delete_project(project_name_or_id=project.id)
delete_run_template(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Delete a run template.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

Name/ID/ID prefix of the template to delete.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
def delete_run_template(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete a run template.

    Args:
        name_id_or_prefix: Name/ID/ID prefix of the template to delete.
        project: The project name/ID to filter by.
    """
    if is_valid_uuid(name_id_or_prefix):
        template_id = (
            UUID(name_id_or_prefix)
            if isinstance(name_id_or_prefix, str)
            else name_id_or_prefix
        )
    else:
        template_id = self.get_run_template(
            name_id_or_prefix,
            project=project,
            hydrate=False,
        ).id

    self.zen_store.delete_run_template(template_id=template_id)
delete_schedule(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Delete a schedule.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, id or prefix id of the schedule to delete.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
def delete_schedule(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete a schedule.

    Args:
        name_id_or_prefix: The name, id or prefix id of the schedule
            to delete.
        project: The project name/ID to filter by.
    """
    schedule = self.get_schedule(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )
    logger.warning(
        f"Deleting schedule '{name_id_or_prefix}'... This will only delete "
        "the reference of the schedule from ZenML. Please make sure to "
        "manually stop/delete this schedule in your orchestrator as well!"
    )
    self.zen_store.delete_schedule(schedule_id=schedule.id)
delete_secret(name_id_or_prefix: str, private: Optional[bool] = None) -> None

Deletes a secret.

Parameters:

Name Type Description Default
name_id_or_prefix str

The name or ID of the secret.

required
private Optional[bool]

The private status of the secret to delete.

None
Source code in src/zenml/client.py
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
def delete_secret(
    self, name_id_or_prefix: str, private: Optional[bool] = None
) -> None:
    """Deletes a secret.

    Args:
        name_id_or_prefix: The name or ID of the secret.
        private: The private status of the secret to delete.
    """
    secret = self.get_secret(
        name_id_or_prefix=name_id_or_prefix,
        private=private,
        # Don't allow partial name matches, but allow partial ID matches
        allow_partial_name_match=False,
        allow_partial_id_match=True,
    )

    self.zen_store.delete_secret(secret_id=secret.id)
delete_service(name_id_or_prefix: UUID, project: Optional[Union[str, UUID]] = None) -> None

Delete a service.

Parameters:

Name Type Description Default
name_id_or_prefix UUID

The name or ID of the service to delete.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
def delete_service(
    self,
    name_id_or_prefix: UUID,
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete a service.

    Args:
        name_id_or_prefix: The name or ID of the service to delete.
        project: The project name/ID to filter by.
    """
    service = self.get_service(
        name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )
    self.zen_store.delete_service(service_id=service.id)
delete_service_account(name_id_or_prefix: Union[str, UUID]) -> None

Delete a service account.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name or ID of the service account to delete.

required
Source code in src/zenml/client.py
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
def delete_service_account(
    self,
    name_id_or_prefix: Union[str, UUID],
) -> None:
    """Delete a service account.

    Args:
        name_id_or_prefix: The name or ID of the service account to delete.
    """
    service_account = self.get_service_account(
        name_id_or_prefix=name_id_or_prefix, allow_name_prefix_match=False
    )
    self.zen_store.delete_service_account(
        service_account_name_or_id=service_account.id
    )
delete_service_connector(name_id_or_prefix: Union[str, UUID]) -> None

Deletes a registered service connector.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The ID or name of the service connector to delete.

required
Source code in src/zenml/client.py
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
def delete_service_connector(
    self,
    name_id_or_prefix: Union[str, UUID],
) -> None:
    """Deletes a registered service connector.

    Args:
        name_id_or_prefix: The ID or name of the service connector to delete.
    """
    service_connector = self.get_service_connector(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
    )

    self.zen_store.delete_service_connector(
        service_connector_id=service_connector.id
    )
    logger.info(
        "Removed service connector (type: %s) with name '%s'.",
        service_connector.type,
        service_connector.name,
    )
delete_stack(name_id_or_prefix: Union[str, UUID], recursive: bool = False) -> None

Deregisters a stack.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, id or prefix id of the stack to deregister.

required
recursive bool

If True, all components of the stack which are not associated with any other stack will also be deleted.

False

Raises:

Type Description
ValueError

If the stack is the currently active stack for this client.

Source code in src/zenml/client.py
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
def delete_stack(
    self, name_id_or_prefix: Union[str, UUID], recursive: bool = False
) -> None:
    """Deregisters a stack.

    Args:
        name_id_or_prefix: The name, id or prefix id of the stack
            to deregister.
        recursive: If `True`, all components of the stack which are not
            associated with any other stack will also be deleted.

    Raises:
        ValueError: If the stack is the currently active stack for this
            client.
    """
    stack = self.get_stack(
        name_id_or_prefix=name_id_or_prefix, allow_name_prefix_match=False
    )

    if stack.id == self.active_stack_model.id:
        raise ValueError(
            f"Unable to deregister active stack '{stack.name}'. Make "
            f"sure to designate a new active stack before deleting this "
            f"one."
        )

    cfg = GlobalConfiguration()
    if stack.id == cfg.active_stack_id:
        raise ValueError(
            f"Unable to deregister '{stack.name}' as it is the active "
            f"stack within your global configuration. Make "
            f"sure to designate a new active stack before deleting this "
            f"one."
        )

    if recursive:
        stack_components_free_for_deletion = []

        # Get all stack components associated with this stack
        for component_type, component_model in stack.components.items():
            # Get stack associated with the stack component

            stacks = self.list_stacks(
                component_id=component_model[0].id, size=2, page=1
            )

            # Check if the stack component is part of another stack
            if len(stacks) == 1 and stack.id == stacks[0].id:
                stack_components_free_for_deletion.append(
                    (component_type, component_model)
                )

        self.delete_stack(stack.id)

        for (
            stack_component_type,
            stack_component_model,
        ) in stack_components_free_for_deletion:
            self.delete_stack_component(
                stack_component_model[0].name, stack_component_type
            )

        logger.info("Deregistered stack with name '%s'.", stack.name)
        return

    self.zen_store.delete_stack(stack_id=stack.id)
    logger.info("Deregistered stack with name '%s'.", stack.name)
delete_stack_component(name_id_or_prefix: Union[str, UUID], component_type: StackComponentType) -> None

Deletes a registered stack component.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The model of the component to delete.

required
component_type StackComponentType

The type of the component to delete.

required
Source code in src/zenml/client.py
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
def delete_stack_component(
    self,
    name_id_or_prefix: Union[str, UUID],
    component_type: StackComponentType,
) -> None:
    """Deletes a registered stack component.

    Args:
        name_id_or_prefix: The model of the component to delete.
        component_type: The type of the component to delete.
    """
    component = self.get_stack_component(
        name_id_or_prefix=name_id_or_prefix,
        component_type=component_type,
        allow_name_prefix_match=False,
    )

    self.zen_store.delete_stack_component(component_id=component.id)
    logger.info(
        "Deregistered stack component (type: %s) with name '%s'.",
        component.type,
        component.name,
    )
delete_tag(tag_name_or_id: Union[str, UUID]) -> None

Deletes a tag.

Parameters:

Name Type Description Default
tag_name_or_id Union[str, UUID]

name or id of the tag to be deleted.

required
Source code in src/zenml/client.py
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
def delete_tag(
    self,
    tag_name_or_id: Union[str, UUID],
) -> None:
    """Deletes a tag.

    Args:
        tag_name_or_id: name or id of the tag to be deleted.
    """
    self.zen_store.delete_tag(
        tag_name_or_id=tag_name_or_id,
    )
delete_trigger(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None) -> None

Deletes an trigger.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, id or prefix id of the trigger to deregister.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
@_fail_for_sql_zen_store
def delete_trigger(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Deletes an trigger.

    Args:
        name_id_or_prefix: The name, id or prefix id of the trigger
            to deregister.
        project: The project name/ID to filter by.
    """
    trigger = self.get_trigger(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )

    self.zen_store.delete_trigger(trigger_id=trigger.id)
    logger.info("Deleted trigger with name '%s'.", trigger.name)
delete_trigger_execution(trigger_execution_id: UUID) -> None

Delete a trigger execution.

Parameters:

Name Type Description Default
trigger_execution_id UUID

The ID of the trigger execution to delete.

required
Source code in src/zenml/client.py
6996
6997
6998
6999
7000
7001
7002
7003
7004
def delete_trigger_execution(self, trigger_execution_id: UUID) -> None:
    """Delete a trigger execution.

    Args:
        trigger_execution_id: The ID of the trigger execution to delete.
    """
    self.zen_store.delete_trigger_execution(
        trigger_execution_id=trigger_execution_id
    )
delete_user(name_id_or_prefix: str) -> None

Delete a user.

Parameters:

Name Type Description Default
name_id_or_prefix str

The name or ID of the user to delete.

required
Source code in src/zenml/client.py
956
957
958
959
960
961
962
963
def delete_user(self, name_id_or_prefix: str) -> None:
    """Delete a user.

    Args:
        name_id_or_prefix: The name or ID of the user to delete.
    """
    user = self.get_user(name_id_or_prefix, allow_name_prefix_match=False)
    self.zen_store.delete_user(user_name_or_id=user.name)
detach_tag(tag_name_or_id: Union[str, UUID], resources: List[TagResource]) -> None

Detach a tag from resources.

Parameters:

Name Type Description Default
tag_name_or_id Union[str, UUID]

name or id of the tag to be detached.

required
resources List[TagResource]

the resources to detach the tag from.

required
Source code in src/zenml/client.py
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
def detach_tag(
    self,
    tag_name_or_id: Union[str, UUID],
    resources: List[TagResource],
) -> None:
    """Detach a tag from resources.

    Args:
        tag_name_or_id: name or id of the tag to be detached.
        resources: the resources to detach the tag from.
    """
    tag_model = self.get_tag(tag_name_or_id)

    self.zen_store.batch_delete_tag_resource(
        tag_resources=[
            TagResourceRequest(
                tag_id=tag_model.id,
                resource_id=resource.id,
                resource_type=resource.type,
            )
            for resource in resources
        ]
    )
find_repository(path: Optional[Path] = None, enable_warnings: bool = False) -> Optional[Path] staticmethod

Search for a ZenML repository directory.

Parameters:

Name Type Description Default
path Optional[Path]

Optional path to look for the repository. If no path is given, this function tries to find the repository using the environment variable ZENML_REPOSITORY_PATH (if set) and recursively searching in the parent directories of the current working directory.

None
enable_warnings bool

If True, warnings are printed if the repository root cannot be found.

False

Returns:

Type Description
Optional[Path]

Absolute path to a ZenML repository directory or None if no

Optional[Path]

repository directory was found.

Source code in src/zenml/client.py
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
@staticmethod
def find_repository(
    path: Optional[Path] = None, enable_warnings: bool = False
) -> Optional[Path]:
    """Search for a ZenML repository directory.

    Args:
        path: Optional path to look for the repository. If no path is
            given, this function tries to find the repository using the
            environment variable `ZENML_REPOSITORY_PATH` (if set) and
            recursively searching in the parent directories of the current
            working directory.
        enable_warnings: If `True`, warnings are printed if the repository
            root cannot be found.

    Returns:
        Absolute path to a ZenML repository directory or None if no
        repository directory was found.
    """
    if not path:
        # try to get path from the environment variable
        env_var_path = os.getenv(ENV_ZENML_REPOSITORY_PATH)
        if env_var_path:
            path = Path(env_var_path)

    if path:
        # explicit path via parameter or environment variable, don't search
        # parent directories
        search_parent_directories = False
        warning_message = (
            f"Unable to find ZenML repository at path '{path}'. Make sure "
            f"to create a ZenML repository by calling `zenml init` when "
            f"specifying an explicit repository path in code or via the "
            f"environment variable '{ENV_ZENML_REPOSITORY_PATH}'."
        )
    else:
        # try to find the repository in the parent directories of the
        # current working directory
        path = Path.cwd()
        search_parent_directories = True
        warning_message = (
            f"Unable to find ZenML repository in your current working "
            f"directory ({path}) or any parent directories. If you "
            f"want to use an existing repository which is in a different "
            f"location, set the environment variable "
            f"'{ENV_ZENML_REPOSITORY_PATH}'. If you want to create a new "
            f"repository, run `zenml init`."
        )

    def _find_repository_helper(path_: Path) -> Optional[Path]:
        """Recursively search parent directories for a ZenML repository.

        Args:
            path_: The path to search.

        Returns:
            Absolute path to a ZenML repository directory or None if no
            repository directory was found.
        """
        if Client.is_repository_directory(path_):
            return path_

        if not search_parent_directories or io_utils.is_root(str(path_)):
            return None

        return _find_repository_helper(path_.parent)

    repository_path = _find_repository_helper(path)

    if repository_path:
        return repository_path.resolve()
    if enable_warnings:
        logger.warning(warning_message)
    return None
get_action(name_id_or_prefix: Union[UUID, str], allow_name_prefix_match: bool = True, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> ActionResponse

Get an action by name, ID or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, ID or prefix of the action.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ActionResponse

The action.

Source code in src/zenml/client.py
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
@_fail_for_sql_zen_store
def get_action(
    self,
    name_id_or_prefix: Union[UUID, str],
    allow_name_prefix_match: bool = True,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> ActionResponse:
    """Get an action by name, ID or prefix.

    Args:
        name_id_or_prefix: The name, ID or prefix of the action.
        allow_name_prefix_match: If True, allow matching by name prefix.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The action.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_action,
        list_method=self.list_actions,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        project=project,
        hydrate=hydrate,
    )
get_api_key(service_account_name_id_or_prefix: Union[str, UUID], name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, hydrate: bool = True) -> APIKeyResponse

Get an API key by name, id or prefix.

Parameters:

Name Type Description Default
service_account_name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the service account to get the API key for.

required
name_id_or_prefix Union[str, UUID]

The name, ID or ID prefix of the API key.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
APIKeyResponse

The API key.

Source code in src/zenml/client.py
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
def get_api_key(
    self,
    service_account_name_id_or_prefix: Union[str, UUID],
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
) -> APIKeyResponse:
    """Get an API key by name, id or prefix.

    Args:
        service_account_name_id_or_prefix: The name, ID or prefix of the
            service account to get the API key for.
        name_id_or_prefix: The name, ID or ID prefix of the API key.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The API key.
    """
    service_account = self.get_service_account(
        name_id_or_prefix=service_account_name_id_or_prefix,
        allow_name_prefix_match=False,
    )

    def get_api_key_method(
        api_key_name_or_id: str, hydrate: bool = True
    ) -> APIKeyResponse:
        return self.zen_store.get_api_key(
            service_account_id=service_account.id,
            api_key_name_or_id=api_key_name_or_id,
            hydrate=hydrate,
        )

    def list_api_keys_method(
        hydrate: bool = True,
        **filter_args: Any,
    ) -> Page[APIKeyResponse]:
        return self.list_api_keys(
            service_account_name_id_or_prefix=service_account.id,
            hydrate=hydrate,
            **filter_args,
        )

    return self._get_entity_by_id_or_name_or_prefix(
        get_method=get_api_key_method,
        list_method=list_api_keys_method,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
    )
get_artifact(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None, hydrate: bool = False) -> ArtifactResponse

Get an artifact by name, id or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the artifact to get.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
ArtifactResponse

The artifact.

Source code in src/zenml/client.py
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
def get_artifact(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = False,
) -> ArtifactResponse:
    """Get an artifact by name, id or prefix.

    Args:
        name_id_or_prefix: The name, ID or prefix of the artifact to get.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The artifact.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_artifact,
        list_method=self.list_artifacts,
        name_id_or_prefix=name_id_or_prefix,
        project=project,
        hydrate=hydrate,
    )
get_artifact_version(name_id_or_prefix: Union[str, UUID], version: Optional[str] = None, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> ArtifactVersionResponse

Get an artifact version by ID or artifact name.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

Either the ID of the artifact version or the name of the artifact.

required
version Optional[str]

The version of the artifact to get. Only used if name_id_or_prefix is the name of the artifact. If not specified, the latest version is returned.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ArtifactVersionResponse

The artifact version.

Source code in src/zenml/client.py
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
def get_artifact_version(
    self,
    name_id_or_prefix: Union[str, UUID],
    version: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> ArtifactVersionResponse:
    """Get an artifact version by ID or artifact name.

    Args:
        name_id_or_prefix: Either the ID of the artifact version or the
            name of the artifact.
        version: The version of the artifact to get. Only used if
            `name_id_or_prefix` is the name of the artifact. If not
            specified, the latest version is returned.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The artifact version.
    """
    from zenml import get_step_context

    if cll := client_lazy_loader(
        method_name="get_artifact_version",
        name_id_or_prefix=name_id_or_prefix,
        version=version,
        project=project,
        hydrate=hydrate,
    ):
        return cll  # type: ignore[return-value]

    artifact = self._get_entity_version_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_artifact_version,
        list_method=self.list_artifact_versions,
        name_id_or_prefix=name_id_or_prefix,
        version=version,
        project=project,
        hydrate=hydrate,
    )
    try:
        step_run = get_step_context().step_run
        client = Client()
        client.zen_store.update_run_step(
            step_run_id=step_run.id,
            step_run_update=StepRunUpdate(
                loaded_artifact_versions={artifact.name: artifact.id}
            ),
        )
    except RuntimeError:
        pass  # Cannot link to step run if called outside a step
    return artifact
get_authorized_device(id_or_prefix: Union[UUID, str], allow_id_prefix_match: bool = True, hydrate: bool = True) -> OAuthDeviceResponse

Get an authorized device by id or prefix.

Parameters:

Name Type Description Default
id_or_prefix Union[UUID, str]

The ID or ID prefix of the authorized device.

required
allow_id_prefix_match bool

If True, allow matching by ID prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
OAuthDeviceResponse

The requested authorized device.

Raises:

Type Description
KeyError

If no authorized device is found with the given ID or prefix.

Source code in src/zenml/client.py
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
def get_authorized_device(
    self,
    id_or_prefix: Union[UUID, str],
    allow_id_prefix_match: bool = True,
    hydrate: bool = True,
) -> OAuthDeviceResponse:
    """Get an authorized device by id or prefix.

    Args:
        id_or_prefix: The ID or ID prefix of the authorized device.
        allow_id_prefix_match: If True, allow matching by ID prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The requested authorized device.

    Raises:
        KeyError: If no authorized device is found with the given ID or
            prefix.
    """
    if isinstance(id_or_prefix, str):
        try:
            id_or_prefix = UUID(id_or_prefix)
        except ValueError:
            if not allow_id_prefix_match:
                raise KeyError(
                    f"No authorized device found with id or prefix "
                    f"'{id_or_prefix}'."
                )
    if isinstance(id_or_prefix, UUID):
        return self.zen_store.get_authorized_device(
            id_or_prefix, hydrate=hydrate
        )
    return self._get_entity_by_prefix(
        get_method=self.zen_store.get_authorized_device,
        list_method=self.list_authorized_devices,
        partial_id_or_name=id_or_prefix,
        allow_name_prefix_match=False,
        hydrate=hydrate,
    )
get_build(id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> PipelineBuildResponse

Get a build by id or prefix.

Parameters:

Name Type Description Default
id_or_prefix Union[str, UUID]

The id or id prefix of the build.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
PipelineBuildResponse

The build.

Raises:

Type Description
KeyError

If no build was found for the given id or prefix.

ZenKeyError

If multiple builds were found that match the given id or prefix.

Source code in src/zenml/client.py
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
def get_build(
    self,
    id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> PipelineBuildResponse:
    """Get a build by id or prefix.

    Args:
        id_or_prefix: The id or id prefix of the build.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The build.

    Raises:
        KeyError: If no build was found for the given id or prefix.
        ZenKeyError: If multiple builds were found that match the given
            id or prefix.
    """
    from zenml.utils.uuid_utils import is_valid_uuid

    # First interpret as full UUID
    if is_valid_uuid(id_or_prefix):
        if not isinstance(id_or_prefix, UUID):
            id_or_prefix = UUID(id_or_prefix, version=4)

        return self.zen_store.get_build(
            id_or_prefix,
            hydrate=hydrate,
        )

    list_kwargs: Dict[str, Any] = dict(
        id=f"startswith:{id_or_prefix}",
        hydrate=hydrate,
    )
    scope = ""
    if project:
        list_kwargs["project"] = project
        scope = f" in project {project}"

    entity = self.list_builds(**list_kwargs)

    # If only a single entity is found, return it.
    if entity.total == 1:
        return entity.items[0]

    # If no entity is found, raise an error.
    if entity.total == 0:
        raise KeyError(
            f"No builds have been found that have either an id or prefix "
            f"that matches the provided string '{id_or_prefix}'{scope}."
        )

    raise ZenKeyError(
        f"{entity.total} builds have been found{scope} that have "
        f"an ID that matches the provided "
        f"string '{id_or_prefix}':\n"
        f"{[entity.items]}.\n"
        f"Please use the id to uniquely identify "
        f"only one of the builds."
    )
get_code_repository(name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> CodeRepositoryResponse

Get a code repository by name, id or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or ID prefix of the code repository.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
CodeRepositoryResponse

The code repository.

Source code in src/zenml/client.py
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
def get_code_repository(
    self,
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> CodeRepositoryResponse:
    """Get a code repository by name, id or prefix.

    Args:
        name_id_or_prefix: The name, ID or ID prefix of the code repository.
        allow_name_prefix_match: If True, allow matching by name prefix.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The code repository.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_code_repository,
        list_method=self.list_code_repositories,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
        project=project,
    )
get_deployment(id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> PipelineDeploymentResponse

Get a deployment by id or prefix.

Parameters:

Name Type Description Default
id_or_prefix Union[str, UUID]

The id or id prefix of the deployment.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
PipelineDeploymentResponse

The deployment.

Raises:

Type Description
KeyError

If no deployment was found for the given id or prefix.

ZenKeyError

If multiple deployments were found that match the given id or prefix.

Source code in src/zenml/client.py
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
def get_deployment(
    self,
    id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> PipelineDeploymentResponse:
    """Get a deployment by id or prefix.

    Args:
        id_or_prefix: The id or id prefix of the deployment.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The deployment.

    Raises:
        KeyError: If no deployment was found for the given id or prefix.
        ZenKeyError: If multiple deployments were found that match the given
            id or prefix.
    """
    from zenml.utils.uuid_utils import is_valid_uuid

    # First interpret as full UUID
    if is_valid_uuid(id_or_prefix):
        id_ = (
            UUID(id_or_prefix)
            if isinstance(id_or_prefix, str)
            else id_or_prefix
        )
        return self.zen_store.get_deployment(id_, hydrate=hydrate)

    list_kwargs: Dict[str, Any] = dict(
        id=f"startswith:{id_or_prefix}",
        hydrate=hydrate,
    )
    scope = ""
    if project:
        list_kwargs["project"] = project
        scope = f" in project {project}"

    entity = self.list_deployments(**list_kwargs)

    # If only a single entity is found, return it.
    if entity.total == 1:
        return entity.items[0]

    # If no entity is found, raise an error.
    if entity.total == 0:
        raise KeyError(
            f"No deployment have been found that have either an id or "
            f"prefix that matches the provided string '{id_or_prefix}'{scope}."
        )

    raise ZenKeyError(
        f"{entity.total} deployments have been found{scope} that have "
        f"an ID that matches the provided "
        f"string '{id_or_prefix}':\n"
        f"{[entity.items]}.\n"
        f"Please use the id to uniquely identify "
        f"only one of the deployments."
    )
get_event_source(name_id_or_prefix: Union[UUID, str], allow_name_prefix_match: bool = True, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> EventSourceResponse

Get an event source by name, ID or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, ID or prefix of the stack.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
EventSourceResponse

The event_source.

Source code in src/zenml/client.py
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
@_fail_for_sql_zen_store
def get_event_source(
    self,
    name_id_or_prefix: Union[UUID, str],
    allow_name_prefix_match: bool = True,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> EventSourceResponse:
    """Get an event source by name, ID or prefix.

    Args:
        name_id_or_prefix: The name, ID or prefix of the stack.
        allow_name_prefix_match: If True, allow matching by name prefix.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The event_source.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_event_source,
        list_method=self.list_event_sources,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        project=project,
        hydrate=hydrate,
    )
get_flavor(name_id_or_prefix: str, allow_name_prefix_match: bool = True, hydrate: bool = True) -> FlavorResponse

Get a stack component flavor.

Parameters:

Name Type Description Default
name_id_or_prefix str

The name, ID or prefix to the id of the flavor to get.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
FlavorResponse

The stack component flavor.

Source code in src/zenml/client.py
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
def get_flavor(
    self,
    name_id_or_prefix: str,
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
) -> FlavorResponse:
    """Get a stack component flavor.

    Args:
        name_id_or_prefix: The name, ID or prefix to the id of the flavor
            to get.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The stack component flavor.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_flavor,
        list_method=self.list_flavors,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
    )
get_flavor_by_name_and_type(name: str, component_type: StackComponentType) -> FlavorResponse

Fetches a registered flavor.

Parameters:

Name Type Description Default
component_type StackComponentType

The type of the component to fetch.

required
name str

The name of the flavor to fetch.

required

Returns:

Type Description
FlavorResponse

The registered flavor.

Raises:

Type Description
KeyError

If no flavor exists for the given type and name.

Source code in src/zenml/client.py
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
def get_flavor_by_name_and_type(
    self, name: str, component_type: "StackComponentType"
) -> FlavorResponse:
    """Fetches a registered flavor.

    Args:
        component_type: The type of the component to fetch.
        name: The name of the flavor to fetch.

    Returns:
        The registered flavor.

    Raises:
        KeyError: If no flavor exists for the given type and name.
    """
    logger.debug(
        f"Fetching the flavor of type {component_type} with name {name}."
    )

    if not (
        flavors := self.list_flavors(
            type=component_type, name=name, hydrate=True
        ).items
    ):
        raise KeyError(
            f"No flavor with name '{name}' and type '{component_type}' "
            "exists."
        )
    if len(flavors) > 1:
        raise KeyError(
            f"More than one flavor with name {name} and type "
            f"{component_type} exists."
        )

    return flavors[0]
get_flavors_by_type(component_type: StackComponentType) -> Page[FlavorResponse]

Fetches the list of flavor for a stack component type.

Parameters:

Name Type Description Default
component_type StackComponentType

The type of the component to fetch.

required

Returns:

Type Description
Page[FlavorResponse]

The list of flavors.

Source code in src/zenml/client.py
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
def get_flavors_by_type(
    self, component_type: "StackComponentType"
) -> Page[FlavorResponse]:
    """Fetches the list of flavor for a stack component type.

    Args:
        component_type: The type of the component to fetch.

    Returns:
        The list of flavors.
    """
    logger.debug(f"Fetching the flavors of type {component_type}.")

    return self.list_flavors(
        type=component_type,
    )
get_instance() -> Optional[Client] classmethod

Return the Client singleton instance.

Returns:

Type Description
Optional[Client]

The Client singleton instance or None, if the Client hasn't

Optional[Client]

been initialized yet.

Source code in src/zenml/client.py
387
388
389
390
391
392
393
394
395
@classmethod
def get_instance(cls) -> Optional["Client"]:
    """Return the Client singleton instance.

    Returns:
        The Client singleton instance or None, if the Client hasn't
        been initialized yet.
    """
    return cls._global_client
get_model(model_name_or_id: Union[str, UUID], project: Optional[Union[str, UUID]] = None, hydrate: bool = True, bypass_lazy_loader: bool = False) -> ModelResponse

Get an existing model from Model Control Plane.

Parameters:

Name Type Description Default
model_name_or_id Union[str, UUID]

name or id of the model to be retrieved.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True
bypass_lazy_loader bool

Whether to bypass the lazy loader.

False

Returns:

Type Description
ModelResponse

The model of interest.

Source code in src/zenml/client.py
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
def get_model(
    self,
    model_name_or_id: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
    bypass_lazy_loader: bool = False,
) -> ModelResponse:
    """Get an existing model from Model Control Plane.

    Args:
        model_name_or_id: name or id of the model to be retrieved.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.
        bypass_lazy_loader: Whether to bypass the lazy loader.

    Returns:
        The model of interest.
    """
    if not bypass_lazy_loader:
        if cll := client_lazy_loader(
            "get_model",
            model_name_or_id=model_name_or_id,
            hydrate=hydrate,
            project=project,
        ):
            return cll  # type: ignore[return-value]

    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_model,
        list_method=self.list_models,
        name_id_or_prefix=model_name_or_id,
        project=project,
        hydrate=hydrate,
    )
get_model_version(model_name_or_id: Optional[Union[str, UUID]] = None, model_version_name_or_number_or_id: Optional[Union[str, int, ModelStages, UUID]] = None, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> ModelVersionResponse

Get an existing model version from Model Control Plane.

Parameters:

Name Type Description Default
model_name_or_id Optional[Union[str, UUID]]

name or id of the model containing the model version.

None
model_version_name_or_number_or_id Optional[Union[str, int, ModelStages, UUID]]

name, id, stage or number of the model version to be retrieved. If skipped - latest version is retrieved.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ModelVersionResponse

The model version of interest.

Raises:

Type Description
RuntimeError

In case method inputs don't adhere to restrictions.

KeyError

In case no model version with the identifiers exists.

ValueError

In case retrieval is attempted using non UUID model version identifier and no model identifier provided.

Source code in src/zenml/client.py
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
def get_model_version(
    self,
    model_name_or_id: Optional[Union[str, UUID]] = None,
    model_version_name_or_number_or_id: Optional[
        Union[str, int, ModelStages, UUID]
    ] = None,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> ModelVersionResponse:
    """Get an existing model version from Model Control Plane.

    Args:
        model_name_or_id: name or id of the model containing the model
            version.
        model_version_name_or_number_or_id: name, id, stage or number of
            the model version to be retrieved. If skipped - latest version
            is retrieved.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The model version of interest.

    Raises:
        RuntimeError: In case method inputs don't adhere to restrictions.
        KeyError: In case no model version with the identifiers exists.
        ValueError: In case retrieval is attempted using non UUID model version
            identifier and no model identifier provided.
    """
    if (
        not is_valid_uuid(model_version_name_or_number_or_id)
        and model_name_or_id is None
    ):
        raise ValueError(
            "No model identifier provided and model version identifier "
            f"`{model_version_name_or_number_or_id}` is not a valid UUID."
        )
    if cll := client_lazy_loader(
        "get_model_version",
        model_name_or_id=model_name_or_id,
        model_version_name_or_number_or_id=model_version_name_or_number_or_id,
        project=project,
        hydrate=hydrate,
    ):
        return cll  # type: ignore[return-value]

    if model_version_name_or_number_or_id is None:
        model_version_name_or_number_or_id = ModelStages.LATEST

    if isinstance(model_version_name_or_number_or_id, UUID):
        return self.zen_store.get_model_version(
            model_version_id=model_version_name_or_number_or_id,
            hydrate=hydrate,
        )
    elif isinstance(model_version_name_or_number_or_id, int):
        model_versions = self.zen_store.list_model_versions(
            model_version_filter_model=ModelVersionFilter(
                model=model_name_or_id,
                number=model_version_name_or_number_or_id,
                project=project or self.active_project.id,
            ),
            hydrate=hydrate,
        ).items
    elif isinstance(model_version_name_or_number_or_id, str):
        if model_version_name_or_number_or_id == ModelStages.LATEST:
            model_versions = self.zen_store.list_model_versions(
                model_version_filter_model=ModelVersionFilter(
                    model=model_name_or_id,
                    sort_by=f"{SorterOps.DESCENDING}:number",
                    project=project or self.active_project.id,
                ),
                hydrate=hydrate,
            ).items

            if len(model_versions) > 0:
                model_versions = [model_versions[0]]
            else:
                model_versions = []
        elif model_version_name_or_number_or_id in ModelStages.values():
            model_versions = self.zen_store.list_model_versions(
                model_version_filter_model=ModelVersionFilter(
                    model=model_name_or_id,
                    stage=model_version_name_or_number_or_id,
                    project=project or self.active_project.id,
                ),
                hydrate=hydrate,
            ).items
        else:
            model_versions = self.zen_store.list_model_versions(
                model_version_filter_model=ModelVersionFilter(
                    model=model_name_or_id,
                    name=model_version_name_or_number_or_id,
                    project=project or self.active_project.id,
                ),
                hydrate=hydrate,
            ).items
    else:
        raise RuntimeError(
            f"The model version identifier "
            f"`{model_version_name_or_number_or_id}` is not"
            f"of the correct type."
        )

    if len(model_versions) == 1:
        return model_versions[0]
    elif len(model_versions) == 0:
        raise KeyError(
            f"No model version found for model "
            f"`{model_name_or_id}` with version identifier "
            f"`{model_version_name_or_number_or_id}`."
        )
    else:
        raise RuntimeError(
            f"The model version identifier "
            f"`{model_version_name_or_number_or_id}` is not"
            f"unique for model `{model_name_or_id}`."
        )
get_pipeline(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> PipelineResponse

Get a pipeline by name, id or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or ID prefix of the pipeline.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
PipelineResponse

The pipeline.

Source code in src/zenml/client.py
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
def get_pipeline(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> PipelineResponse:
    """Get a pipeline by name, id or prefix.

    Args:
        name_id_or_prefix: The name, ID or ID prefix of the pipeline.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The pipeline.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_pipeline,
        list_method=self.list_pipelines,
        name_id_or_prefix=name_id_or_prefix,
        project=project,
        hydrate=hydrate,
    )
get_pipeline_run(name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> PipelineRunResponse

Gets a pipeline run by name, ID, or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

Name, ID, or prefix of the pipeline run.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
PipelineRunResponse

The pipeline run.

Source code in src/zenml/client.py
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
def get_pipeline_run(
    self,
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> PipelineRunResponse:
    """Gets a pipeline run by name, ID, or prefix.

    Args:
        name_id_or_prefix: Name, ID, or prefix of the pipeline run.
        allow_name_prefix_match: If True, allow matching by name prefix.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The pipeline run.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_run,
        list_method=self.list_pipeline_runs,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        project=project,
        hydrate=hydrate,
    )
get_project(name_id_or_prefix: Optional[Union[UUID, str]], allow_name_prefix_match: bool = True, hydrate: bool = True) -> ProjectResponse

Gets a project.

Parameters:

Name Type Description Default
name_id_or_prefix Optional[Union[UUID, str]]

The name or ID of the project.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ProjectResponse

The project

Source code in src/zenml/client.py
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
def get_project(
    self,
    name_id_or_prefix: Optional[Union[UUID, str]],
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
) -> ProjectResponse:
    """Gets a project.

    Args:
        name_id_or_prefix: The name or ID of the project.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The project
    """
    if not name_id_or_prefix:
        return self.active_project
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_project,
        list_method=self.list_projects,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
    )
get_run_step(step_run_id: UUID, hydrate: bool = True) -> StepRunResponse

Get a step run by ID.

Parameters:

Name Type Description Default
step_run_id UUID

The ID of the step run to get.

required
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
StepRunResponse

The step run.

Source code in src/zenml/client.py
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
def get_run_step(
    self,
    step_run_id: UUID,
    hydrate: bool = True,
) -> StepRunResponse:
    """Get a step run by ID.

    Args:
        step_run_id: The ID of the step run to get.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The step run.
    """
    return self.zen_store.get_run_step(
        step_run_id,
        hydrate=hydrate,
    )
get_run_template(name_id_or_prefix: Union[str, UUID], project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> RunTemplateResponse

Get a run template.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

Name/ID/ID prefix of the template to get.

required
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
RunTemplateResponse

The run template.

Source code in src/zenml/client.py
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
def get_run_template(
    self,
    name_id_or_prefix: Union[str, UUID],
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> RunTemplateResponse:
    """Get a run template.

    Args:
        name_id_or_prefix: Name/ID/ID prefix of the template to get.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The run template.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_run_template,
        list_method=self.list_run_templates,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
        hydrate=hydrate,
    )
get_schedule(name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> ScheduleResponse

Get a schedule by name, id or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, id or prefix of the schedule.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ScheduleResponse

The schedule.

Source code in src/zenml/client.py
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
def get_schedule(
    self,
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> ScheduleResponse:
    """Get a schedule by name, id or prefix.

    Args:
        name_id_or_prefix: The name, id or prefix of the schedule.
        allow_name_prefix_match: If True, allow matching by name prefix.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The schedule.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_schedule,
        list_method=self.list_schedules,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        project=project,
        hydrate=hydrate,
    )
get_secret(name_id_or_prefix: Union[str, UUID], private: Optional[bool] = None, allow_partial_name_match: bool = True, allow_partial_id_match: bool = True, hydrate: bool = True) -> SecretResponse

Get a secret.

Get a secret identified by a name, ID or prefix of the name or ID and optionally a scope.

If a private status is not provided, privately scoped secrets will be searched for first, followed by publicly scoped secrets. When a name or prefix is used instead of a UUID value, each scope is first searched for an exact match, then for a ID prefix or name substring match before moving on to the next scope.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or prefix to the id of the secret to get.

required
private Optional[bool]

Whether the secret is private. If not set, all secrets will be searched for, prioritizing privately scoped secrets.

None
allow_partial_name_match bool

If True, allow partial name matches.

True
allow_partial_id_match bool

If True, allow partial ID matches.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
SecretResponse

The secret.

Raises:

Type Description
KeyError

If no secret is found.

ZenKeyError

If multiple secrets are found.

NotImplementedError

If centralized secrets management is not enabled.

Source code in src/zenml/client.py
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
def get_secret(
    self,
    name_id_or_prefix: Union[str, UUID],
    private: Optional[bool] = None,
    allow_partial_name_match: bool = True,
    allow_partial_id_match: bool = True,
    hydrate: bool = True,
) -> SecretResponse:
    """Get a secret.

    Get a secret identified by a name, ID or prefix of the name or ID and
    optionally a scope.

    If a private status is not provided, privately scoped secrets will be
    searched for first, followed by publicly scoped secrets. When a name or
    prefix is used instead of a UUID value, each scope is first searched for
    an exact match, then for a ID prefix or name substring match before
    moving on to the next scope.

    Args:
        name_id_or_prefix: The name, ID or prefix to the id of the secret
            to get.
        private: Whether the secret is private. If not set, all secrets will
            be searched for, prioritizing privately scoped secrets.
        allow_partial_name_match: If True, allow partial name matches.
        allow_partial_id_match: If True, allow partial ID matches.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The secret.

    Raises:
        KeyError: If no secret is found.
        ZenKeyError: If multiple secrets are found.
        NotImplementedError: If centralized secrets management is not
            enabled.
    """
    from zenml.utils.uuid_utils import is_valid_uuid

    try:
        # First interpret as full UUID
        if is_valid_uuid(name_id_or_prefix):
            # Fetch by ID; filter by scope if provided
            secret = self.zen_store.get_secret(
                secret_id=UUID(name_id_or_prefix)
                if isinstance(name_id_or_prefix, str)
                else name_id_or_prefix,
                hydrate=hydrate,
            )
            if private is not None and secret.private != private:
                raise KeyError(
                    f"No secret found with ID {str(name_id_or_prefix)}"
                )

            return secret
    except NotImplementedError:
        raise NotImplementedError(
            "centralized secrets management is not supported or explicitly "
            "disabled in the target ZenML deployment."
        )

    # If not a UUID, try to find by name and then by prefix
    assert not isinstance(name_id_or_prefix, UUID)

    # Private statuses to search in order of priority
    search_private_statuses = (
        [False, True] if private is None else [private]
    )

    secrets = self.list_secrets(
        logical_operator=LogicalOperators.OR,
        name=f"contains:{name_id_or_prefix}"
        if allow_partial_name_match
        else f"equals:{name_id_or_prefix}",
        id=f"startswith:{name_id_or_prefix}"
        if allow_partial_id_match
        else None,
        hydrate=hydrate,
    )

    for search_private_status in search_private_statuses:
        partial_matches: List[SecretResponse] = []
        for secret in secrets.items:
            if secret.private != search_private_status:
                continue
            # Exact match
            if secret.name == name_id_or_prefix:
                # Need to fetch the secret again to get the secret values
                return self.zen_store.get_secret(
                    secret_id=secret.id,
                    hydrate=hydrate,
                )
            # Partial match
            partial_matches.append(secret)

        if len(partial_matches) > 1:
            match_summary = "\n".join(
                [
                    f"[{secret.id}]: name = {secret.name}"
                    for secret in partial_matches
                ]
            )
            raise ZenKeyError(
                f"{len(partial_matches)} secrets have been found that have "
                f"a name or ID that matches the provided "
                f"string '{name_id_or_prefix}':\n"
                f"{match_summary}.\n"
                f"Please use the id to uniquely identify "
                f"only one of the secrets."
            )

        # If only a single secret is found, return it
        if len(partial_matches) == 1:
            # Need to fetch the secret again to get the secret values
            return self.zen_store.get_secret(
                secret_id=partial_matches[0].id,
                hydrate=hydrate,
            )
    private_status = ""
    if private is not None:
        private_status = "private " if private else "public "
    msg = (
        f"No {private_status}secret found with name, ID or prefix "
        f"'{name_id_or_prefix}'"
    )

    raise KeyError(msg)
get_secret_by_name_and_private_status(name: str, private: Optional[bool] = None, hydrate: bool = True) -> SecretResponse

Fetches a registered secret with a given name and optional private status.

This is a version of get_secret that restricts the search to a given name and an optional private status, without doing any prefix or UUID matching.

If no private status is provided, the search will be done first for private secrets, then for public secrets.

Parameters:

Name Type Description Default
name str

The name of the secret to get.

required
private Optional[bool]

The private status of the secret to get.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
SecretResponse

The registered secret.

Raises:

Type Description
KeyError

If no secret exists for the given name in the given scope.

Source code in src/zenml/client.py
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
def get_secret_by_name_and_private_status(
    self,
    name: str,
    private: Optional[bool] = None,
    hydrate: bool = True,
) -> SecretResponse:
    """Fetches a registered secret with a given name and optional private status.

    This is a version of get_secret that restricts the search to a given
    name and an optional private status, without doing any prefix or UUID
    matching.

    If no private status is provided, the search will be done first for
    private secrets, then for public secrets.

    Args:
        name: The name of the secret to get.
        private: The private status of the secret to get.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The registered secret.

    Raises:
        KeyError: If no secret exists for the given name in the given scope.
    """
    logger.debug(
        f"Fetching the secret with name '{name}' and private status "
        f"'{private}'."
    )

    # Private statuses to search in order of priority
    search_private_statuses = (
        [False, True] if private is None else [private]
    )

    for search_private_status in search_private_statuses:
        secrets = self.list_secrets(
            logical_operator=LogicalOperators.AND,
            name=f"equals:{name}",
            private=search_private_status,
            hydrate=hydrate,
        )

        if len(secrets.items) >= 1:
            # Need to fetch the secret again to get the secret values
            return self.zen_store.get_secret(
                secret_id=secrets.items[0].id, hydrate=hydrate
            )

    private_status = ""
    if private is not None:
        private_status = "private " if private else "public "
    msg = f"No {private_status}secret with name '{name}' was found"

    raise KeyError(msg)
get_service(name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, hydrate: bool = True, type: Optional[str] = None, project: Optional[Union[str, UUID]] = None) -> ServiceResponse

Gets a service.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name or ID of the service.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True
type Optional[str]

The type of the service.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
ServiceResponse

The Service

Source code in src/zenml/client.py
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
def get_service(
    self,
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
    type: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
) -> ServiceResponse:
    """Gets a service.

    Args:
        name_id_or_prefix: The name or ID of the service.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.
        type: The type of the service.
        project: The project name/ID to filter by.

    Returns:
        The Service
    """

    def type_scoped_list_method(
        hydrate: bool = True,
        **kwargs: Any,
    ) -> Page[ServiceResponse]:
        """Call `zen_store.list_services` with type scoping.

        Args:
            hydrate: Flag deciding whether to hydrate the output model(s)
                by including metadata fields in the response.
            **kwargs: Keyword arguments to pass to `ServiceFilterModel`.

        Returns:
            The type-scoped list of services.
        """
        service_filter_model = ServiceFilter(**kwargs)
        if type:
            service_filter_model.set_type(type=type)
        return self.zen_store.list_services(
            filter_model=service_filter_model,
            hydrate=hydrate,
        )

    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_service,
        list_method=type_scoped_list_method,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        project=project,
        hydrate=hydrate,
    )
get_service_account(name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, hydrate: bool = True) -> ServiceAccountResponse

Gets a service account.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name or ID of the service account.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ServiceAccountResponse

The ServiceAccount

Source code in src/zenml/client.py
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
def get_service_account(
    self,
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
) -> ServiceAccountResponse:
    """Gets a service account.

    Args:
        name_id_or_prefix: The name or ID of the service account.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The ServiceAccount
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_service_account,
        list_method=self.list_service_accounts,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
    )
get_service_connector(name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, load_secrets: bool = False, hydrate: bool = True) -> ServiceConnectorResponse

Fetches a registered service connector.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The id of the service connector to fetch.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
load_secrets bool

If True, load the secrets for the service connector.

False
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ServiceConnectorResponse

The registered service connector.

Source code in src/zenml/client.py
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
def get_service_connector(
    self,
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    load_secrets: bool = False,
    hydrate: bool = True,
) -> ServiceConnectorResponse:
    """Fetches a registered service connector.

    Args:
        name_id_or_prefix: The id of the service connector to fetch.
        allow_name_prefix_match: If True, allow matching by name prefix.
        load_secrets: If True, load the secrets for the service connector.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The registered service connector.
    """
    connector = self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_service_connector,
        list_method=self.list_service_connectors,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
    )

    if load_secrets and connector.secret_id:
        client = Client()
        try:
            secret = client.get_secret(
                name_id_or_prefix=connector.secret_id,
                allow_partial_id_match=False,
                allow_partial_name_match=False,
            )
        except KeyError as err:
            logger.error(
                "Unable to retrieve secret values associated with "
                f"service connector '{connector.name}': {err}"
            )
        else:
            # Add secret values to connector configuration
            connector.secrets.update(secret.values)

    return connector
get_service_connector_client(name_id_or_prefix: Union[UUID, str], resource_type: Optional[str] = None, resource_id: Optional[str] = None, verify: bool = False) -> ServiceConnector

Get the client side of a service connector instance to use with a local client.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, id or prefix of the service connector to use.

required
resource_type Optional[str]

The type of the resource to connect to. If not provided, the resource type from the service connector configuration will be used.

None
resource_id Optional[str]

The ID of a particular resource instance to configure the local client to connect to. If the connector instance is already configured with a resource ID that is not the same or equivalent to the one requested, a ValueError exception is raised. May be omitted for connectors and resource types that do not support multiple resource instances.

None
verify bool

Whether to verify that the service connector configuration and credentials can be used to gain access to the resource.

False

Returns:

Type Description
ServiceConnector

The client side of the indicated service connector instance that can

ServiceConnector

be used to connect to the resource locally.

Source code in src/zenml/client.py
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
def get_service_connector_client(
    self,
    name_id_or_prefix: Union[UUID, str],
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
    verify: bool = False,
) -> "ServiceConnector":
    """Get the client side of a service connector instance to use with a local client.

    Args:
        name_id_or_prefix: The name, id or prefix of the service connector
            to use.
        resource_type: The type of the resource to connect to. If not
            provided, the resource type from the service connector
            configuration will be used.
        resource_id: The ID of a particular resource instance to configure
            the local client to connect to. If the connector instance is
            already configured with a resource ID that is not the same or
            equivalent to the one requested, a `ValueError` exception is
            raised. May be omitted for connectors and resource types that do
            not support multiple resource instances.
        verify: Whether to verify that the service connector configuration
            and credentials can be used to gain access to the resource.

    Returns:
        The client side of the indicated service connector instance that can
        be used to connect to the resource locally.
    """
    from zenml.service_connectors.service_connector_registry import (
        service_connector_registry,
    )

    # Get the service connector model
    service_connector = self.get_service_connector(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
    )

    connector_type = self.get_service_connector_type(
        service_connector.type
    )

    # Prefer to fetch the connector client from the server if the
    # implementation if available there, because some auth methods rely on
    # the server-side authentication environment
    if connector_type.remote:
        connector_client_model = (
            self.zen_store.get_service_connector_client(
                service_connector_id=service_connector.id,
                resource_type=resource_type,
                resource_id=resource_id,
            )
        )

        connector_client = (
            service_connector_registry.instantiate_connector(
                model=connector_client_model
            )
        )

        if verify:
            # Verify the connector client on the local machine, because the
            # server-side implementation may not be able to do so
            connector_client.verify()
    else:
        connector_instance = (
            service_connector_registry.instantiate_connector(
                model=service_connector
            )
        )

        # Fetch the connector client
        connector_client = connector_instance.get_connector_client(
            resource_type=resource_type,
            resource_id=resource_id,
        )

    return connector_client
get_service_connector_type(connector_type: str) -> ServiceConnectorTypeModel

Returns the requested service connector type.

Parameters:

Name Type Description Default
connector_type str

the service connector type identifier.

required

Returns:

Type Description
ServiceConnectorTypeModel

The requested service connector type.

Source code in src/zenml/client.py
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
def get_service_connector_type(
    self,
    connector_type: str,
) -> ServiceConnectorTypeModel:
    """Returns the requested service connector type.

    Args:
        connector_type: the service connector type identifier.

    Returns:
        The requested service connector type.
    """
    return self.zen_store.get_service_connector_type(
        connector_type=connector_type,
    )
get_settings(hydrate: bool = True) -> ServerSettingsResponse

Get the server settings.

Parameters:

Name Type Description Default
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ServerSettingsResponse

The server settings.

Source code in src/zenml/client.py
709
710
711
712
713
714
715
716
717
718
719
def get_settings(self, hydrate: bool = True) -> ServerSettingsResponse:
    """Get the server settings.

    Args:
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The server settings.
    """
    return self.zen_store.get_server_settings(hydrate=hydrate)
get_stack(name_id_or_prefix: Optional[Union[UUID, str]] = None, allow_name_prefix_match: bool = True, hydrate: bool = True) -> StackResponse

Get a stack by name, ID or prefix.

If no name, ID or prefix is provided, the active stack is returned.

Parameters:

Name Type Description Default
name_id_or_prefix Optional[Union[UUID, str]]

The name, ID or prefix of the stack.

None
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
StackResponse

The stack.

Source code in src/zenml/client.py
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
def get_stack(
    self,
    name_id_or_prefix: Optional[Union[UUID, str]] = None,
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
) -> StackResponse:
    """Get a stack by name, ID or prefix.

    If no name, ID or prefix is provided, the active stack is returned.

    Args:
        name_id_or_prefix: The name, ID or prefix of the stack.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The stack.
    """
    if name_id_or_prefix is not None:
        return self._get_entity_by_id_or_name_or_prefix(
            get_method=self.zen_store.get_stack,
            list_method=self.list_stacks,
            name_id_or_prefix=name_id_or_prefix,
            allow_name_prefix_match=allow_name_prefix_match,
            hydrate=hydrate,
        )
    else:
        return self.active_stack_model
get_stack_component(component_type: StackComponentType, name_id_or_prefix: Optional[Union[str, UUID]] = None, allow_name_prefix_match: bool = True, hydrate: bool = True) -> ComponentResponse

Fetches a registered stack component.

If the name_id_or_prefix is provided, it will try to fetch the component with the corresponding identifier. If not, it will try to fetch the active component of the given type.

Parameters:

Name Type Description Default
component_type StackComponentType

The type of the component to fetch

required
name_id_or_prefix Optional[Union[str, UUID]]

The id of the component to fetch.

None
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
ComponentResponse

The registered stack component.

Raises:

Type Description
KeyError

If no name_id_or_prefix is provided and no such component is part of the active stack.

Source code in src/zenml/client.py
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
def get_stack_component(
    self,
    component_type: StackComponentType,
    name_id_or_prefix: Optional[Union[str, UUID]] = None,
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
) -> ComponentResponse:
    """Fetches a registered stack component.

    If the name_id_or_prefix is provided, it will try to fetch the component
    with the corresponding identifier. If not, it will try to fetch the
    active component of the given type.

    Args:
        component_type: The type of the component to fetch
        name_id_or_prefix: The id of the component to fetch.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The registered stack component.

    Raises:
        KeyError: If no name_id_or_prefix is provided and no such component
            is part of the active stack.
    """
    # If no `name_id_or_prefix` provided, try to get the active component.
    if not name_id_or_prefix:
        components = self.active_stack_model.components.get(
            component_type, None
        )
        if components:
            return components[0]
        raise KeyError(
            "No name_id_or_prefix provided and there is no active "
            f"{component_type} in the current active stack."
        )

    # Else, try to fetch the component with an explicit type filter
    def type_scoped_list_method(
        hydrate: bool = False,
        **kwargs: Any,
    ) -> Page[ComponentResponse]:
        """Call `zen_store.list_stack_components` with type scoping.

        Args:
            hydrate: Flag deciding whether to hydrate the output model(s)
                by including metadata fields in the response.
            **kwargs: Keyword arguments to pass to `ComponentFilterModel`.

        Returns:
            The type-scoped list of components.
        """
        component_filter_model = ComponentFilter(**kwargs)
        component_filter_model.set_scope_type(
            component_type=component_type
        )
        return self.zen_store.list_stack_components(
            component_filter_model=component_filter_model,
            hydrate=hydrate,
        )

    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_stack_component,
        list_method=type_scoped_list_method,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
    )
get_tag(tag_name_or_id: Union[str, UUID], hydrate: bool = True) -> TagResponse

Get an existing tag.

Parameters:

Name Type Description Default
tag_name_or_id Union[str, UUID]

name or id of the tag to be retrieved.

required
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
TagResponse

The tag of interest.

Source code in src/zenml/client.py
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
def get_tag(
    self,
    tag_name_or_id: Union[str, UUID],
    hydrate: bool = True,
) -> TagResponse:
    """Get an existing tag.

    Args:
        tag_name_or_id: name or id of the tag to be retrieved.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The tag of interest.
    """
    return self.zen_store.get_tag(
        tag_name_or_id=tag_name_or_id,
        hydrate=hydrate,
    )
get_trigger(name_id_or_prefix: Union[UUID, str], allow_name_prefix_match: bool = True, project: Optional[Union[str, UUID]] = None, hydrate: bool = True) -> TriggerResponse

Get a trigger by name, ID or prefix.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, ID or prefix of the trigger.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
TriggerResponse

The trigger.

Source code in src/zenml/client.py
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
@_fail_for_sql_zen_store
def get_trigger(
    self,
    name_id_or_prefix: Union[UUID, str],
    allow_name_prefix_match: bool = True,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = True,
) -> TriggerResponse:
    """Get a trigger by name, ID or prefix.

    Args:
        name_id_or_prefix: The name, ID or prefix of the trigger.
        allow_name_prefix_match: If True, allow matching by name prefix.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The trigger.
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_trigger,
        list_method=self.list_triggers,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        project=project,
        hydrate=hydrate,
    )
get_trigger_execution(trigger_execution_id: UUID, hydrate: bool = True) -> TriggerExecutionResponse

Get a trigger execution by ID.

Parameters:

Name Type Description Default
trigger_execution_id UUID

The ID of the trigger execution to get.

required
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
TriggerExecutionResponse

The trigger execution.

Source code in src/zenml/client.py
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
def get_trigger_execution(
    self,
    trigger_execution_id: UUID,
    hydrate: bool = True,
) -> TriggerExecutionResponse:
    """Get a trigger execution by ID.

    Args:
        trigger_execution_id: The ID of the trigger execution to get.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The trigger execution.
    """
    return self.zen_store.get_trigger_execution(
        trigger_execution_id=trigger_execution_id, hydrate=hydrate
    )
get_user(name_id_or_prefix: Union[str, UUID], allow_name_prefix_match: bool = True, hydrate: bool = True) -> UserResponse

Gets a user.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name or ID of the user.

required
allow_name_prefix_match bool

If True, allow matching by name prefix.

True
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

True

Returns:

Type Description
UserResponse

The User

Source code in src/zenml/client.py
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
def get_user(
    self,
    name_id_or_prefix: Union[str, UUID],
    allow_name_prefix_match: bool = True,
    hydrate: bool = True,
) -> UserResponse:
    """Gets a user.

    Args:
        name_id_or_prefix: The name or ID of the user.
        allow_name_prefix_match: If True, allow matching by name prefix.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The User
    """
    return self._get_entity_by_id_or_name_or_prefix(
        get_method=self.zen_store.get_user,
        list_method=self.list_users,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=allow_name_prefix_match,
        hydrate=hydrate,
    )
initialize(root: Optional[Path] = None) -> None staticmethod

Initializes a new ZenML repository at the given path.

Parameters:

Name Type Description Default
root Optional[Path]

The root directory where the repository should be created. If None, the current working directory is used.

None

Raises:

Type Description
InitializationException

If the root directory already contains a ZenML repository.

Source code in src/zenml/client.py
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
@staticmethod
def initialize(
    root: Optional[Path] = None,
) -> None:
    """Initializes a new ZenML repository at the given path.

    Args:
        root: The root directory where the repository should be created.
            If None, the current working directory is used.

    Raises:
        InitializationException: If the root directory already contains a
            ZenML repository.
    """
    root = root or Path.cwd()
    logger.debug("Initializing new repository at path %s.", root)
    if Client.is_repository_directory(root):
        raise InitializationException(
            f"Found existing ZenML repository at path '{root}'."
        )

    config_directory = str(root / REPOSITORY_DIRECTORY_NAME)
    io_utils.create_dir_recursive_if_not_exists(config_directory)
    # Initialize the repository configuration at the custom path
    Client(root=root)
is_inside_repository(file_path: str) -> bool staticmethod

Returns whether a file is inside the active ZenML repository.

Parameters:

Name Type Description Default
file_path str

A file path.

required

Returns:

Type Description
bool

True if the file is inside the active ZenML repository, False

bool

otherwise.

Source code in src/zenml/client.py
626
627
628
629
630
631
632
633
634
635
636
637
638
639
@staticmethod
def is_inside_repository(file_path: str) -> bool:
    """Returns whether a file is inside the active ZenML repository.

    Args:
        file_path: A file path.

    Returns:
        True if the file is inside the active ZenML repository, False
        otherwise.
    """
    if repo_path := Client.find_repository():
        return repo_path in Path(file_path).resolve().parents
    return False
is_repository_directory(path: Path) -> bool staticmethod

Checks whether a ZenML client exists at the given path.

Parameters:

Name Type Description Default
path Path

The path to check.

required

Returns:

Type Description
bool

True if a ZenML client exists at the given path,

bool

False otherwise.

Source code in src/zenml/client.py
537
538
539
540
541
542
543
544
545
546
547
548
549
@staticmethod
def is_repository_directory(path: Path) -> bool:
    """Checks whether a ZenML client exists at the given path.

    Args:
        path: The path to check.

    Returns:
        True if a ZenML client exists at the given path,
        False otherwise.
    """
    config_dir = path / REPOSITORY_DIRECTORY_NAME
    return fileio.isdir(str(config_dir))
list_actions(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, name: Optional[str] = None, flavor: Optional[str] = None, action_type: Optional[str] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[ActionResponse]

List actions.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of the action to filter by.

None
created Optional[datetime]

Use to filter by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
name Optional[str]

The name of the action to filter by.

None
flavor Optional[str]

The flavor of the action to filter by.

None
action_type Optional[str]

The type of the action to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[ActionResponse]

A page of actions.

Source code in src/zenml/client.py
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
@_fail_for_sql_zen_store
def list_actions(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    name: Optional[str] = None,
    flavor: Optional[str] = None,
    action_type: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[ActionResponse]:
    """List actions.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of the action to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        name: The name of the action to filter by.
        flavor: The flavor of the action to filter by.
        action_type: The type of the action to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of actions.
    """
    filter_model = ActionFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        project=project or self.active_project.id,
        user=user,
        name=name,
        id=id,
        flavor=flavor,
        plugin_subtype=action_type,
        created=created,
        updated=updated,
    )
    return self.zen_store.list_actions(filter_model, hydrate=hydrate)
list_api_keys(service_account_name_id_or_prefix: Union[str, UUID], sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, description: Optional[str] = None, active: Optional[bool] = None, last_login: Optional[Union[datetime, str]] = None, last_rotated: Optional[Union[datetime, str]] = None, hydrate: bool = False) -> Page[APIKeyResponse]

List all API keys.

Parameters:

Name Type Description Default
service_account_name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the service account to list the API keys for.

required
sort_by str

The column to sort by.

'created'
page int

The page of items.

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages.

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or].

AND
id Optional[Union[UUID, str]]

Use the id of the API key to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation.

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering.

None
name Optional[str]

The name of the API key to filter by.

None
description Optional[str]

The description of the API key to filter by.

None
active Optional[bool]

Whether the API key is active or not.

None
last_login Optional[Union[datetime, str]]

The last time the API key was used.

None
last_rotated Optional[Union[datetime, str]]

The last time the API key was rotated.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[APIKeyResponse]

A page of API keys matching the filter description.

Source code in src/zenml/client.py
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
def list_api_keys(
    self,
    service_account_name_id_or_prefix: Union[str, UUID],
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    description: Optional[str] = None,
    active: Optional[bool] = None,
    last_login: Optional[Union[datetime, str]] = None,
    last_rotated: Optional[Union[datetime, str]] = None,
    hydrate: bool = False,
) -> Page[APIKeyResponse]:
    """List all API keys.

    Args:
        service_account_name_id_or_prefix: The name, ID or prefix of the
            service account to list the API keys for.
        sort_by: The column to sort by.
        page: The page of items.
        size: The maximum size of all pages.
        logical_operator: Which logical operator to use [and, or].
        id: Use the id of the API key to filter by.
        created: Use to filter by time of creation.
        updated: Use the last updated date for filtering.
        name: The name of the API key to filter by.
        description: The description of the API key to filter by.
        active: Whether the API key is active or not.
        last_login: The last time the API key was used.
        last_rotated: The last time the API key was rotated.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of API keys matching the filter description.
    """
    service_account = self.get_service_account(
        name_id_or_prefix=service_account_name_id_or_prefix,
        allow_name_prefix_match=False,
    )
    filter_model = APIKeyFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        name=name,
        description=description,
        active=active,
        last_login=last_login,
        last_rotated=last_rotated,
    )
    return self.zen_store.list_api_keys(
        service_account_id=service_account.id,
        filter_model=filter_model,
        hydrate=hydrate,
    )
list_artifact_versions(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, artifact: Optional[Union[str, UUID]] = None, name: Optional[str] = None, version: Optional[Union[str, int]] = None, version_number: Optional[int] = None, artifact_store_id: Optional[Union[str, UUID]] = None, type: Optional[ArtifactType] = None, data_type: Optional[str] = None, uri: Optional[str] = None, materializer: Optional[str] = None, project: Optional[Union[str, UUID]] = None, model_version_id: Optional[Union[str, UUID]] = None, only_unused: Optional[bool] = False, has_custom_name: Optional[bool] = None, user: Optional[Union[UUID, str]] = None, model: Optional[Union[UUID, str]] = None, pipeline_run: Optional[Union[UUID, str]] = None, run_metadata: Optional[List[str]] = None, tag: Optional[str] = None, tags: Optional[List[str]] = None, hydrate: bool = False) -> Page[ArtifactVersionResponse]

Get a list of artifact versions.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of artifact version to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
artifact Optional[Union[str, UUID]]

The name or ID of the artifact to filter by.

None
name Optional[str]

The name of the artifact to filter by.

None
version Optional[Union[str, int]]

The version of the artifact to filter by.

None
version_number Optional[int]

The version number of the artifact to filter by.

None
artifact_store_id Optional[Union[str, UUID]]

The id of the artifact store to filter by.

None
type Optional[ArtifactType]

The type of the artifact to filter by.

None
data_type Optional[str]

The data type of the artifact to filter by.

None
uri Optional[str]

The uri of the artifact to filter by.

None
materializer Optional[str]

The materializer of the artifact to filter by.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
model_version_id Optional[Union[str, UUID]]

Filter by model version ID.

None
only_unused Optional[bool]

Only return artifact versions that are not used in any pipeline runs.

False
has_custom_name Optional[bool]

Filter artifacts with/without custom names.

None
tag Optional[str]

A tag to filter by.

None
tags Optional[List[str]]

Tags to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name or ID.

None
model Optional[Union[UUID, str]]

Filter by model name or ID.

None
pipeline_run Optional[Union[UUID, str]]

Filter by pipeline run name or ID.

None
run_metadata Optional[List[str]]

Filter by run metadata.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[ArtifactVersionResponse]

A list of artifact versions.

Source code in src/zenml/client.py
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
def list_artifact_versions(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    artifact: Optional[Union[str, UUID]] = None,
    name: Optional[str] = None,
    version: Optional[Union[str, int]] = None,
    version_number: Optional[int] = None,
    artifact_store_id: Optional[Union[str, UUID]] = None,
    type: Optional[ArtifactType] = None,
    data_type: Optional[str] = None,
    uri: Optional[str] = None,
    materializer: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    model_version_id: Optional[Union[str, UUID]] = None,
    only_unused: Optional[bool] = False,
    has_custom_name: Optional[bool] = None,
    user: Optional[Union[UUID, str]] = None,
    model: Optional[Union[UUID, str]] = None,
    pipeline_run: Optional[Union[UUID, str]] = None,
    run_metadata: Optional[List[str]] = None,
    tag: Optional[str] = None,
    tags: Optional[List[str]] = None,
    hydrate: bool = False,
) -> Page[ArtifactVersionResponse]:
    """Get a list of artifact versions.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of artifact version to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        artifact: The name or ID of the artifact to filter by.
        name: The name of the artifact to filter by.
        version: The version of the artifact to filter by.
        version_number: The version number of the artifact to filter by.
        artifact_store_id: The id of the artifact store to filter by.
        type: The type of the artifact to filter by.
        data_type: The data type of the artifact to filter by.
        uri: The uri of the artifact to filter by.
        materializer: The materializer of the artifact to filter by.
        project: The project name/ID to filter by.
        model_version_id: Filter by model version ID.
        only_unused: Only return artifact versions that are not used in
            any pipeline runs.
        has_custom_name: Filter artifacts with/without custom names.
        tag: A tag to filter by.
        tags: Tags to filter by.
        user: Filter by user name or ID.
        model: Filter by model name or ID.
        pipeline_run: Filter by pipeline run name or ID.
        run_metadata: Filter by run metadata.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A list of artifact versions.
    """
    if name:
        artifact = name

    artifact_version_filter_model = ArtifactVersionFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        artifact=artifact,
        version=str(version) if version else None,
        version_number=version_number,
        artifact_store_id=artifact_store_id,
        type=type,
        data_type=data_type,
        uri=uri,
        materializer=materializer,
        project=project or self.active_project.id,
        model_version_id=model_version_id,
        only_unused=only_unused,
        has_custom_name=has_custom_name,
        tag=tag,
        tags=tags,
        user=user,
        model=model,
        pipeline_run=pipeline_run,
        run_metadata=run_metadata,
    )
    return self.zen_store.list_artifact_versions(
        artifact_version_filter_model,
        hydrate=hydrate,
    )
list_artifacts(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, has_custom_name: Optional[bool] = None, user: Optional[Union[UUID, str]] = None, project: Optional[Union[str, UUID]] = None, hydrate: bool = False, tag: Optional[str] = None, tags: Optional[List[str]] = None) -> Page[ArtifactResponse]

Get a list of artifacts.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of artifact to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

The name of the artifact to filter by.

None
has_custom_name Optional[bool]

Filter artifacts with/without custom names.

None
user Optional[Union[UUID, str]]

Filter by user name or ID.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False
tag Optional[str]

Filter artifacts by tag.

None
tags Optional[List[str]]

Tags to filter by.

None

Returns:

Type Description
Page[ArtifactResponse]

A list of artifacts.

Source code in src/zenml/client.py
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
def list_artifacts(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    has_custom_name: Optional[bool] = None,
    user: Optional[Union[UUID, str]] = None,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = False,
    tag: Optional[str] = None,
    tags: Optional[List[str]] = None,
) -> Page[ArtifactResponse]:
    """Get a list of artifacts.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of artifact to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: The name of the artifact to filter by.
        has_custom_name: Filter artifacts with/without custom names.
        user: Filter by user name or ID.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.
        tag: Filter artifacts by tag.
        tags: Tags to filter by.

    Returns:
        A list of artifacts.
    """
    artifact_filter_model = ArtifactFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        name=name,
        has_custom_name=has_custom_name,
        tag=tag,
        tags=tags,
        user=user,
        project=project or self.active_project.id,
    )
    return self.zen_store.list_artifacts(
        artifact_filter_model,
        hydrate=hydrate,
    )
list_authorized_devices(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, expires: Optional[Union[datetime, str]] = None, client_id: Union[UUID, str, None] = None, status: Union[OAuthDeviceStatus, str, None] = None, trusted_device: Union[bool, str, None] = None, user: Optional[Union[UUID, str]] = None, failed_auth_attempts: Union[int, str, None] = None, last_login: Optional[Union[datetime, str, None]] = None, hydrate: bool = False) -> Page[OAuthDeviceResponse]

List all authorized devices.

Parameters:

Name Type Description Default
sort_by str

The column to sort by.

'created'
page int

The page of items.

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages.

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or].

AND
id Optional[Union[UUID, str]]

Use the id of the code repository to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation.

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering.

None
expires Optional[Union[datetime, str]]

Use the expiration date for filtering.

None
client_id Union[UUID, str, None]

Use the client id for filtering.

None
status Union[OAuthDeviceStatus, str, None]

Use the status for filtering.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
trusted_device Union[bool, str, None]

Use the trusted device flag for filtering.

None
failed_auth_attempts Union[int, str, None]

Use the failed auth attempts for filtering.

None
last_login Optional[Union[datetime, str, None]]

Use the last login date for filtering.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[OAuthDeviceResponse]

A page of authorized devices matching the filter.

Source code in src/zenml/client.py
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
def list_authorized_devices(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    expires: Optional[Union[datetime, str]] = None,
    client_id: Union[UUID, str, None] = None,
    status: Union[OAuthDeviceStatus, str, None] = None,
    trusted_device: Union[bool, str, None] = None,
    user: Optional[Union[UUID, str]] = None,
    failed_auth_attempts: Union[int, str, None] = None,
    last_login: Optional[Union[datetime, str, None]] = None,
    hydrate: bool = False,
) -> Page[OAuthDeviceResponse]:
    """List all authorized devices.

    Args:
        sort_by: The column to sort by.
        page: The page of items.
        size: The maximum size of all pages.
        logical_operator: Which logical operator to use [and, or].
        id: Use the id of the code repository to filter by.
        created: Use to filter by time of creation.
        updated: Use the last updated date for filtering.
        expires: Use the expiration date for filtering.
        client_id: Use the client id for filtering.
        status: Use the status for filtering.
        user: Filter by user name/ID.
        trusted_device: Use the trusted device flag for filtering.
        failed_auth_attempts: Use the failed auth attempts for filtering.
        last_login: Use the last login date for filtering.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of authorized devices matching the filter.
    """
    filter_model = OAuthDeviceFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        expires=expires,
        client_id=client_id,
        user=user,
        status=status,
        trusted_device=trusted_device,
        failed_auth_attempts=failed_auth_attempts,
        last_login=last_login,
    )
    return self.zen_store.list_authorized_devices(
        filter_model=filter_model,
        hydrate=hydrate,
    )
list_builds(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, pipeline_id: Optional[Union[str, UUID]] = None, stack_id: Optional[Union[str, UUID]] = None, container_registry_id: Optional[Union[UUID, str]] = None, is_local: Optional[bool] = None, contains_code: Optional[bool] = None, zenml_version: Optional[str] = None, python_version: Optional[str] = None, checksum: Optional[str] = None, stack_checksum: Optional[str] = None, duration: Optional[Union[int, str]] = None, hydrate: bool = False) -> Page[PipelineBuildResponse]

List all builds.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of build to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
pipeline_id Optional[Union[str, UUID]]

The id of the pipeline to filter by.

None
stack_id Optional[Union[str, UUID]]

The id of the stack to filter by.

None
container_registry_id Optional[Union[UUID, str]]

The id of the container registry to filter by.

None
is_local Optional[bool]

Use to filter local builds.

None
contains_code Optional[bool]

Use to filter builds that contain code.

None
zenml_version Optional[str]

The version of ZenML to filter by.

None
python_version Optional[str]

The Python version to filter by.

None
checksum Optional[str]

The build checksum to filter by.

None
stack_checksum Optional[str]

The stack checksum to filter by.

None
duration Optional[Union[int, str]]

The duration of the build in seconds to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[PipelineBuildResponse]

A page with builds fitting the filter description

Source code in src/zenml/client.py
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
def list_builds(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    pipeline_id: Optional[Union[str, UUID]] = None,
    stack_id: Optional[Union[str, UUID]] = None,
    container_registry_id: Optional[Union[UUID, str]] = None,
    is_local: Optional[bool] = None,
    contains_code: Optional[bool] = None,
    zenml_version: Optional[str] = None,
    python_version: Optional[str] = None,
    checksum: Optional[str] = None,
    stack_checksum: Optional[str] = None,
    duration: Optional[Union[int, str]] = None,
    hydrate: bool = False,
) -> Page[PipelineBuildResponse]:
    """List all builds.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of build to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        pipeline_id: The id of the pipeline to filter by.
        stack_id: The id of the stack to filter by.
        container_registry_id: The id of the container registry to
            filter by.
        is_local: Use to filter local builds.
        contains_code: Use to filter builds that contain code.
        zenml_version: The version of ZenML to filter by.
        python_version: The Python version to filter by.
        checksum: The build checksum to filter by.
        stack_checksum: The stack checksum to filter by.
        duration: The duration of the build in seconds to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page with builds fitting the filter description
    """
    build_filter_model = PipelineBuildFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        project=project or self.active_project.id,
        user=user,
        pipeline_id=pipeline_id,
        stack_id=stack_id,
        container_registry_id=container_registry_id,
        is_local=is_local,
        contains_code=contains_code,
        zenml_version=zenml_version,
        python_version=python_version,
        checksum=checksum,
        stack_checksum=stack_checksum,
        duration=duration,
    )
    return self.zen_store.list_builds(
        build_filter_model=build_filter_model,
        hydrate=hydrate,
    )
list_code_repositories(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[CodeRepositoryResponse]

List all code repositories.

Parameters:

Name Type Description Default
sort_by str

The column to sort by.

'created'
page int

The page of items.

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages.

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or].

AND
id Optional[Union[UUID, str]]

Use the id of the code repository to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation.

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering.

None
name Optional[str]

The name of the code repository to filter by.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[CodeRepositoryResponse]

A page of code repositories matching the filter description.

Source code in src/zenml/client.py
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
def list_code_repositories(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[CodeRepositoryResponse]:
    """List all code repositories.

    Args:
        sort_by: The column to sort by.
        page: The page of items.
        size: The maximum size of all pages.
        logical_operator: Which logical operator to use [and, or].
        id: Use the id of the code repository to filter by.
        created: Use to filter by time of creation.
        updated: Use the last updated date for filtering.
        name: The name of the code repository to filter by.
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of code repositories matching the filter description.
    """
    filter_model = CodeRepositoryFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        name=name,
        project=project or self.active_project.id,
        user=user,
    )
    return self.zen_store.list_code_repositories(
        filter_model=filter_model,
        hydrate=hydrate,
    )
list_deployments(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, pipeline_id: Optional[Union[str, UUID]] = None, stack_id: Optional[Union[str, UUID]] = None, build_id: Optional[Union[str, UUID]] = None, template_id: Optional[Union[str, UUID]] = None, hydrate: bool = False) -> Page[PipelineDeploymentResponse]

List all deployments.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of build to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
pipeline_id Optional[Union[str, UUID]]

The id of the pipeline to filter by.

None
stack_id Optional[Union[str, UUID]]

The id of the stack to filter by.

None
build_id Optional[Union[str, UUID]]

The id of the build to filter by.

None
template_id Optional[Union[str, UUID]]

The ID of the template to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[PipelineDeploymentResponse]

A page with deployments fitting the filter description

Source code in src/zenml/client.py
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
def list_deployments(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    pipeline_id: Optional[Union[str, UUID]] = None,
    stack_id: Optional[Union[str, UUID]] = None,
    build_id: Optional[Union[str, UUID]] = None,
    template_id: Optional[Union[str, UUID]] = None,
    hydrate: bool = False,
) -> Page[PipelineDeploymentResponse]:
    """List all deployments.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of build to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        pipeline_id: The id of the pipeline to filter by.
        stack_id: The id of the stack to filter by.
        build_id: The id of the build to filter by.
        template_id: The ID of the template to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page with deployments fitting the filter description
    """
    deployment_filter_model = PipelineDeploymentFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        project=project or self.active_project.id,
        user=user,
        pipeline_id=pipeline_id,
        stack_id=stack_id,
        build_id=build_id,
        template_id=template_id,
    )
    return self.zen_store.list_deployments(
        deployment_filter_model=deployment_filter_model,
        hydrate=hydrate,
    )
list_event_sources(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, name: Optional[str] = None, flavor: Optional[str] = None, event_source_type: Optional[str] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[EventSourceResponse]

Lists all event_sources.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of event_sources to filter by.

None
created Optional[datetime]

Use to filter by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
name Optional[str]

The name of the event_source to filter by.

None
flavor Optional[str]

The flavor of the event_source to filter by.

None
event_source_type Optional[str]

The subtype of the event_source to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[EventSourceResponse]

A page of event_sources.

Source code in src/zenml/client.py
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
def list_event_sources(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    name: Optional[str] = None,
    flavor: Optional[str] = None,
    event_source_type: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[EventSourceResponse]:
    """Lists all event_sources.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of event_sources to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        name: The name of the event_source to filter by.
        flavor: The flavor of the event_source to filter by.
        event_source_type: The subtype of the event_source to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of event_sources.
    """
    event_source_filter_model = EventSourceFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        project=project or self.active_project.id,
        user=user,
        name=name,
        flavor=flavor,
        plugin_subtype=event_source_type,
        id=id,
        created=created,
        updated=updated,
    )
    return self.zen_store.list_event_sources(
        event_source_filter_model, hydrate=hydrate
    )
list_flavors(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, name: Optional[str] = None, type: Optional[str] = None, integration: Optional[str] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[FlavorResponse]

Fetches all the flavor models.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of flavors to filter by.

None
created Optional[datetime]

Use to flavors by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
name Optional[str]

The name of the flavor to filter by.

None
type Optional[str]

The type of the flavor to filter by.

None
integration Optional[str]

The integration of the flavor to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[FlavorResponse]

A list of all the flavor models.

Source code in src/zenml/client.py
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
def list_flavors(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    name: Optional[str] = None,
    type: Optional[str] = None,
    integration: Optional[str] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[FlavorResponse]:
    """Fetches all the flavor models.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of flavors to filter by.
        created: Use to flavors by time of creation
        updated: Use the last updated date for filtering
        user: Filter by user name/ID.
        name: The name of the flavor to filter by.
        type: The type of the flavor to filter by.
        integration: The integration of the flavor to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A list of all the flavor models.
    """
    flavor_filter_model = FlavorFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        user=user,
        name=name,
        type=type,
        integration=integration,
        id=id,
        created=created,
        updated=updated,
    )
    return self.zen_store.list_flavors(
        flavor_filter_model=flavor_filter_model, hydrate=hydrate
    )

Get model version to artifact links by filter in Model Control Plane.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
model_version_id Optional[Union[UUID, str]]

Use the model version id for filtering

None
artifact_version_id Optional[Union[UUID, str]]

Use the artifact id for filtering

None
artifact_name Optional[str]

Use the artifact name for filtering

None
only_data_artifacts Optional[bool]

Use to filter by data artifacts

None
only_model_artifacts Optional[bool]

Use to filter by model artifacts

None
only_deployment_artifacts Optional[bool]

Use to filter by deployment artifacts

None
has_custom_name Optional[bool]

Filter artifacts with/without custom names.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[ModelVersionArtifactResponse]

A page of all model version to artifact links.

Source code in src/zenml/client.py
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
def list_model_version_artifact_links(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    model_version_id: Optional[Union[UUID, str]] = None,
    artifact_version_id: Optional[Union[UUID, str]] = None,
    artifact_name: Optional[str] = None,
    only_data_artifacts: Optional[bool] = None,
    only_model_artifacts: Optional[bool] = None,
    only_deployment_artifacts: Optional[bool] = None,
    has_custom_name: Optional[bool] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[ModelVersionArtifactResponse]:
    """Get model version to artifact links by filter in Model Control Plane.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        model_version_id: Use the model version id for filtering
        artifact_version_id: Use the artifact id for filtering
        artifact_name: Use the artifact name for filtering
        only_data_artifacts: Use to filter by data artifacts
        only_model_artifacts: Use to filter by model artifacts
        only_deployment_artifacts: Use to filter by deployment artifacts
        has_custom_name: Filter artifacts with/without custom names.
        user: Filter by user name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of all model version to artifact links.
    """
    return self.zen_store.list_model_version_artifact_links(
        ModelVersionArtifactFilter(
            sort_by=sort_by,
            logical_operator=logical_operator,
            page=page,
            size=size,
            created=created,
            updated=updated,
            model_version_id=model_version_id,
            artifact_version_id=artifact_version_id,
            artifact_name=artifact_name,
            only_data_artifacts=only_data_artifacts,
            only_model_artifacts=only_model_artifacts,
            only_deployment_artifacts=only_deployment_artifacts,
            has_custom_name=has_custom_name,
            user=user,
        ),
        hydrate=hydrate,
    )

Get all model version to pipeline run links by filter.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
model_version_id Optional[Union[UUID, str]]

Use the model version id for filtering

None
pipeline_run_id Optional[Union[UUID, str]]

Use the pipeline run id for filtering

None
pipeline_run_name Optional[str]

Use the pipeline run name for filtering

None
user Optional[Union[UUID, str]]

Filter by user name or ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response

False

Returns:

Type Description
Page[ModelVersionPipelineRunResponse]

A page of all model version to pipeline run links.

Source code in src/zenml/client.py
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
def list_model_version_pipeline_run_links(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    model_version_id: Optional[Union[UUID, str]] = None,
    pipeline_run_id: Optional[Union[UUID, str]] = None,
    pipeline_run_name: Optional[str] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[ModelVersionPipelineRunResponse]:
    """Get all model version to pipeline run links by filter.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        model_version_id: Use the model version id for filtering
        pipeline_run_id: Use the pipeline run id for filtering
        pipeline_run_name: Use the pipeline run name for filtering
        user: Filter by user name or ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response

    Returns:
        A page of all model version to pipeline run links.
    """
    return self.zen_store.list_model_version_pipeline_run_links(
        ModelVersionPipelineRunFilter(
            sort_by=sort_by,
            logical_operator=logical_operator,
            page=page,
            size=size,
            created=created,
            updated=updated,
            model_version_id=model_version_id,
            pipeline_run_id=pipeline_run_id,
            pipeline_run_name=pipeline_run_name,
            user=user,
        ),
        hydrate=hydrate,
    )
list_model_versions(model_name_or_id: Union[str, UUID], sort_by: str = 'number', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, id: Optional[Union[UUID, str]] = None, number: Optional[int] = None, stage: Optional[Union[str, ModelStages]] = None, run_metadata: Optional[List[str]] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False, tag: Optional[str] = None, tags: Optional[List[str]] = None, project: Optional[Union[str, UUID]] = None) -> Page[ModelVersionResponse]

Get model versions by filter from Model Control Plane.

Parameters:

Name Type Description Default
model_name_or_id Union[str, UUID]

name or id of the model containing the model version.

required
sort_by str

The column to sort by

'number'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

name or id of the model version.

None
id Optional[Union[UUID, str]]

id of the model version.

None
number Optional[int]

number of the model version.

None
stage Optional[Union[str, ModelStages]]

stage of the model version.

None
run_metadata Optional[List[str]]

run metadata of the model version.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False
tag Optional[str]

The tag to filter by.

None
tags Optional[List[str]]

Tags to filter by.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
Page[ModelVersionResponse]

A page object with all model versions.

Source code in src/zenml/client.py
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
def list_model_versions(
    self,
    model_name_or_id: Union[str, UUID],
    sort_by: str = "number",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    id: Optional[Union[UUID, str]] = None,
    number: Optional[int] = None,
    stage: Optional[Union[str, ModelStages]] = None,
    run_metadata: Optional[List[str]] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
    tag: Optional[str] = None,
    tags: Optional[List[str]] = None,
    project: Optional[Union[str, UUID]] = None,
) -> Page[ModelVersionResponse]:
    """Get model versions by filter from Model Control Plane.

    Args:
        model_name_or_id: name or id of the model containing the model
            version.
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: name or id of the model version.
        id: id of the model version.
        number: number of the model version.
        stage: stage of the model version.
        run_metadata: run metadata of the model version.
        user: Filter by user name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.
        tag: The tag to filter by.
        tags: Tags to filter by.
        project: The project name/ID to filter by.

    Returns:
        A page object with all model versions.
    """
    model_version_filter_model = ModelVersionFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        created=created,
        updated=updated,
        name=name,
        id=id,
        number=number,
        stage=stage,
        run_metadata=run_metadata,
        tag=tag,
        tags=tags,
        user=user,
        model=model_name_or_id,
        project=project or self.active_project.id,
    )

    return self.zen_store.list_model_versions(
        model_version_filter_model=model_version_filter_model,
        hydrate=hydrate,
    )
list_models(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, id: Optional[Union[UUID, str]] = None, user: Optional[Union[UUID, str]] = None, project: Optional[Union[str, UUID]] = None, hydrate: bool = False, tag: Optional[str] = None, tags: Optional[List[str]] = None) -> Page[ModelResponse]

Get models by filter from Model Control Plane.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

The name of the model to filter by.

None
id Optional[Union[UUID, str]]

The id of the model to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False
tag Optional[str]

The tag of the model to filter by.

None
tags Optional[List[str]]

Tags to filter by.

None

Returns:

Type Description
Page[ModelResponse]

A page object with all models.

Source code in src/zenml/client.py
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
def list_models(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    id: Optional[Union[UUID, str]] = None,
    user: Optional[Union[UUID, str]] = None,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = False,
    tag: Optional[str] = None,
    tags: Optional[List[str]] = None,
) -> Page[ModelResponse]:
    """Get models by filter from Model Control Plane.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: The name of the model to filter by.
        id: The id of the model to filter by.
        user: Filter by user name/ID.
        project: The project name/ID to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.
        tag: The tag of the model to filter by.
        tags: Tags to filter by.

    Returns:
        A page object with all models.
    """
    filter = ModelFilter(
        name=name,
        id=id,
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        created=created,
        updated=updated,
        tag=tag,
        tags=tags,
        user=user,
        project=project or self.active_project.id,
    )

    return self.zen_store.list_models(
        model_filter_model=filter, hydrate=hydrate
    )
list_pipeline_runs(sort_by: str = 'desc:created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, project: Optional[Union[str, UUID]] = None, pipeline_id: Optional[Union[str, UUID]] = None, pipeline_name: Optional[str] = None, stack_id: Optional[Union[str, UUID]] = None, schedule_id: Optional[Union[str, UUID]] = None, build_id: Optional[Union[str, UUID]] = None, deployment_id: Optional[Union[str, UUID]] = None, code_repository_id: Optional[Union[str, UUID]] = None, template_id: Optional[Union[str, UUID]] = None, model_version_id: Optional[Union[str, UUID]] = None, orchestrator_run_id: Optional[str] = None, status: Optional[str] = None, start_time: Optional[Union[datetime, str]] = None, end_time: Optional[Union[datetime, str]] = None, unlisted: Optional[bool] = None, templatable: Optional[bool] = None, tag: Optional[str] = None, tags: Optional[List[str]] = None, user: Optional[Union[UUID, str]] = None, run_metadata: Optional[List[str]] = None, pipeline: Optional[Union[UUID, str]] = None, code_repository: Optional[Union[UUID, str]] = None, model: Optional[Union[UUID, str]] = None, stack: Optional[Union[UUID, str]] = None, stack_component: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[PipelineRunResponse]

List all pipeline runs.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'desc:created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

The id of the runs to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
pipeline_id Optional[Union[str, UUID]]

The id of the pipeline to filter by.

None
pipeline_name Optional[str]

DEPRECATED. Use pipeline instead to filter by pipeline name.

None
stack_id Optional[Union[str, UUID]]

The id of the stack to filter by.

None
schedule_id Optional[Union[str, UUID]]

The id of the schedule to filter by.

None
build_id Optional[Union[str, UUID]]

The id of the build to filter by.

None
deployment_id Optional[Union[str, UUID]]

The id of the deployment to filter by.

None
code_repository_id Optional[Union[str, UUID]]

The id of the code repository to filter by.

None
template_id Optional[Union[str, UUID]]

The ID of the template to filter by.

None
model_version_id Optional[Union[str, UUID]]

The ID of the model version to filter by.

None
orchestrator_run_id Optional[str]

The run id of the orchestrator to filter by.

None
name Optional[str]

The name of the run to filter by.

None
status Optional[str]

The status of the pipeline run

None
start_time Optional[Union[datetime, str]]

The start_time for the pipeline run

None
end_time Optional[Union[datetime, str]]

The end_time for the pipeline run

None
unlisted Optional[bool]

If the runs should be unlisted or not.

None
templatable Optional[bool]

If the runs should be templatable or not.

None
tag Optional[str]

Tag to filter by.

None
tags Optional[List[str]]

Tags to filter by.

None
user Optional[Union[UUID, str]]

The name/ID of the user to filter by.

None
run_metadata Optional[List[str]]

The run_metadata of the run to filter by.

None
pipeline Optional[Union[UUID, str]]

The name/ID of the pipeline to filter by.

None
code_repository Optional[Union[UUID, str]]

Filter by code repository name/ID.

None
model Optional[Union[UUID, str]]

Filter by model name/ID.

None
stack Optional[Union[UUID, str]]

Filter by stack name/ID.

None
stack_component Optional[Union[UUID, str]]

Filter by stack component name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[PipelineRunResponse]

A page with Pipeline Runs fitting the filter description

Source code in src/zenml/client.py
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
def list_pipeline_runs(
    self,
    sort_by: str = "desc:created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    pipeline_id: Optional[Union[str, UUID]] = None,
    pipeline_name: Optional[str] = None,
    stack_id: Optional[Union[str, UUID]] = None,
    schedule_id: Optional[Union[str, UUID]] = None,
    build_id: Optional[Union[str, UUID]] = None,
    deployment_id: Optional[Union[str, UUID]] = None,
    code_repository_id: Optional[Union[str, UUID]] = None,
    template_id: Optional[Union[str, UUID]] = None,
    model_version_id: Optional[Union[str, UUID]] = None,
    orchestrator_run_id: Optional[str] = None,
    status: Optional[str] = None,
    start_time: Optional[Union[datetime, str]] = None,
    end_time: Optional[Union[datetime, str]] = None,
    unlisted: Optional[bool] = None,
    templatable: Optional[bool] = None,
    tag: Optional[str] = None,
    tags: Optional[List[str]] = None,
    user: Optional[Union[UUID, str]] = None,
    run_metadata: Optional[List[str]] = None,
    pipeline: Optional[Union[UUID, str]] = None,
    code_repository: Optional[Union[UUID, str]] = None,
    model: Optional[Union[UUID, str]] = None,
    stack: Optional[Union[UUID, str]] = None,
    stack_component: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[PipelineRunResponse]:
    """List all pipeline runs.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: The id of the runs to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        project: The project name/ID to filter by.
        pipeline_id: The id of the pipeline to filter by.
        pipeline_name: DEPRECATED. Use `pipeline` instead to filter by
            pipeline name.
        stack_id: The id of the stack to filter by.
        schedule_id: The id of the schedule to filter by.
        build_id: The id of the build to filter by.
        deployment_id: The id of the deployment to filter by.
        code_repository_id: The id of the code repository to filter by.
        template_id: The ID of the template to filter by.
        model_version_id: The ID of the model version to filter by.
        orchestrator_run_id: The run id of the orchestrator to filter by.
        name: The name of the run to filter by.
        status: The status of the pipeline run
        start_time: The start_time for the pipeline run
        end_time: The end_time for the pipeline run
        unlisted: If the runs should be unlisted or not.
        templatable: If the runs should be templatable or not.
        tag: Tag to filter by.
        tags: Tags to filter by.
        user: The name/ID of the user to filter by.
        run_metadata: The run_metadata of the run to filter by.
        pipeline: The name/ID of the pipeline to filter by.
        code_repository: Filter by code repository name/ID.
        model: Filter by model name/ID.
        stack: Filter by stack name/ID.
        stack_component: Filter by stack component name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page with Pipeline Runs fitting the filter description
    """
    runs_filter_model = PipelineRunFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        name=name,
        project=project or self.active_project.id,
        pipeline_id=pipeline_id,
        pipeline_name=pipeline_name,
        schedule_id=schedule_id,
        build_id=build_id,
        deployment_id=deployment_id,
        code_repository_id=code_repository_id,
        template_id=template_id,
        model_version_id=model_version_id,
        orchestrator_run_id=orchestrator_run_id,
        stack_id=stack_id,
        status=status,
        start_time=start_time,
        end_time=end_time,
        tag=tag,
        tags=tags,
        unlisted=unlisted,
        user=user,
        run_metadata=run_metadata,
        pipeline=pipeline,
        code_repository=code_repository,
        stack=stack,
        model=model,
        stack_component=stack_component,
        templatable=templatable,
    )
    return self.zen_store.list_runs(
        runs_filter_model=runs_filter_model,
        hydrate=hydrate,
    )
list_pipelines(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, latest_run_status: Optional[str] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, tag: Optional[str] = None, tags: Optional[List[str]] = None, hydrate: bool = False) -> Page[PipelineResponse]

List all pipelines.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of pipeline to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

The name of the pipeline to filter by.

None
latest_run_status Optional[str]

Filter by the status of the latest run of a pipeline.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

The name/ID of the user to filter by.

None
tag Optional[str]

Tag to filter by.

None
tags Optional[List[str]]

Tags to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[PipelineResponse]

A page with Pipeline fitting the filter description

Source code in src/zenml/client.py
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
def list_pipelines(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    latest_run_status: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    tag: Optional[str] = None,
    tags: Optional[List[str]] = None,
    hydrate: bool = False,
) -> Page[PipelineResponse]:
    """List all pipelines.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of pipeline to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: The name of the pipeline to filter by.
        latest_run_status: Filter by the status of the latest run of a
            pipeline.
        project: The project name/ID to filter by.
        user: The name/ID of the user to filter by.
        tag: Tag to filter by.
        tags: Tags to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page with Pipeline fitting the filter description
    """
    pipeline_filter_model = PipelineFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        name=name,
        latest_run_status=latest_run_status,
        project=project or self.active_project.id,
        user=user,
        tag=tag,
        tags=tags,
    )
    return self.zen_store.list_pipelines(
        pipeline_filter_model=pipeline_filter_model,
        hydrate=hydrate,
    )
list_projects(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, display_name: Optional[str] = None, hydrate: bool = False) -> Page[ProjectResponse]

List all projects.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the project ID to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

Use the project name for filtering

None
display_name Optional[str]

Use the project display name for filtering

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[ProjectResponse]

Page of projects

Source code in src/zenml/client.py
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
def list_projects(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    display_name: Optional[str] = None,
    hydrate: bool = False,
) -> Page[ProjectResponse]:
    """List all projects.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the project ID to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: Use the project name for filtering
        display_name: Use the project display name for filtering
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        Page of projects
    """
    return self.zen_store.list_projects(
        ProjectFilter(
            sort_by=sort_by,
            page=page,
            size=size,
            logical_operator=logical_operator,
            id=id,
            created=created,
            updated=updated,
            name=name,
            display_name=display_name,
        ),
        hydrate=hydrate,
    )
list_run_steps(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, cache_key: Optional[str] = None, code_hash: Optional[str] = None, status: Optional[str] = None, start_time: Optional[Union[datetime, str]] = None, end_time: Optional[Union[datetime, str]] = None, pipeline_run_id: Optional[Union[str, UUID]] = None, deployment_id: Optional[Union[str, UUID]] = None, original_step_run_id: Optional[Union[str, UUID]] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, model_version_id: Optional[Union[str, UUID]] = None, model: Optional[Union[UUID, str]] = None, run_metadata: Optional[List[str]] = None, hydrate: bool = False) -> Page[StepRunResponse]

List all pipelines.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of runs to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
start_time Optional[Union[datetime, str]]

Use to filter by the time when the step started running

None
end_time Optional[Union[datetime, str]]

Use to filter by the time when the step finished running

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
pipeline_run_id Optional[Union[str, UUID]]

The id of the pipeline run to filter by.

None
deployment_id Optional[Union[str, UUID]]

The id of the deployment to filter by.

None
original_step_run_id Optional[Union[str, UUID]]

The id of the original step run to filter by.

None
model_version_id Optional[Union[str, UUID]]

The ID of the model version to filter by.

None
model Optional[Union[UUID, str]]

Filter by model name/ID.

None
name Optional[str]

The name of the step run to filter by.

None
cache_key Optional[str]

The cache key of the step run to filter by.

None
code_hash Optional[str]

The code hash of the step run to filter by.

None
status Optional[str]

The name of the run to filter by.

None
run_metadata Optional[List[str]]

Filter by run metadata.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[StepRunResponse]

A page with Pipeline fitting the filter description

Source code in src/zenml/client.py
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
def list_run_steps(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    cache_key: Optional[str] = None,
    code_hash: Optional[str] = None,
    status: Optional[str] = None,
    start_time: Optional[Union[datetime, str]] = None,
    end_time: Optional[Union[datetime, str]] = None,
    pipeline_run_id: Optional[Union[str, UUID]] = None,
    deployment_id: Optional[Union[str, UUID]] = None,
    original_step_run_id: Optional[Union[str, UUID]] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    model_version_id: Optional[Union[str, UUID]] = None,
    model: Optional[Union[UUID, str]] = None,
    run_metadata: Optional[List[str]] = None,
    hydrate: bool = False,
) -> Page[StepRunResponse]:
    """List all pipelines.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of runs to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        start_time: Use to filter by the time when the step started running
        end_time: Use to filter by the time when the step finished running
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        pipeline_run_id: The id of the pipeline run to filter by.
        deployment_id: The id of the deployment to filter by.
        original_step_run_id: The id of the original step run to filter by.
        model_version_id: The ID of the model version to filter by.
        model: Filter by model name/ID.
        name: The name of the step run to filter by.
        cache_key: The cache key of the step run to filter by.
        code_hash: The code hash of the step run to filter by.
        status: The name of the run to filter by.
        run_metadata: Filter by run metadata.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page with Pipeline fitting the filter description
    """
    step_run_filter_model = StepRunFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        cache_key=cache_key,
        code_hash=code_hash,
        pipeline_run_id=pipeline_run_id,
        deployment_id=deployment_id,
        original_step_run_id=original_step_run_id,
        status=status,
        created=created,
        updated=updated,
        start_time=start_time,
        end_time=end_time,
        name=name,
        project=project or self.active_project.id,
        user=user,
        model_version_id=model_version_id,
        model=model,
        run_metadata=run_metadata,
    )
    return self.zen_store.list_run_steps(
        step_run_filter_model=step_run_filter_model,
        hydrate=hydrate,
    )
list_run_templates(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, id: Optional[Union[UUID, str]] = None, name: Optional[str] = None, hidden: Optional[bool] = False, tag: Optional[str] = None, project: Optional[Union[str, UUID]] = None, pipeline_id: Optional[Union[str, UUID]] = None, build_id: Optional[Union[str, UUID]] = None, stack_id: Optional[Union[str, UUID]] = None, code_repository_id: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, pipeline: Optional[Union[UUID, str]] = None, stack: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[RunTemplateResponse]

Get a page of run templates.

Parameters:

Name Type Description Default
sort_by str

The column to sort by.

'created'
page int

The page of items.

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages.

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or].

AND
created Optional[Union[datetime, str]]

Filter by the creation date.

None
updated Optional[Union[datetime, str]]

Filter by the last updated date.

None
id Optional[Union[UUID, str]]

Filter by run template ID.

None
name Optional[str]

Filter by run template name.

None
hidden Optional[bool]

Filter by run template hidden status.

False
tag Optional[str]

Filter by run template tags.

None
project Optional[Union[str, UUID]]

Filter by project name/ID.

None
pipeline_id Optional[Union[str, UUID]]

Filter by pipeline ID.

None
build_id Optional[Union[str, UUID]]

Filter by build ID.

None
stack_id Optional[Union[str, UUID]]

Filter by stack ID.

None
code_repository_id Optional[Union[str, UUID]]

Filter by code repository ID.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
pipeline Optional[Union[UUID, str]]

Filter by pipeline name/ID.

None
stack Optional[Union[UUID, str]]

Filter by stack name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[RunTemplateResponse]

A page of run templates.

Source code in src/zenml/client.py
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
def list_run_templates(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    id: Optional[Union[UUID, str]] = None,
    name: Optional[str] = None,
    hidden: Optional[bool] = False,
    tag: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    pipeline_id: Optional[Union[str, UUID]] = None,
    build_id: Optional[Union[str, UUID]] = None,
    stack_id: Optional[Union[str, UUID]] = None,
    code_repository_id: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    pipeline: Optional[Union[UUID, str]] = None,
    stack: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[RunTemplateResponse]:
    """Get a page of run templates.

    Args:
        sort_by: The column to sort by.
        page: The page of items.
        size: The maximum size of all pages.
        logical_operator: Which logical operator to use [and, or].
        created: Filter by the creation date.
        updated: Filter by the last updated date.
        id: Filter by run template ID.
        name: Filter by run template name.
        hidden: Filter by run template hidden status.
        tag: Filter by run template tags.
        project: Filter by project name/ID.
        pipeline_id: Filter by pipeline ID.
        build_id: Filter by build ID.
        stack_id: Filter by stack ID.
        code_repository_id: Filter by code repository ID.
        user: Filter by user name/ID.
        pipeline: Filter by pipeline name/ID.
        stack: Filter by stack name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of run templates.
    """
    filter = RunTemplateFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        created=created,
        updated=updated,
        id=id,
        name=name,
        hidden=hidden,
        tag=tag,
        project=project,
        pipeline_id=pipeline_id,
        build_id=build_id,
        stack_id=stack_id,
        code_repository_id=code_repository_id,
        user=user,
        pipeline=pipeline,
        stack=stack,
    )

    return self.zen_store.list_run_templates(
        template_filter_model=filter, hydrate=hydrate
    )
list_schedules(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, pipeline_id: Optional[Union[str, UUID]] = None, orchestrator_id: Optional[Union[str, UUID]] = None, active: Optional[Union[str, bool]] = None, cron_expression: Optional[str] = None, start_time: Optional[Union[datetime, str]] = None, end_time: Optional[Union[datetime, str]] = None, interval_second: Optional[int] = None, catchup: Optional[Union[str, bool]] = None, hydrate: bool = False, run_once_start_time: Optional[Union[datetime, str]] = None) -> Page[ScheduleResponse]

List schedules.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of stacks to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

The name of the stack to filter by.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
pipeline_id Optional[Union[str, UUID]]

The id of the pipeline to filter by.

None
orchestrator_id Optional[Union[str, UUID]]

The id of the orchestrator to filter by.

None
active Optional[Union[str, bool]]

Use to filter by active status.

None
cron_expression Optional[str]

Use to filter by cron expression.

None
start_time Optional[Union[datetime, str]]

Use to filter by start time.

None
end_time Optional[Union[datetime, str]]

Use to filter by end time.

None
interval_second Optional[int]

Use to filter by interval second.

None
catchup Optional[Union[str, bool]]

Use to filter by catchup.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False
run_once_start_time Optional[Union[datetime, str]]

Use to filter by run once start time.

None

Returns:

Type Description
Page[ScheduleResponse]

A list of schedules.

Source code in src/zenml/client.py
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
def list_schedules(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    pipeline_id: Optional[Union[str, UUID]] = None,
    orchestrator_id: Optional[Union[str, UUID]] = None,
    active: Optional[Union[str, bool]] = None,
    cron_expression: Optional[str] = None,
    start_time: Optional[Union[datetime, str]] = None,
    end_time: Optional[Union[datetime, str]] = None,
    interval_second: Optional[int] = None,
    catchup: Optional[Union[str, bool]] = None,
    hydrate: bool = False,
    run_once_start_time: Optional[Union[datetime, str]] = None,
) -> Page[ScheduleResponse]:
    """List schedules.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of stacks to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: The name of the stack to filter by.
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        pipeline_id: The id of the pipeline to filter by.
        orchestrator_id: The id of the orchestrator to filter by.
        active: Use to filter by active status.
        cron_expression: Use to filter by cron expression.
        start_time: Use to filter by start time.
        end_time: Use to filter by end time.
        interval_second: Use to filter by interval second.
        catchup: Use to filter by catchup.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.
        run_once_start_time: Use to filter by run once start time.

    Returns:
        A list of schedules.
    """
    schedule_filter_model = ScheduleFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        name=name,
        project=project or self.active_project.id,
        user=user,
        pipeline_id=pipeline_id,
        orchestrator_id=orchestrator_id,
        active=active,
        cron_expression=cron_expression,
        start_time=start_time,
        end_time=end_time,
        interval_second=interval_second,
        catchup=catchup,
        run_once_start_time=run_once_start_time,
    )
    return self.zen_store.list_schedules(
        schedule_filter_model=schedule_filter_model,
        hydrate=hydrate,
    )
list_secrets(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, name: Optional[str] = None, private: Optional[bool] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[SecretResponse]

Fetches all the secret models.

The returned secrets do not contain the secret values. To get the secret values, use get_secret individually for each secret.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of secrets to filter by.

None
created Optional[datetime]

Use to secrets by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
name Optional[str]

The name of the secret to filter by.

None
private Optional[bool]

The private status of the secret to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[SecretResponse]

A list of all the secret models without the secret values.

Raises:

Type Description
NotImplementedError

If centralized secrets management is not enabled.

Source code in src/zenml/client.py
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
def list_secrets(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    name: Optional[str] = None,
    private: Optional[bool] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[SecretResponse]:
    """Fetches all the secret models.

    The returned secrets do not contain the secret values. To get the
    secret values, use `get_secret` individually for each secret.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of secrets to filter by.
        created: Use to secrets by time of creation
        updated: Use the last updated date for filtering
        name: The name of the secret to filter by.
        private: The private status of the secret to filter by.
        user: Filter by user name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A list of all the secret models without the secret values.

    Raises:
        NotImplementedError: If centralized secrets management is not
            enabled.
    """
    secret_filter_model = SecretFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        user=user,
        name=name,
        private=private,
        id=id,
        created=created,
        updated=updated,
    )
    try:
        return self.zen_store.list_secrets(
            secret_filter_model=secret_filter_model,
            hydrate=hydrate,
        )
    except NotImplementedError:
        raise NotImplementedError(
            "centralized secrets management is not supported or explicitly "
            "disabled in the target ZenML deployment."
        )
list_secrets_by_private_status(private: bool, hydrate: bool = False) -> Page[SecretResponse]

Fetches the list of secrets with a given private status.

The returned secrets do not contain the secret values. To get the secret values, use get_secret individually for each secret.

Parameters:

Name Type Description Default
private bool

The private status of the secrets to search for.

required
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[SecretResponse]

The list of secrets in the given scope without the secret values.

Source code in src/zenml/client.py
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
def list_secrets_by_private_status(
    self,
    private: bool,
    hydrate: bool = False,
) -> Page[SecretResponse]:
    """Fetches the list of secrets with a given private status.

    The returned secrets do not contain the secret values. To get the
    secret values, use `get_secret` individually for each secret.

    Args:
        private: The private status of the secrets to search for.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The list of secrets in the given scope without the secret values.
    """
    logger.debug(f"Fetching the secrets with private status '{private}'.")

    return self.list_secrets(private=private, hydrate=hydrate)
list_service_accounts(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, description: Optional[str] = None, active: Optional[bool] = None, hydrate: bool = False) -> Page[ServiceAccountResponse]

List all service accounts.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of stacks to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

Use the service account name for filtering

None
description Optional[str]

Use the service account description for filtering

None
active Optional[bool]

Use the service account active status for filtering

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[ServiceAccountResponse]

The list of service accounts matching the filter description.

Source code in src/zenml/client.py
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
def list_service_accounts(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    description: Optional[str] = None,
    active: Optional[bool] = None,
    hydrate: bool = False,
) -> Page[ServiceAccountResponse]:
    """List all service accounts.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of stacks to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: Use the service account name for filtering
        description: Use the service account description for filtering
        active: Use the service account active status for filtering
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The list of service accounts matching the filter description.
    """
    return self.zen_store.list_service_accounts(
        ServiceAccountFilter(
            sort_by=sort_by,
            page=page,
            size=size,
            logical_operator=logical_operator,
            id=id,
            created=created,
            updated=updated,
            name=name,
            description=description,
            active=active,
        ),
        hydrate=hydrate,
    )
list_service_connector_resources(connector_type: Optional[str] = None, resource_type: Optional[str] = None, resource_id: Optional[str] = None) -> List[ServiceConnectorResourcesModel]

List resources that can be accessed by service connectors.

Parameters:

Name Type Description Default
connector_type Optional[str]

The type of service connector to filter by.

None
resource_type Optional[str]

The type of resource to filter by.

None
resource_id Optional[str]

The ID of a particular resource instance to filter by.

None

Returns:

Type Description
List[ServiceConnectorResourcesModel]

The matching list of resources that available service

List[ServiceConnectorResourcesModel]

connectors have access to.

Source code in src/zenml/client.py
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
def list_service_connector_resources(
    self,
    connector_type: Optional[str] = None,
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
) -> List[ServiceConnectorResourcesModel]:
    """List resources that can be accessed by service connectors.

    Args:
        connector_type: The type of service connector to filter by.
        resource_type: The type of resource to filter by.
        resource_id: The ID of a particular resource instance to filter by.

    Returns:
        The matching list of resources that available service
        connectors have access to.
    """
    return self.zen_store.list_service_connector_resources(
        ServiceConnectorFilter(
            connector_type=connector_type,
            resource_type=resource_type,
            resource_id=resource_id,
        )
    )
list_service_connector_types(connector_type: Optional[str] = None, resource_type: Optional[str] = None, auth_method: Optional[str] = None) -> List[ServiceConnectorTypeModel]

Get a list of service connector types.

Parameters:

Name Type Description Default
connector_type Optional[str]

Filter by connector type.

None
resource_type Optional[str]

Filter by resource type.

None
auth_method Optional[str]

Filter by authentication method.

None

Returns:

Type Description
List[ServiceConnectorTypeModel]

List of service connector types.

Source code in src/zenml/client.py
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
def list_service_connector_types(
    self,
    connector_type: Optional[str] = None,
    resource_type: Optional[str] = None,
    auth_method: Optional[str] = None,
) -> List[ServiceConnectorTypeModel]:
    """Get a list of service connector types.

    Args:
        connector_type: Filter by connector type.
        resource_type: Filter by resource type.
        auth_method: Filter by authentication method.

    Returns:
        List of service connector types.
    """
    return self.zen_store.list_service_connector_types(
        connector_type=connector_type,
        resource_type=resource_type,
        auth_method=auth_method,
    )
list_service_connectors(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, name: Optional[str] = None, connector_type: Optional[str] = None, auth_method: Optional[str] = None, resource_type: Optional[str] = None, resource_id: Optional[str] = None, user: Optional[Union[UUID, str]] = None, labels: Optional[Dict[str, Optional[str]]] = None, secret_id: Optional[Union[str, UUID]] = None, hydrate: bool = False) -> Page[ServiceConnectorResponse]

Lists all registered service connectors.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

The id of the service connector to filter by.

None
created Optional[datetime]

Filter service connectors by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
connector_type Optional[str]

Use the service connector type for filtering

None
auth_method Optional[str]

Use the service connector auth method for filtering

None
resource_type Optional[str]

Filter service connectors by the resource type that they can give access to.

None
resource_id Optional[str]

Filter service connectors by the resource id that they can give access to.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
name Optional[str]

The name of the service connector to filter by.

None
labels Optional[Dict[str, Optional[str]]]

The labels of the service connector to filter by.

None
secret_id Optional[Union[str, UUID]]

Filter by the id of the secret that is referenced by the service connector.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[ServiceConnectorResponse]

A page of service connectors.

Source code in src/zenml/client.py
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
def list_service_connectors(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    name: Optional[str] = None,
    connector_type: Optional[str] = None,
    auth_method: Optional[str] = None,
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
    user: Optional[Union[UUID, str]] = None,
    labels: Optional[Dict[str, Optional[str]]] = None,
    secret_id: Optional[Union[str, UUID]] = None,
    hydrate: bool = False,
) -> Page[ServiceConnectorResponse]:
    """Lists all registered service connectors.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: The id of the service connector to filter by.
        created: Filter service connectors by time of creation
        updated: Use the last updated date for filtering
        connector_type: Use the service connector type for filtering
        auth_method: Use the service connector auth method for filtering
        resource_type: Filter service connectors by the resource type that
            they can give access to.
        resource_id: Filter service connectors by the resource id that
            they can give access to.
        user: Filter by user name/ID.
        name: The name of the service connector to filter by.
        labels: The labels of the service connector to filter by.
        secret_id: Filter by the id of the secret that is referenced by the
            service connector.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of service connectors.
    """
    connector_filter_model = ServiceConnectorFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        user=user,
        name=name,
        connector_type=connector_type,
        auth_method=auth_method,
        resource_type=resource_type,
        resource_id=resource_id,
        id=id,
        created=created,
        updated=updated,
        labels=labels,
        secret_id=secret_id,
    )
    return self.zen_store.list_service_connectors(
        filter_model=connector_filter_model,
        hydrate=hydrate,
    )
list_services(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, type: Optional[str] = None, flavor: Optional[str] = None, user: Optional[Union[UUID, str]] = None, project: Optional[Union[str, UUID]] = None, hydrate: bool = False, running: Optional[bool] = None, service_name: Optional[str] = None, pipeline_name: Optional[str] = None, pipeline_run_id: Optional[str] = None, pipeline_step_name: Optional[str] = None, model_version_id: Optional[Union[str, UUID]] = None, config: Optional[Dict[str, Any]] = None) -> Page[ServiceResponse]

List all services.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of services to filter by.

None
created Optional[datetime]

Use to filter by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
type Optional[str]

Use the service type for filtering

None
flavor Optional[str]

Use the service flavor for filtering

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False
running Optional[bool]

Use the running status for filtering

None
pipeline_name Optional[str]

Use the pipeline name for filtering

None
service_name Optional[str]

Use the service name or model name for filtering

None
pipeline_step_name Optional[str]

Use the pipeline step name for filtering

None
model_version_id Optional[Union[str, UUID]]

Use the model version id for filtering

None
config Optional[Dict[str, Any]]

Use the config for filtering

None
pipeline_run_id Optional[str]

Use the pipeline run id for filtering

None

Returns:

Type Description
Page[ServiceResponse]

The Service response page.

Source code in src/zenml/client.py
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
def list_services(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    type: Optional[str] = None,
    flavor: Optional[str] = None,
    user: Optional[Union[UUID, str]] = None,
    project: Optional[Union[str, UUID]] = None,
    hydrate: bool = False,
    running: Optional[bool] = None,
    service_name: Optional[str] = None,
    pipeline_name: Optional[str] = None,
    pipeline_run_id: Optional[str] = None,
    pipeline_step_name: Optional[str] = None,
    model_version_id: Optional[Union[str, UUID]] = None,
    config: Optional[Dict[str, Any]] = None,
) -> Page[ServiceResponse]:
    """List all services.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of services to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        type: Use the service type for filtering
        flavor: Use the service flavor for filtering
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.
        running: Use the running status for filtering
        pipeline_name: Use the pipeline name for filtering
        service_name: Use the service name or model name
            for filtering
        pipeline_step_name: Use the pipeline step name for filtering
        model_version_id: Use the model version id for filtering
        config: Use the config for filtering
        pipeline_run_id: Use the pipeline run id for filtering

    Returns:
        The Service response page.
    """
    service_filter_model = ServiceFilter(
        sort_by=sort_by,
        page=page,
        size=size,
        logical_operator=logical_operator,
        id=id,
        created=created,
        updated=updated,
        type=type,
        flavor=flavor,
        project=project or self.active_project.id,
        user=user,
        running=running,
        name=service_name,
        pipeline_name=pipeline_name,
        pipeline_step_name=pipeline_step_name,
        model_version_id=model_version_id,
        pipeline_run_id=pipeline_run_id,
        config=dict_to_bytes(config) if config else None,
    )
    return self.zen_store.list_services(
        filter_model=service_filter_model, hydrate=hydrate
    )
list_stack_components(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, name: Optional[str] = None, flavor: Optional[str] = None, type: Optional[str] = None, connector_id: Optional[Union[str, UUID]] = None, stack_id: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[ComponentResponse]

Lists all registered stack components.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of component to filter by.

None
created Optional[datetime]

Use to component by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
flavor Optional[str]

Use the component flavor for filtering

None
type Optional[str]

Use the component type for filtering

None
connector_id Optional[Union[str, UUID]]

The id of the connector to filter by.

None
stack_id Optional[Union[str, UUID]]

The id of the stack to filter by.

None
name Optional[str]

The name of the component to filter by.

None
user Optional[Union[UUID, str]]

The ID of name of the user to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[ComponentResponse]

A page of stack components.

Source code in src/zenml/client.py
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
def list_stack_components(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    name: Optional[str] = None,
    flavor: Optional[str] = None,
    type: Optional[str] = None,
    connector_id: Optional[Union[str, UUID]] = None,
    stack_id: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[ComponentResponse]:
    """Lists all registered stack components.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of component to filter by.
        created: Use to component by time of creation
        updated: Use the last updated date for filtering
        flavor: Use the component flavor for filtering
        type: Use the component type for filtering
        connector_id: The id of the connector to filter by.
        stack_id: The id of the stack to filter by.
        name: The name of the component to filter by.
        user: The ID of name of the user to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of stack components.
    """
    component_filter_model = ComponentFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        connector_id=connector_id,
        stack_id=stack_id,
        name=name,
        flavor=flavor,
        type=type,
        id=id,
        created=created,
        updated=updated,
        user=user,
    )

    return self.zen_store.list_stack_components(
        component_filter_model=component_filter_model, hydrate=hydrate
    )
list_stacks(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, description: Optional[str] = None, component_id: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, component: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[StackResponse]

Lists all stacks.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of stacks to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
description Optional[str]

Use the stack description for filtering

None
component_id Optional[Union[str, UUID]]

The id of the component to filter by.

None
user Optional[Union[UUID, str]]

The name/ID of the user to filter by.

None
component Optional[Union[UUID, str]]

The name/ID of the component to filter by.

None
name Optional[str]

The name of the stack to filter by.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[StackResponse]

A page of stacks.

Source code in src/zenml/client.py
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
def list_stacks(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    description: Optional[str] = None,
    component_id: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    component: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[StackResponse]:
    """Lists all stacks.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of stacks to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        description: Use the stack description for filtering
        component_id: The id of the component to filter by.
        user: The name/ID of the user to filter by.
        component: The name/ID of the component to filter by.
        name: The name of the stack to filter by.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of stacks.
    """
    stack_filter_model = StackFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        component_id=component_id,
        user=user,
        component=component,
        name=name,
        description=description,
        id=id,
        created=created,
        updated=updated,
    )
    return self.zen_store.list_stacks(stack_filter_model, hydrate=hydrate)
list_tags(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, user: Optional[Union[UUID, str]] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, color: Optional[Union[str, ColorVariants]] = None, exclusive: Optional[bool] = None, resource_type: Optional[Union[str, TaggableResourceTypes]] = None, hydrate: bool = False) -> Page[TagResponse]

Get tags by filter.

Parameters:

Name Type Description Default
sort_by str

The column to sort by.

'created'
page int

The page of items.

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or].

AND
id Optional[Union[UUID, str]]

Use the id of stacks to filter by.

None
user Optional[Union[UUID, str]]

Use the user to filter by.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation.

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering.

None
name Optional[str]

The name of the tag.

None
color Optional[Union[str, ColorVariants]]

The color of the tag.

None
exclusive Optional[bool]

Flag indicating whether the tag is exclusive.

None
resource_type Optional[Union[str, TaggableResourceTypes]]

Filter tags associated with a specific resource type.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[TagResponse]

A page of all tags.

Source code in src/zenml/client.py
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
def list_tags(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    user: Optional[Union[UUID, str]] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    color: Optional[Union[str, ColorVariants]] = None,
    exclusive: Optional[bool] = None,
    resource_type: Optional[Union[str, TaggableResourceTypes]] = None,
    hydrate: bool = False,
) -> Page[TagResponse]:
    """Get tags by filter.

    Args:
        sort_by: The column to sort by.
        page: The page of items.
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or].
        id: Use the id of stacks to filter by.
        user: Use the user to filter by.
        created: Use to filter by time of creation.
        updated: Use the last updated date for filtering.
        name: The name of the tag.
        color: The color of the tag.
        exclusive: Flag indicating whether the tag is exclusive.
        resource_type: Filter tags associated with a specific resource type.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of all tags.
    """
    return self.zen_store.list_tags(
        tag_filter_model=TagFilter(
            sort_by=sort_by,
            page=page,
            size=size,
            logical_operator=logical_operator,
            id=id,
            user=user,
            created=created,
            updated=updated,
            name=name,
            color=color,
            exclusive=exclusive,
            resource_type=resource_type,
        ),
        hydrate=hydrate,
    )
list_trigger_executions(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, trigger_id: Optional[UUID] = None, user: Optional[Union[UUID, str]] = None, project: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[TriggerExecutionResponse]

List all trigger executions matching the given filter criteria.

Parameters:

Name Type Description Default
sort_by str

The column to sort by.

'created'
page int

The page of items.

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages.

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or].

AND
trigger_id Optional[UUID]

ID of the trigger to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
project Optional[Union[UUID, str]]

Filter by project name/ID.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[TriggerExecutionResponse]

A list of all trigger executions matching the filter criteria.

Source code in src/zenml/client.py
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
def list_trigger_executions(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    trigger_id: Optional[UUID] = None,
    user: Optional[Union[UUID, str]] = None,
    project: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[TriggerExecutionResponse]:
    """List all trigger executions matching the given filter criteria.

    Args:
        sort_by: The column to sort by.
        page: The page of items.
        size: The maximum size of all pages.
        logical_operator: Which logical operator to use [and, or].
        trigger_id: ID of the trigger to filter by.
        user: Filter by user name/ID.
        project: Filter by project name/ID.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A list of all trigger executions matching the filter criteria.
    """
    filter_model = TriggerExecutionFilter(
        trigger_id=trigger_id,
        sort_by=sort_by,
        page=page,
        size=size,
        user=user,
        logical_operator=logical_operator,
        project=project or self.active_project.id,
    )
    return self.zen_store.list_trigger_executions(
        trigger_execution_filter_model=filter_model, hydrate=hydrate
    )
list_triggers(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, created: Optional[datetime] = None, updated: Optional[datetime] = None, name: Optional[str] = None, event_source_id: Optional[UUID] = None, action_id: Optional[UUID] = None, event_source_flavor: Optional[str] = None, event_source_subtype: Optional[str] = None, action_flavor: Optional[str] = None, action_subtype: Optional[str] = None, project: Optional[Union[str, UUID]] = None, user: Optional[Union[UUID, str]] = None, hydrate: bool = False) -> Page[TriggerResponse]

Lists all triggers.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of triggers to filter by.

None
created Optional[datetime]

Use to filter by time of creation

None
updated Optional[datetime]

Use the last updated date for filtering

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
user Optional[Union[UUID, str]]

Filter by user name/ID.

None
name Optional[str]

The name of the trigger to filter by.

None
event_source_id Optional[UUID]

The event source associated with the trigger.

None
action_id Optional[UUID]

The action associated with the trigger.

None
event_source_flavor Optional[str]

Flavor of the event source associated with the trigger.

None
event_source_subtype Optional[str]

Type of the event source associated with the trigger.

None
action_flavor Optional[str]

Flavor of the action associated with the trigger.

None
action_subtype Optional[str]

Type of the action associated with the trigger.

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[TriggerResponse]

A page of triggers.

Source code in src/zenml/client.py
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
@_fail_for_sql_zen_store
def list_triggers(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    created: Optional[datetime] = None,
    updated: Optional[datetime] = None,
    name: Optional[str] = None,
    event_source_id: Optional[UUID] = None,
    action_id: Optional[UUID] = None,
    event_source_flavor: Optional[str] = None,
    event_source_subtype: Optional[str] = None,
    action_flavor: Optional[str] = None,
    action_subtype: Optional[str] = None,
    project: Optional[Union[str, UUID]] = None,
    user: Optional[Union[UUID, str]] = None,
    hydrate: bool = False,
) -> Page[TriggerResponse]:
    """Lists all triggers.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of triggers to filter by.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        project: The project name/ID to filter by.
        user: Filter by user name/ID.
        name: The name of the trigger to filter by.
        event_source_id: The event source associated with the trigger.
        action_id: The action associated with the trigger.
        event_source_flavor: Flavor of the event source associated with the
            trigger.
        event_source_subtype: Type of the event source associated with the
            trigger.
        action_flavor: Flavor of the action associated with the trigger.
        action_subtype: Type of the action associated with the trigger.
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        A page of triggers.
    """
    trigger_filter_model = TriggerFilter(
        page=page,
        size=size,
        sort_by=sort_by,
        logical_operator=logical_operator,
        project=project or self.active_project.id,
        user=user,
        name=name,
        event_source_id=event_source_id,
        action_id=action_id,
        event_source_flavor=event_source_flavor,
        event_source_subtype=event_source_subtype,
        action_flavor=action_flavor,
        action_subtype=action_subtype,
        id=id,
        created=created,
        updated=updated,
    )
    return self.zen_store.list_triggers(
        trigger_filter_model, hydrate=hydrate
    )
list_users(sort_by: str = 'created', page: int = PAGINATION_STARTING_PAGE, size: int = PAGE_SIZE_DEFAULT, logical_operator: LogicalOperators = LogicalOperators.AND, id: Optional[Union[UUID, str]] = None, external_user_id: Optional[str] = None, created: Optional[Union[datetime, str]] = None, updated: Optional[Union[datetime, str]] = None, name: Optional[str] = None, full_name: Optional[str] = None, email: Optional[str] = None, active: Optional[bool] = None, email_opted_in: Optional[bool] = None, hydrate: bool = False) -> Page[UserResponse]

List all users.

Parameters:

Name Type Description Default
sort_by str

The column to sort by

'created'
page int

The page of items

PAGINATION_STARTING_PAGE
size int

The maximum size of all pages

PAGE_SIZE_DEFAULT
logical_operator LogicalOperators

Which logical operator to use [and, or]

AND
id Optional[Union[UUID, str]]

Use the id of stacks to filter by.

None
external_user_id Optional[str]

Use the external user id for filtering.

None
created Optional[Union[datetime, str]]

Use to filter by time of creation

None
updated Optional[Union[datetime, str]]

Use the last updated date for filtering

None
name Optional[str]

Use the username for filtering

None
full_name Optional[str]

Use the user full name for filtering

None
email Optional[str]

Use the user email for filtering

None
active Optional[bool]

User the user active status for filtering

None
email_opted_in Optional[bool]

Use the user opt in status for filtering

None
hydrate bool

Flag deciding whether to hydrate the output model(s) by including metadata fields in the response.

False

Returns:

Type Description
Page[UserResponse]

The User

Source code in src/zenml/client.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
def list_users(
    self,
    sort_by: str = "created",
    page: int = PAGINATION_STARTING_PAGE,
    size: int = PAGE_SIZE_DEFAULT,
    logical_operator: LogicalOperators = LogicalOperators.AND,
    id: Optional[Union[UUID, str]] = None,
    external_user_id: Optional[str] = None,
    created: Optional[Union[datetime, str]] = None,
    updated: Optional[Union[datetime, str]] = None,
    name: Optional[str] = None,
    full_name: Optional[str] = None,
    email: Optional[str] = None,
    active: Optional[bool] = None,
    email_opted_in: Optional[bool] = None,
    hydrate: bool = False,
) -> Page[UserResponse]:
    """List all users.

    Args:
        sort_by: The column to sort by
        page: The page of items
        size: The maximum size of all pages
        logical_operator: Which logical operator to use [and, or]
        id: Use the id of stacks to filter by.
        external_user_id: Use the external user id for filtering.
        created: Use to filter by time of creation
        updated: Use the last updated date for filtering
        name: Use the username for filtering
        full_name: Use the user full name for filtering
        email: Use the user email for filtering
        active: User the user active status for filtering
        email_opted_in: Use the user opt in status for filtering
        hydrate: Flag deciding whether to hydrate the output model(s)
            by including metadata fields in the response.

    Returns:
        The User
    """
    return self.zen_store.list_users(
        UserFilter(
            sort_by=sort_by,
            page=page,
            size=size,
            logical_operator=logical_operator,
            id=id,
            external_user_id=external_user_id,
            created=created,
            updated=updated,
            name=name,
            full_name=full_name,
            email=email,
            active=active,
            email_opted_in=email_opted_in,
        ),
        hydrate=hydrate,
    )
login_service_connector(name_id_or_prefix: Union[UUID, str], resource_type: Optional[str] = None, resource_id: Optional[str] = None, **kwargs: Any) -> ServiceConnector

Use a service connector to authenticate a local client/SDK.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, id or prefix of the service connector to use.

required
resource_type Optional[str]

The type of the resource to connect to. If not provided, the resource type from the service connector configuration will be used.

None
resource_id Optional[str]

The ID of a particular resource instance to configure the local client to connect to. If the connector instance is already configured with a resource ID that is not the same or equivalent to the one requested, a ValueError exception is raised. May be omitted for connectors and resource types that do not support multiple resource instances.

None
kwargs Any

Additional implementation specific keyword arguments to use to configure the client.

{}

Returns:

Type Description
ServiceConnector

The service connector client instance that was used to configure the

ServiceConnector

local client.

Source code in src/zenml/client.py
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
def login_service_connector(
    self,
    name_id_or_prefix: Union[UUID, str],
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
    **kwargs: Any,
) -> "ServiceConnector":
    """Use a service connector to authenticate a local client/SDK.

    Args:
        name_id_or_prefix: The name, id or prefix of the service connector
            to use.
        resource_type: The type of the resource to connect to. If not
            provided, the resource type from the service connector
            configuration will be used.
        resource_id: The ID of a particular resource instance to configure
            the local client to connect to. If the connector instance is
            already configured with a resource ID that is not the same or
            equivalent to the one requested, a `ValueError` exception is
            raised. May be omitted for connectors and resource types that do
            not support multiple resource instances.
        kwargs: Additional implementation specific keyword arguments to use
            to configure the client.

    Returns:
        The service connector client instance that was used to configure the
        local client.
    """
    connector_client = self.get_service_connector_client(
        name_id_or_prefix=name_id_or_prefix,
        resource_type=resource_type,
        resource_id=resource_id,
        verify=False,
    )

    connector_client.configure_local_client(
        **kwargs,
    )

    return connector_client
prune_artifacts(only_versions: bool = True, delete_from_artifact_store: bool = False, project: Optional[Union[str, UUID]] = None) -> None

Delete all unused artifacts and artifact versions.

Parameters:

Name Type Description Default
only_versions bool

Only delete artifact versions, keeping artifacts

True
delete_from_artifact_store bool

Delete data from artifact metadata

False
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None
Source code in src/zenml/client.py
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
def prune_artifacts(
    self,
    only_versions: bool = True,
    delete_from_artifact_store: bool = False,
    project: Optional[Union[str, UUID]] = None,
) -> None:
    """Delete all unused artifacts and artifact versions.

    Args:
        only_versions: Only delete artifact versions, keeping artifacts
        delete_from_artifact_store: Delete data from artifact metadata
        project: The project name/ID to filter by.
    """
    if delete_from_artifact_store:
        unused_artifact_versions = depaginate(
            self.list_artifact_versions,
            only_unused=True,
            project=project,
        )
        for unused_artifact_version in unused_artifact_versions:
            self._delete_artifact_from_artifact_store(
                unused_artifact_version
            )

    project = project or self.active_project.id

    self.zen_store.prune_artifact_versions(
        project_name_or_id=project, only_versions=only_versions
    )
    logger.info("All unused artifacts and artifact versions deleted.")
restore_secrets(ignore_errors: bool = False, delete_secrets: bool = False) -> None

Restore all secrets from the configured backup secrets store.

Parameters:

Name Type Description Default
ignore_errors bool

Whether to ignore individual errors during the restore process and attempt to restore all secrets.

False
delete_secrets bool

Whether to delete the secrets that have been successfully restored from the backup secrets store. Setting this flag effectively moves all secrets from the backup secrets store to the primary secrets store.

False
Source code in src/zenml/client.py
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
def restore_secrets(
    self,
    ignore_errors: bool = False,
    delete_secrets: bool = False,
) -> None:
    """Restore all secrets from the configured backup secrets store.

    Args:
        ignore_errors: Whether to ignore individual errors during the
            restore process and attempt to restore all secrets.
        delete_secrets: Whether to delete the secrets that have been
            successfully restored from the backup secrets store. Setting
            this flag effectively moves all secrets from the backup secrets
            store to the primary secrets store.
    """
    self.zen_store.restore_secrets(
        ignore_errors=ignore_errors, delete_secrets=delete_secrets
    )
rotate_api_key(service_account_name_id_or_prefix: Union[str, UUID], name_id_or_prefix: Union[UUID, str], retain_period_minutes: int = 0, set_key: bool = False) -> APIKeyResponse

Rotate an API key.

Parameters:

Name Type Description Default
service_account_name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the service account to rotate the API key for.

required
name_id_or_prefix Union[UUID, str]

Name, ID or prefix of the API key to update.

required
retain_period_minutes int

The number of minutes to retain the old API key for. If set to 0, the old API key will be invalidated.

0
set_key bool

Whether to set the rotated API key as the active API key.

False

Returns:

Type Description
APIKeyResponse

The updated API key.

Source code in src/zenml/client.py
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
def rotate_api_key(
    self,
    service_account_name_id_or_prefix: Union[str, UUID],
    name_id_or_prefix: Union[UUID, str],
    retain_period_minutes: int = 0,
    set_key: bool = False,
) -> APIKeyResponse:
    """Rotate an API key.

    Args:
        service_account_name_id_or_prefix: The name, ID or prefix of the
            service account to rotate the API key for.
        name_id_or_prefix: Name, ID or prefix of the API key to update.
        retain_period_minutes: The number of minutes to retain the old API
            key for. If set to 0, the old API key will be invalidated.
        set_key: Whether to set the rotated API key as the active API key.

    Returns:
        The updated API key.
    """
    api_key = self.get_api_key(
        service_account_name_id_or_prefix=service_account_name_id_or_prefix,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
    )
    rotate_request = APIKeyRotateRequest(
        retain_period_minutes=retain_period_minutes
    )
    new_key = self.zen_store.rotate_api_key(
        service_account_id=api_key.service_account.id,
        api_key_name_or_id=api_key.id,
        rotate_request=rotate_request,
    )
    assert new_key.key is not None
    if set_key:
        self.set_api_key(key=new_key.key)

    return new_key
set_active_project(project_name_or_id: Union[str, UUID]) -> ProjectResponse

Set the project for the local client.

Parameters:

Name Type Description Default
project_name_or_id Union[str, UUID]

The name or ID of the project to set active.

required

Returns:

Type Description
ProjectResponse

The model of the active project.

Source code in src/zenml/client.py
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
def set_active_project(
    self, project_name_or_id: Union[str, UUID]
) -> "ProjectResponse":
    """Set the project for the local client.

    Args:
        project_name_or_id: The name or ID of the project to set active.

    Returns:
        The model of the active project.
    """
    project = self.zen_store.get_project(
        project_name_or_id=project_name_or_id
    )  # raises KeyError
    if self._config:
        self._config.set_active_project(project)
        # Sanitize the client configuration to reflect the current
        # settings
        self._sanitize_config()
    else:
        # set the active project globally only if the client doesn't use
        # a local configuration
        GlobalConfiguration().set_active_project(project)
    return project
set_api_key(key: str) -> None

Configure the client with an API key.

Parameters:

Name Type Description Default
key str

The API key to use.

required

Raises:

Type Description
NotImplementedError

If the client is not connected to a ZenML server.

Source code in src/zenml/client.py
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
def set_api_key(self, key: str) -> None:
    """Configure the client with an API key.

    Args:
        key: The API key to use.

    Raises:
        NotImplementedError: If the client is not connected to a ZenML
            server.
    """
    from zenml.login.credentials_store import get_credentials_store
    from zenml.zen_stores.rest_zen_store import RestZenStore

    zen_store = self.zen_store
    if not zen_store.TYPE == StoreType.REST:
        raise NotImplementedError(
            "API key configuration is only supported if connected to a "
            "ZenML server."
        )

    credentials_store = get_credentials_store()
    assert isinstance(zen_store, RestZenStore)

    credentials_store.set_api_key(server_url=zen_store.url, api_key=key)

    # Force a re-authentication to start using the new API key
    # right away.
    zen_store.authenticate(force=True)
trigger_pipeline(pipeline_name_or_id: Union[str, UUID, None] = None, run_configuration: Union[PipelineRunConfiguration, Dict[str, Any], None] = None, config_path: Optional[str] = None, template_id: Optional[UUID] = None, stack_name_or_id: Union[str, UUID, None] = None, synchronous: bool = False, project: Optional[Union[str, UUID]] = None) -> PipelineRunResponse

Trigger a pipeline from the server.

Usage examples: * Run the latest runnable template for a pipeline:

Client().trigger_pipeline(pipeline_name_or_id=<NAME>)
  • Run the latest runnable template for a pipeline on a specific stack:
Client().trigger_pipeline(
    pipeline_name_or_id=<NAME>,
    stack_name_or_id=<STACK_NAME_OR_ID>
)
  • Run a specific template:
Client().trigger_pipeline(template_id=<ID>)

Parameters:

Name Type Description Default
pipeline_name_or_id Union[str, UUID, None]

Name or ID of the pipeline. If this is specified, the latest runnable template for this pipeline will be used for the run (Runnable here means that the build associated with the template is for a remote stack without any custom flavor stack components). If not given, a template ID that should be run needs to be specified.

None
run_configuration Union[PipelineRunConfiguration, Dict[str, Any], None]

Configuration for the run. Either this or a path to a config file can be specified.

None
config_path Optional[str]

Path to a YAML configuration file. This file will be parsed as a PipelineRunConfiguration object. Either this or the configuration in code can be specified.

None
template_id Optional[UUID]

ID of the template to run. Either this or a pipeline can be specified.

None
stack_name_or_id Union[str, UUID, None]

Name or ID of the stack on which to run the pipeline. If not specified, this method will try to find a runnable template on any stack.

None
synchronous bool

If True, this method will wait until the triggered run is finished.

False
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Raises:

Type Description
RuntimeError

If triggering the pipeline failed.

Returns:

Type Description
PipelineRunResponse

Model of the pipeline run.

Source code in src/zenml/client.py
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
@_fail_for_sql_zen_store
def trigger_pipeline(
    self,
    pipeline_name_or_id: Union[str, UUID, None] = None,
    run_configuration: Union[
        PipelineRunConfiguration, Dict[str, Any], None
    ] = None,
    config_path: Optional[str] = None,
    template_id: Optional[UUID] = None,
    stack_name_or_id: Union[str, UUID, None] = None,
    synchronous: bool = False,
    project: Optional[Union[str, UUID]] = None,
) -> PipelineRunResponse:
    """Trigger a pipeline from the server.

    Usage examples:
    * Run the latest runnable template for a pipeline:
    ```python
    Client().trigger_pipeline(pipeline_name_or_id=<NAME>)
    ```
    * Run the latest runnable template for a pipeline on a specific stack:
    ```python
    Client().trigger_pipeline(
        pipeline_name_or_id=<NAME>,
        stack_name_or_id=<STACK_NAME_OR_ID>
    )
    ```
    * Run a specific template:
    ```python
    Client().trigger_pipeline(template_id=<ID>)
    ```

    Args:
        pipeline_name_or_id: Name or ID of the pipeline. If this is
            specified, the latest runnable template for this pipeline will
            be used for the run (Runnable here means that the build
            associated with the template is for a remote stack without any
            custom flavor stack components). If not given, a template ID
            that should be run needs to be specified.
        run_configuration: Configuration for the run. Either this or a
            path to a config file can be specified.
        config_path: Path to a YAML configuration file. This file will be
            parsed as a `PipelineRunConfiguration` object. Either this or
            the configuration in code can be specified.
        template_id: ID of the template to run. Either this or a pipeline
            can be specified.
        stack_name_or_id: Name or ID of the stack on which to run the
            pipeline. If not specified, this method will try to find a
            runnable template on any stack.
        synchronous: If `True`, this method will wait until the triggered
            run is finished.
        project: The project name/ID to filter by.

    Raises:
        RuntimeError: If triggering the pipeline failed.

    Returns:
        Model of the pipeline run.
    """
    from zenml.pipelines.run_utils import (
        validate_run_config_is_runnable_from_server,
        validate_stack_is_runnable_from_server,
        wait_for_pipeline_run_to_finish,
    )

    if Counter([template_id, pipeline_name_or_id])[None] != 1:
        raise RuntimeError(
            "You need to specify exactly one of pipeline or template "
            "to trigger."
        )

    if run_configuration and config_path:
        raise RuntimeError(
            "Only config path or runtime configuration can be specified."
        )

    if config_path:
        run_configuration = PipelineRunConfiguration.from_yaml(config_path)

    if isinstance(run_configuration, Dict):
        run_configuration = PipelineRunConfiguration.model_validate(
            run_configuration
        )

    if run_configuration:
        validate_run_config_is_runnable_from_server(run_configuration)

    if template_id:
        if stack_name_or_id:
            logger.warning(
                "Template ID and stack specified, ignoring the stack and "
                "using stack associated with the template instead."
            )

        run = self.zen_store.run_template(
            template_id=template_id,
            run_configuration=run_configuration,
        )
    else:
        assert pipeline_name_or_id
        pipeline = self.get_pipeline(name_id_or_prefix=pipeline_name_or_id)

        stack = None
        if stack_name_or_id:
            stack = self.get_stack(
                stack_name_or_id, allow_name_prefix_match=False
            )
            validate_stack_is_runnable_from_server(
                zen_store=self.zen_store, stack=stack
            )

        templates = depaginate(
            self.list_run_templates,
            pipeline_id=pipeline.id,
            stack_id=stack.id if stack else None,
            project=project or pipeline.project.id,
        )

        for template in templates:
            if not template.build:
                continue

            stack = template.build.stack
            if not stack:
                continue

            try:
                validate_stack_is_runnable_from_server(
                    zen_store=self.zen_store, stack=stack
                )
            except ValueError:
                continue

            run = self.zen_store.run_template(
                template_id=template.id,
                run_configuration=run_configuration,
            )
            break
        else:
            raise RuntimeError(
                "Unable to find a runnable template for the given stack "
                "and pipeline."
            )

    if synchronous:
        run = wait_for_pipeline_run_to_finish(run_id=run.id)

    return run
update_action(name_id_or_prefix: Union[UUID, str], name: Optional[str] = None, description: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, service_account_id: Optional[UUID] = None, auth_window: Optional[int] = None, project: Optional[Union[str, UUID]] = None) -> ActionResponse

Update an action.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, id or prefix of the action to update.

required
name Optional[str]

The new name of the action.

None
description Optional[str]

The new description of the action.

None
configuration Optional[Dict[str, Any]]

The new configuration of the action.

None
service_account_id Optional[UUID]

The new service account that is used to execute the action.

None
auth_window Optional[int]

The new time window in minutes for which the service account is authorized to execute the action. Set this to 0 to authorize the service account indefinitely (not recommended).

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
ActionResponse

The updated action.

Source code in src/zenml/client.py
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
@_fail_for_sql_zen_store
def update_action(
    self,
    name_id_or_prefix: Union[UUID, str],
    name: Optional[str] = None,
    description: Optional[str] = None,
    configuration: Optional[Dict[str, Any]] = None,
    service_account_id: Optional[UUID] = None,
    auth_window: Optional[int] = None,
    project: Optional[Union[str, UUID]] = None,
) -> ActionResponse:
    """Update an action.

    Args:
        name_id_or_prefix: The name, id or prefix of the action to update.
        name: The new name of the action.
        description: The new description of the action.
        configuration: The new configuration of the action.
        service_account_id: The new service account that is used to execute
            the action.
        auth_window: The new time window in minutes for which the service
            account is authorized to execute the action. Set this to 0 to
            authorize the service account indefinitely (not recommended).
        project: The project name/ID to filter by.

    Returns:
        The updated action.
    """
    action = self.get_action(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )

    update_model = ActionUpdate(
        name=name,
        description=description,
        configuration=configuration,
        service_account_id=service_account_id,
        auth_window=auth_window,
    )

    return self.zen_store.update_action(
        action_id=action.id,
        action_update=update_model,
    )
update_api_key(service_account_name_id_or_prefix: Union[str, UUID], name_id_or_prefix: Union[UUID, str], name: Optional[str] = None, description: Optional[str] = None, active: Optional[bool] = None) -> APIKeyResponse

Update an API key.

Parameters:

Name Type Description Default
service_account_name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the service account to update the API key for.

required
name_id_or_prefix Union[UUID, str]

Name, ID or prefix of the API key to update.

required
name Optional[str]

New name of the API key.

None
description Optional[str]

New description of the API key.

None
active Optional[bool]

Whether the API key is active or not.

None

Returns:

Type Description
APIKeyResponse

The updated API key.

Source code in src/zenml/client.py
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
def update_api_key(
    self,
    service_account_name_id_or_prefix: Union[str, UUID],
    name_id_or_prefix: Union[UUID, str],
    name: Optional[str] = None,
    description: Optional[str] = None,
    active: Optional[bool] = None,
) -> APIKeyResponse:
    """Update an API key.

    Args:
        service_account_name_id_or_prefix: The name, ID or prefix of the
            service account to update the API key for.
        name_id_or_prefix: Name, ID or prefix of the API key to update.
        name: New name of the API key.
        description: New description of the API key.
        active: Whether the API key is active or not.

    Returns:
        The updated API key.
    """
    api_key = self.get_api_key(
        service_account_name_id_or_prefix=service_account_name_id_or_prefix,
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
    )
    update = APIKeyUpdate(
        name=name, description=description, active=active
    )
    return self.zen_store.update_api_key(
        service_account_id=api_key.service_account.id,
        api_key_name_or_id=api_key.id,
        api_key_update=update,
    )
update_artifact(name_id_or_prefix: Union[str, UUID], new_name: Optional[str] = None, add_tags: Optional[List[str]] = None, remove_tags: Optional[List[str]] = None, has_custom_name: Optional[bool] = None, project: Optional[Union[str, UUID]] = None) -> ArtifactResponse

Update an artifact.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the artifact to update.

required
new_name Optional[str]

The new name of the artifact.

None
add_tags Optional[List[str]]

Tags to add to the artifact.

None
remove_tags Optional[List[str]]

Tags to remove from the artifact.

None
has_custom_name Optional[bool]

Whether the artifact has a custom name.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
ArtifactResponse

The updated artifact.

Source code in src/zenml/client.py
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
def update_artifact(
    self,
    name_id_or_prefix: Union[str, UUID],
    new_name: Optional[str] = None,
    add_tags: Optional[List[str]] = None,
    remove_tags: Optional[List[str]] = None,
    has_custom_name: Optional[bool] = None,
    project: Optional[Union[str, UUID]] = None,
) -> ArtifactResponse:
    """Update an artifact.

    Args:
        name_id_or_prefix: The name, ID or prefix of the artifact to update.
        new_name: The new name of the artifact.
        add_tags: Tags to add to the artifact.
        remove_tags: Tags to remove from the artifact.
        has_custom_name: Whether the artifact has a custom name.
        project: The project name/ID to filter by.

    Returns:
        The updated artifact.
    """
    artifact = self.get_artifact(
        name_id_or_prefix=name_id_or_prefix,
        project=project,
    )
    artifact_update = ArtifactUpdate(
        name=new_name,
        add_tags=add_tags,
        remove_tags=remove_tags,
        has_custom_name=has_custom_name,
    )
    return self.zen_store.update_artifact(
        artifact_id=artifact.id, artifact_update=artifact_update
    )
update_artifact_version(name_id_or_prefix: Union[str, UUID], version: Optional[str] = None, add_tags: Optional[List[str]] = None, remove_tags: Optional[List[str]] = None, project: Optional[Union[str, UUID]] = None) -> ArtifactVersionResponse

Update an artifact version.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, ID or prefix of the artifact to update.

required
version Optional[str]

The version of the artifact to update. Only used if name_id_or_prefix is the name of the artifact. If not specified, the latest version is updated.

None
add_tags Optional[List[str]]

Tags to add to the artifact version.

None
remove_tags Optional[List[str]]

Tags to remove from the artifact version.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
ArtifactVersionResponse

The updated artifact version.

Source code in src/zenml/client.py
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
def update_artifact_version(
    self,
    name_id_or_prefix: Union[str, UUID],
    version: Optional[str] = None,
    add_tags: Optional[List[str]] = None,
    remove_tags: Optional[List[str]] = None,
    project: Optional[Union[str, UUID]] = None,
) -> ArtifactVersionResponse:
    """Update an artifact version.

    Args:
        name_id_or_prefix: The name, ID or prefix of the artifact to update.
        version: The version of the artifact to update. Only used if
            `name_id_or_prefix` is the name of the artifact. If not
            specified, the latest version is updated.
        add_tags: Tags to add to the artifact version.
        remove_tags: Tags to remove from the artifact version.
        project: The project name/ID to filter by.

    Returns:
        The updated artifact version.
    """
    artifact_version = self.get_artifact_version(
        name_id_or_prefix=name_id_or_prefix,
        version=version,
        project=project,
    )
    artifact_version_update = ArtifactVersionUpdate(
        add_tags=add_tags, remove_tags=remove_tags
    )
    return self.zen_store.update_artifact_version(
        artifact_version_id=artifact_version.id,
        artifact_version_update=artifact_version_update,
    )
update_authorized_device(id_or_prefix: Union[UUID, str], locked: Optional[bool] = None) -> OAuthDeviceResponse

Update an authorized device.

Parameters:

Name Type Description Default
id_or_prefix Union[UUID, str]

The ID or ID prefix of the authorized device.

required
locked Optional[bool]

Whether to lock or unlock the authorized device.

None

Returns:

Type Description
OAuthDeviceResponse

The updated authorized device.

Source code in src/zenml/client.py
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
def update_authorized_device(
    self,
    id_or_prefix: Union[UUID, str],
    locked: Optional[bool] = None,
) -> OAuthDeviceResponse:
    """Update an authorized device.

    Args:
        id_or_prefix: The ID or ID prefix of the authorized device.
        locked: Whether to lock or unlock the authorized device.

    Returns:
        The updated authorized device.
    """
    device = self.get_authorized_device(
        id_or_prefix=id_or_prefix, allow_id_prefix_match=False
    )
    return self.zen_store.update_authorized_device(
        device_id=device.id,
        update=OAuthDeviceUpdate(
            locked=locked,
        ),
    )
update_code_repository(name_id_or_prefix: Union[UUID, str], name: Optional[str] = None, description: Optional[str] = None, logo_url: Optional[str] = None, config: Optional[Dict[str, Any]] = None, project: Optional[Union[str, UUID]] = None) -> CodeRepositoryResponse

Update a code repository.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

Name, ID or prefix of the code repository to update.

required
name Optional[str]

New name of the code repository.

None
description Optional[str]

New description of the code repository.

None
logo_url Optional[str]

New logo URL of the code repository.

None
config Optional[Dict[str, Any]]

New configuration options for the code repository. Will be used to update the existing configuration values. To remove values from the existing configuration, set the value for that key to None.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
CodeRepositoryResponse

The updated code repository.

Source code in src/zenml/client.py
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
def update_code_repository(
    self,
    name_id_or_prefix: Union[UUID, str],
    name: Optional[str] = None,
    description: Optional[str] = None,
    logo_url: Optional[str] = None,
    config: Optional[Dict[str, Any]] = None,
    project: Optional[Union[str, UUID]] = None,
) -> CodeRepositoryResponse:
    """Update a code repository.

    Args:
        name_id_or_prefix: Name, ID or prefix of the code repository to
            update.
        name: New name of the code repository.
        description: New description of the code repository.
        logo_url: New logo URL of the code repository.
        config: New configuration options for the code repository. Will
            be used to update the existing configuration values. To remove
            values from the existing configuration, set the value for that
            key to `None`.
        project: The project name/ID to filter by.

    Returns:
        The updated code repository.
    """
    repo = self.get_code_repository(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )
    update = CodeRepositoryUpdate(
        name=name, description=description, logo_url=logo_url
    )
    if config is not None:
        combined_config = repo.config
        combined_config.update(config)
        combined_config = {
            k: v for k, v in combined_config.items() if v is not None
        }

        self._validate_code_repository_config(
            source=repo.source, config=combined_config
        )
        update.config = combined_config

    return self.zen_store.update_code_repository(
        code_repository_id=repo.id, update=update
    )
update_event_source(name_id_or_prefix: Union[UUID, str], name: Optional[str] = None, description: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, rotate_secret: Optional[bool] = None, is_active: Optional[bool] = None, project: Optional[Union[str, UUID]] = None) -> EventSourceResponse

Updates an event_source.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, id or prefix of the event_source to update.

required
name Optional[str]

the new name of the event_source.

None
description Optional[str]

the new description of the event_source.

None
configuration Optional[Dict[str, Any]]

The event source configuration.

None
rotate_secret Optional[bool]

Allows rotating of secret, if true, the response will contain the new secret value

None
is_active Optional[bool]

Optional[bool] = Allows for activation/deactivating the event source

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
EventSourceResponse

The model of the updated event_source.

Raises:

Type Description
EntityExistsError

If the event_source name is already taken.

Source code in src/zenml/client.py
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
@_fail_for_sql_zen_store
def update_event_source(
    self,
    name_id_or_prefix: Union[UUID, str],
    name: Optional[str] = None,
    description: Optional[str] = None,
    configuration: Optional[Dict[str, Any]] = None,
    rotate_secret: Optional[bool] = None,
    is_active: Optional[bool] = None,
    project: Optional[Union[str, UUID]] = None,
) -> EventSourceResponse:
    """Updates an event_source.

    Args:
        name_id_or_prefix: The name, id or prefix of the event_source to update.
        name: the new name of the event_source.
        description: the new description of the event_source.
        configuration: The event source configuration.
        rotate_secret: Allows rotating of secret, if true, the response will
            contain the new secret value
        is_active: Optional[bool] = Allows for activation/deactivating the
            event source
        project: The project name/ID to filter by.

    Returns:
        The model of the updated event_source.

    Raises:
        EntityExistsError: If the event_source name is already taken.
    """
    # First, get the eve
    event_source = self.get_event_source(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )

    # Create the update model
    update_model = EventSourceUpdate(
        name=name,
        description=description,
        configuration=configuration,
        rotate_secret=rotate_secret,
        is_active=is_active,
    )

    if name:
        if self.list_event_sources(name=name):
            raise EntityExistsError(
                "There are already existing event_sources with the name "
                f"'{name}'."
            )

    updated_event_source = self.zen_store.update_event_source(
        event_source_id=event_source.id,
        event_source_update=update_model,
    )
    return updated_event_source
update_model(model_name_or_id: Union[str, UUID], name: Optional[str] = None, license: Optional[str] = None, description: Optional[str] = None, audience: Optional[str] = None, use_cases: Optional[str] = None, limitations: Optional[str] = None, trade_offs: Optional[str] = None, ethics: Optional[str] = None, add_tags: Optional[List[str]] = None, remove_tags: Optional[List[str]] = None, save_models_to_registry: Optional[bool] = None, project: Optional[Union[str, UUID]] = None) -> ModelResponse

Updates an existing model in Model Control Plane.

Parameters:

Name Type Description Default
model_name_or_id Union[str, UUID]

name or id of the model to be deleted.

required
name Optional[str]

The name of the model.

None
license Optional[str]

The license under which the model is created.

None
description Optional[str]

The description of the model.

None
audience Optional[str]

The target audience of the model.

None
use_cases Optional[str]

The use cases of the model.

None
limitations Optional[str]

The known limitations of the model.

None
trade_offs Optional[str]

The tradeoffs of the model.

None
ethics Optional[str]

The ethical implications of the model.

None
add_tags Optional[List[str]]

Tags to add to the model.

None
remove_tags Optional[List[str]]

Tags to remove from to the model.

None
save_models_to_registry Optional[bool]

Whether to save the model to the registry.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
ModelResponse

The updated model.

Source code in src/zenml/client.py
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
def update_model(
    self,
    model_name_or_id: Union[str, UUID],
    name: Optional[str] = None,
    license: Optional[str] = None,
    description: Optional[str] = None,
    audience: Optional[str] = None,
    use_cases: Optional[str] = None,
    limitations: Optional[str] = None,
    trade_offs: Optional[str] = None,
    ethics: Optional[str] = None,
    add_tags: Optional[List[str]] = None,
    remove_tags: Optional[List[str]] = None,
    save_models_to_registry: Optional[bool] = None,
    project: Optional[Union[str, UUID]] = None,
) -> ModelResponse:
    """Updates an existing model in Model Control Plane.

    Args:
        model_name_or_id: name or id of the model to be deleted.
        name: The name of the model.
        license: The license under which the model is created.
        description: The description of the model.
        audience: The target audience of the model.
        use_cases: The use cases of the model.
        limitations: The known limitations of the model.
        trade_offs: The tradeoffs of the model.
        ethics: The ethical implications of the model.
        add_tags: Tags to add to the model.
        remove_tags: Tags to remove from to the model.
        save_models_to_registry: Whether to save the model to the
            registry.
        project: The project name/ID to filter by.

    Returns:
        The updated model.
    """
    model = self.get_model(
        model_name_or_id=model_name_or_id, project=project
    )
    return self.zen_store.update_model(
        model_id=model.id,
        model_update=ModelUpdate(
            name=name,
            license=license,
            description=description,
            audience=audience,
            use_cases=use_cases,
            limitations=limitations,
            trade_offs=trade_offs,
            ethics=ethics,
            add_tags=add_tags,
            remove_tags=remove_tags,
            save_models_to_registry=save_models_to_registry,
        ),
    )
update_model_version(model_name_or_id: Union[str, UUID], version_name_or_id: Union[str, UUID], stage: Optional[Union[str, ModelStages]] = None, force: bool = False, name: Optional[str] = None, description: Optional[str] = None, add_tags: Optional[List[str]] = None, remove_tags: Optional[List[str]] = None, project: Optional[Union[str, UUID]] = None) -> ModelVersionResponse

Get all model versions by filter.

Parameters:

Name Type Description Default
model_name_or_id Union[str, UUID]

The name or ID of the model containing model version.

required
version_name_or_id Union[str, UUID]

The name or ID of model version to be updated.

required
stage Optional[Union[str, ModelStages]]

Target model version stage to be set.

None
force bool

Whether existing model version in target stage should be silently archived or an error should be raised.

False
name Optional[str]

Target model version name to be set.

None
description Optional[str]

Target model version description to be set.

None
add_tags Optional[List[str]]

Tags to add to the model version.

None
remove_tags Optional[List[str]]

Tags to remove from to the model version.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
ModelVersionResponse

An updated model version.

Source code in src/zenml/client.py
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
def update_model_version(
    self,
    model_name_or_id: Union[str, UUID],
    version_name_or_id: Union[str, UUID],
    stage: Optional[Union[str, ModelStages]] = None,
    force: bool = False,
    name: Optional[str] = None,
    description: Optional[str] = None,
    add_tags: Optional[List[str]] = None,
    remove_tags: Optional[List[str]] = None,
    project: Optional[Union[str, UUID]] = None,
) -> ModelVersionResponse:
    """Get all model versions by filter.

    Args:
        model_name_or_id: The name or ID of the model containing model version.
        version_name_or_id: The name or ID of model version to be updated.
        stage: Target model version stage to be set.
        force: Whether existing model version in target stage should be
            silently archived or an error should be raised.
        name: Target model version name to be set.
        description: Target model version description to be set.
        add_tags: Tags to add to the model version.
        remove_tags: Tags to remove from to the model version.
        project: The project name/ID to filter by.

    Returns:
        An updated model version.
    """
    if not is_valid_uuid(model_name_or_id):
        model = self.get_model(model_name_or_id, project=project)
        model_name_or_id = model.id
        project = project or model.project.id
    if not is_valid_uuid(version_name_or_id):
        version_name_or_id = self.get_model_version(
            model_name_or_id, version_name_or_id, project=project
        ).id

    return self.zen_store.update_model_version(
        model_version_id=version_name_or_id,  # type:ignore[arg-type]
        model_version_update_model=ModelVersionUpdate(
            stage=stage,
            force=force,
            name=name,
            description=description,
            add_tags=add_tags,
            remove_tags=remove_tags,
        ),
    )
update_project(name_id_or_prefix: Optional[Union[UUID, str]], new_name: Optional[str] = None, new_display_name: Optional[str] = None, new_description: Optional[str] = None) -> ProjectResponse

Update a project.

Parameters:

Name Type Description Default
name_id_or_prefix Optional[Union[UUID, str]]

Name, ID or prefix of the project to update.

required
new_name Optional[str]

New name of the project.

None
new_display_name Optional[str]

New display name of the project.

None
new_description Optional[str]

New description of the project.

None

Returns:

Type Description
ProjectResponse

The updated project.

Source code in src/zenml/client.py
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
def update_project(
    self,
    name_id_or_prefix: Optional[Union[UUID, str]],
    new_name: Optional[str] = None,
    new_display_name: Optional[str] = None,
    new_description: Optional[str] = None,
) -> ProjectResponse:
    """Update a project.

    Args:
        name_id_or_prefix: Name, ID or prefix of the project to update.
        new_name: New name of the project.
        new_display_name: New display name of the project.
        new_description: New description of the project.

    Returns:
        The updated project.
    """
    project = self.get_project(
        name_id_or_prefix=name_id_or_prefix, allow_name_prefix_match=False
    )
    project_update = ProjectUpdate(
        name=new_name or project.name,
        display_name=new_display_name or project.display_name,
    )
    if new_description:
        project_update.description = new_description
    return self.zen_store.update_project(
        project_id=project.id,
        project_update=project_update,
    )
update_run_template(name_id_or_prefix: Union[str, UUID], name: Optional[str] = None, description: Optional[str] = None, hidden: Optional[bool] = None, add_tags: Optional[List[str]] = None, remove_tags: Optional[List[str]] = None, project: Optional[Union[str, UUID]] = None) -> RunTemplateResponse

Update a run template.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

Name/ID/ID prefix of the template to update.

required
name Optional[str]

The new name of the run template.

None
description Optional[str]

The new description of the run template.

None
hidden Optional[bool]

The new hidden status of the run template.

None
add_tags Optional[List[str]]

Tags to add to the run template.

None
remove_tags Optional[List[str]]

Tags to remove from the run template.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
RunTemplateResponse

The updated run template.

Source code in src/zenml/client.py
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
def update_run_template(
    self,
    name_id_or_prefix: Union[str, UUID],
    name: Optional[str] = None,
    description: Optional[str] = None,
    hidden: Optional[bool] = None,
    add_tags: Optional[List[str]] = None,
    remove_tags: Optional[List[str]] = None,
    project: Optional[Union[str, UUID]] = None,
) -> RunTemplateResponse:
    """Update a run template.

    Args:
        name_id_or_prefix: Name/ID/ID prefix of the template to update.
        name: The new name of the run template.
        description: The new description of the run template.
        hidden: The new hidden status of the run template.
        add_tags: Tags to add to the run template.
        remove_tags: Tags to remove from the run template.
        project: The project name/ID to filter by.

    Returns:
        The updated run template.
    """
    if is_valid_uuid(name_id_or_prefix):
        template_id = (
            UUID(name_id_or_prefix)
            if isinstance(name_id_or_prefix, str)
            else name_id_or_prefix
        )
    else:
        template_id = self.get_run_template(
            name_id_or_prefix,
            project=project,
            hydrate=False,
        ).id

    return self.zen_store.update_run_template(
        template_id=template_id,
        template_update=RunTemplateUpdate(
            name=name,
            description=description,
            hidden=hidden,
            add_tags=add_tags,
            remove_tags=remove_tags,
        ),
    )
update_secret(name_id_or_prefix: Union[str, UUID], private: Optional[bool] = None, new_name: Optional[str] = None, update_private: Optional[bool] = None, add_or_update_values: Optional[Dict[str, str]] = None, remove_values: Optional[List[str]] = None) -> SecretResponse

Updates a secret.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name, id or prefix of the id for the secret to update.

required
private Optional[bool]

The private status of the secret to update.

None
new_name Optional[str]

The new name of the secret.

None
update_private Optional[bool]

New value used to update the private status of the secret.

None
add_or_update_values Optional[Dict[str, str]]

The values to add or update.

None
remove_values Optional[List[str]]

The values to remove.

None

Returns:

Type Description
SecretResponse

The updated secret.

Raises:

Type Description
KeyError

If trying to remove a value that doesn't exist.

ValueError

If a key is provided in both add_or_update_values and remove_values.

Source code in src/zenml/client.py
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
def update_secret(
    self,
    name_id_or_prefix: Union[str, UUID],
    private: Optional[bool] = None,
    new_name: Optional[str] = None,
    update_private: Optional[bool] = None,
    add_or_update_values: Optional[Dict[str, str]] = None,
    remove_values: Optional[List[str]] = None,
) -> SecretResponse:
    """Updates a secret.

    Args:
        name_id_or_prefix: The name, id or prefix of the id for the
            secret to update.
        private: The private status of the secret to update.
        new_name: The new name of the secret.
        update_private: New value used to update the private status of the
            secret.
        add_or_update_values: The values to add or update.
        remove_values: The values to remove.

    Returns:
        The updated secret.

    Raises:
        KeyError: If trying to remove a value that doesn't exist.
        ValueError: If a key is provided in both add_or_update_values and
            remove_values.
    """
    secret = self.get_secret(
        name_id_or_prefix=name_id_or_prefix,
        private=private,
        # Don't allow partial name matches, but allow partial ID matches
        allow_partial_name_match=False,
        allow_partial_id_match=True,
        hydrate=True,
    )

    secret_update = SecretUpdate(name=new_name or secret.name)

    if update_private:
        secret_update.private = update_private
    values: Dict[str, Optional[SecretStr]] = {}
    if add_or_update_values:
        values.update(
            {
                key: SecretStr(value)
                for key, value in add_or_update_values.items()
            }
        )
    if remove_values:
        for key in remove_values:
            if key not in secret.values:
                raise KeyError(
                    f"Cannot remove value '{key}' from secret "
                    f"'{secret.name}' because it does not exist."
                )
            if key in values:
                raise ValueError(
                    f"Key '{key}' is supplied both in the values to add or "
                    f"update and the values to be removed."
                )
            values[key] = None
    if values:
        secret_update.values = values

    return Client().zen_store.update_secret(
        secret_id=secret.id, secret_update=secret_update
    )
update_server_settings(updated_name: Optional[str] = None, updated_logo_url: Optional[str] = None, updated_enable_analytics: Optional[bool] = None, updated_enable_announcements: Optional[bool] = None, updated_enable_updates: Optional[bool] = None, updated_onboarding_state: Optional[Dict[str, Any]] = None) -> ServerSettingsResponse

Update the server settings.

Parameters:

Name Type Description Default
updated_name Optional[str]

Updated name for the server.

None
updated_logo_url Optional[str]

Updated logo URL for the server.

None
updated_enable_analytics Optional[bool]

Updated value whether to enable analytics for the server.

None
updated_enable_announcements Optional[bool]

Updated value whether to display announcements about ZenML.

None
updated_enable_updates Optional[bool]

Updated value whether to display updates about ZenML.

None
updated_onboarding_state Optional[Dict[str, Any]]

Updated onboarding state for the server.

None

Returns:

Type Description
ServerSettingsResponse

The updated server settings.

Source code in src/zenml/client.py
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
def update_server_settings(
    self,
    updated_name: Optional[str] = None,
    updated_logo_url: Optional[str] = None,
    updated_enable_analytics: Optional[bool] = None,
    updated_enable_announcements: Optional[bool] = None,
    updated_enable_updates: Optional[bool] = None,
    updated_onboarding_state: Optional[Dict[str, Any]] = None,
) -> ServerSettingsResponse:
    """Update the server settings.

    Args:
        updated_name: Updated name for the server.
        updated_logo_url: Updated logo URL for the server.
        updated_enable_analytics: Updated value whether to enable
            analytics for the server.
        updated_enable_announcements: Updated value whether to display
            announcements about ZenML.
        updated_enable_updates: Updated value whether to display updates
            about ZenML.
        updated_onboarding_state: Updated onboarding state for the server.

    Returns:
        The updated server settings.
    """
    update_model = ServerSettingsUpdate(
        server_name=updated_name,
        logo_url=updated_logo_url,
        enable_analytics=updated_enable_analytics,
        display_announcements=updated_enable_announcements,
        display_updates=updated_enable_updates,
        onboarding_state=updated_onboarding_state,
    )
    return self.zen_store.update_server_settings(update_model)
update_service(id: UUID, name: Optional[str] = None, service_source: Optional[str] = None, admin_state: Optional[ServiceState] = None, status: Optional[Dict[str, Any]] = None, endpoint: Optional[Dict[str, Any]] = None, labels: Optional[Dict[str, str]] = None, prediction_url: Optional[str] = None, health_check_url: Optional[str] = None, model_version_id: Optional[UUID] = None) -> ServiceResponse

Update a service.

Parameters:

Name Type Description Default
id UUID

The ID of the service to update.

required
name Optional[str]

The new name of the service.

None
admin_state Optional[ServiceState]

The new admin state of the service.

None
status Optional[Dict[str, Any]]

The new status of the service.

None
endpoint Optional[Dict[str, Any]]

The new endpoint of the service.

None
service_source Optional[str]

The new service source of the service.

None
labels Optional[Dict[str, str]]

The new labels of the service.

None
prediction_url Optional[str]

The new prediction url of the service.

None
health_check_url Optional[str]

The new health check url of the service.

None
model_version_id Optional[UUID]

The new model version id of the service.

None

Returns:

Type Description
ServiceResponse

The updated service.

Source code in src/zenml/client.py
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
def update_service(
    self,
    id: UUID,
    name: Optional[str] = None,
    service_source: Optional[str] = None,
    admin_state: Optional[ServiceState] = None,
    status: Optional[Dict[str, Any]] = None,
    endpoint: Optional[Dict[str, Any]] = None,
    labels: Optional[Dict[str, str]] = None,
    prediction_url: Optional[str] = None,
    health_check_url: Optional[str] = None,
    model_version_id: Optional[UUID] = None,
) -> ServiceResponse:
    """Update a service.

    Args:
        id: The ID of the service to update.
        name: The new name of the service.
        admin_state: The new admin state of the service.
        status: The new status of the service.
        endpoint: The new endpoint of the service.
        service_source: The new service source of the service.
        labels: The new labels of the service.
        prediction_url: The new prediction url of the service.
        health_check_url: The new health check url of the service.
        model_version_id: The new model version id of the service.

    Returns:
        The updated service.
    """
    service_update = ServiceUpdate()
    if name:
        service_update.name = name
    if service_source:
        service_update.service_source = service_source
    if admin_state:
        service_update.admin_state = admin_state
    if status:
        service_update.status = status
    if endpoint:
        service_update.endpoint = endpoint
    if labels:
        service_update.labels = labels
    if prediction_url:
        service_update.prediction_url = prediction_url
    if health_check_url:
        service_update.health_check_url = health_check_url
    if model_version_id:
        service_update.model_version_id = model_version_id
    return self.zen_store.update_service(
        service_id=id, update=service_update
    )
update_service_account(name_id_or_prefix: Union[str, UUID], updated_name: Optional[str] = None, description: Optional[str] = None, active: Optional[bool] = None) -> ServiceAccountResponse

Update a service account.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name or ID of the service account to update.

required
updated_name Optional[str]

The new name of the service account.

None
description Optional[str]

The new description of the service account.

None
active Optional[bool]

The new active status of the service account.

None

Returns:

Type Description
ServiceAccountResponse

The updated service account.

Source code in src/zenml/client.py
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
def update_service_account(
    self,
    name_id_or_prefix: Union[str, UUID],
    updated_name: Optional[str] = None,
    description: Optional[str] = None,
    active: Optional[bool] = None,
) -> ServiceAccountResponse:
    """Update a service account.

    Args:
        name_id_or_prefix: The name or ID of the service account to update.
        updated_name: The new name of the service account.
        description: The new description of the service account.
        active: The new active status of the service account.

    Returns:
        The updated service account.
    """
    service_account = self.get_service_account(
        name_id_or_prefix=name_id_or_prefix, allow_name_prefix_match=False
    )
    service_account_update = ServiceAccountUpdate(
        name=updated_name,
        description=description,
        active=active,
    )

    return self.zen_store.update_service_account(
        service_account_name_or_id=service_account.id,
        service_account_update=service_account_update,
    )
update_service_connector(name_id_or_prefix: Union[UUID, str], name: Optional[str] = None, auth_method: Optional[str] = None, resource_type: Optional[str] = None, configuration: Optional[Dict[str, str]] = None, resource_id: Optional[str] = None, description: Optional[str] = None, expires_at: Optional[datetime] = None, expires_skew_tolerance: Optional[int] = None, expiration_seconds: Optional[int] = None, labels: Optional[Dict[str, Optional[str]]] = None, verify: bool = True, list_resources: bool = True, update: bool = True) -> Tuple[Optional[Union[ServiceConnectorResponse, ServiceConnectorUpdate]], Optional[ServiceConnectorResourcesModel]]

Validate and/or register an updated service connector.

If the resource_type, resource_id and expiration_seconds parameters are set to their "empty" values (empty string for resource type and resource ID, 0 for expiration seconds), the existing values will be removed from the service connector. Setting them to None or omitting them will not affect the existing values.

If supplied, the configuration parameter is a full replacement of the existing configuration rather than a partial update.

Labels can be updated or removed by setting the label value to None.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, id or prefix of the service connector to update.

required
name Optional[str]

The new name of the service connector.

None
auth_method Optional[str]

The new authentication method of the service connector.

None
resource_type Optional[str]

The new resource type for the service connector. If set to the empty string, the existing resource type will be removed.

None
configuration Optional[Dict[str, str]]

The new configuration of the service connector. If set, this needs to be a full replacement of the existing configuration rather than a partial update.

None
resource_id Optional[str]

The new resource id of the service connector. If set to the empty string, the existing resource ID will be removed.

None
description Optional[str]

The description of the service connector.

None
expires_at Optional[datetime]

The new UTC expiration time of the service connector.

None
expires_skew_tolerance Optional[int]

The allowed expiration skew for the service connector credentials.

None
expiration_seconds Optional[int]

The expiration time of the service connector. If set to 0, the existing expiration time will be removed.

None
labels Optional[Dict[str, Optional[str]]]

The service connector to update or remove. If a label value is set to None, the label will be removed.

None
verify bool

Whether to verify that the service connector configuration and credentials can be used to gain access to the resource.

True
list_resources bool

Whether to also list the resources that the service connector can give access to (if verify is True).

True
update bool

Whether to update the service connector or not.

True

Returns:

Type Description
Optional[Union[ServiceConnectorResponse, ServiceConnectorUpdate]]

The model of the registered service connector and the resources

Optional[ServiceConnectorResourcesModel]

that the service connector can give access to (if verify is True).

Raises:

Type Description
AuthorizationException

If the service connector verification fails due to invalid credentials or insufficient permissions.

Source code in src/zenml/client.py
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
def update_service_connector(
    self,
    name_id_or_prefix: Union[UUID, str],
    name: Optional[str] = None,
    auth_method: Optional[str] = None,
    resource_type: Optional[str] = None,
    configuration: Optional[Dict[str, str]] = None,
    resource_id: Optional[str] = None,
    description: Optional[str] = None,
    expires_at: Optional[datetime] = None,
    expires_skew_tolerance: Optional[int] = None,
    expiration_seconds: Optional[int] = None,
    labels: Optional[Dict[str, Optional[str]]] = None,
    verify: bool = True,
    list_resources: bool = True,
    update: bool = True,
) -> Tuple[
    Optional[
        Union[
            ServiceConnectorResponse,
            ServiceConnectorUpdate,
        ]
    ],
    Optional[ServiceConnectorResourcesModel],
]:
    """Validate and/or register an updated service connector.

    If the `resource_type`, `resource_id` and `expiration_seconds`
    parameters are set to their "empty" values (empty string for resource
    type and resource ID, 0 for expiration seconds), the existing values
    will be removed from the service connector. Setting them to None or
    omitting them will not affect the existing values.

    If supplied, the `configuration` parameter is a full replacement of the
    existing configuration rather than a partial update.

    Labels can be updated or removed by setting the label value to None.

    Args:
        name_id_or_prefix: The name, id or prefix of the service connector
            to update.
        name: The new name of the service connector.
        auth_method: The new authentication method of the service connector.
        resource_type: The new resource type for the service connector.
            If set to the empty string, the existing resource type will be
            removed.
        configuration: The new configuration of the service connector. If
            set, this needs to be a full replacement of the existing
            configuration rather than a partial update.
        resource_id: The new resource id of the service connector.
            If set to the empty string, the existing resource ID will be
            removed.
        description: The description of the service connector.
        expires_at: The new UTC expiration time of the service connector.
        expires_skew_tolerance: The allowed expiration skew for the service
            connector credentials.
        expiration_seconds: The expiration time of the service connector.
            If set to 0, the existing expiration time will be removed.
        labels: The service connector to update or remove. If a label value
            is set to None, the label will be removed.
        verify: Whether to verify that the service connector configuration
            and credentials can be used to gain access to the resource.
        list_resources: Whether to also list the resources that the service
            connector can give access to (if verify is True).
        update: Whether to update the service connector or not.

    Returns:
        The model of the registered service connector and the resources
        that the service connector can give access to (if verify is True).

    Raises:
        AuthorizationException: If the service connector verification
            fails due to invalid credentials or insufficient permissions.
    """
    from zenml.service_connectors.service_connector_registry import (
        service_connector_registry,
    )

    connector_model = self.get_service_connector(
        name_id_or_prefix,
        allow_name_prefix_match=False,
        load_secrets=True,
    )

    connector_instance: Optional[ServiceConnector] = None
    connector_resources: Optional[ServiceConnectorResourcesModel] = None

    if isinstance(connector_model.connector_type, str):
        connector = self.get_service_connector_type(
            connector_model.connector_type
        )
    else:
        connector = connector_model.connector_type

    resource_types: Optional[Union[str, List[str]]] = None
    if resource_type == "":
        resource_types = None
    elif resource_type is None:
        resource_types = connector_model.resource_types
    else:
        resource_types = resource_type

    if not resource_type and len(connector.resource_types) == 1:
        resource_types = connector.resource_types[0].resource_type

    if resource_id == "":
        resource_id = None
    elif resource_id is None:
        resource_id = connector_model.resource_id

    if expiration_seconds == 0:
        expiration_seconds = None
    elif expiration_seconds is None:
        expiration_seconds = connector_model.expiration_seconds

    connector_update = ServiceConnectorUpdate(
        name=name or connector_model.name,
        connector_type=connector.connector_type,
        description=description or connector_model.description,
        auth_method=auth_method or connector_model.auth_method,
        expires_at=expires_at,
        expires_skew_tolerance=expires_skew_tolerance,
        expiration_seconds=expiration_seconds,
    )

    # Validate and configure the resources
    if configuration is not None:
        # The supplied configuration is a drop-in replacement for the
        # existing configuration and secrets
        connector_update.validate_and_configure_resources(
            connector_type=connector,
            resource_types=resource_types,
            resource_id=resource_id,
            configuration=configuration,
        )
    else:
        connector_update.validate_and_configure_resources(
            connector_type=connector,
            resource_types=resource_types,
            resource_id=resource_id,
            configuration=connector_model.configuration,
            secrets=connector_model.secrets,
        )

    # Add the labels
    if labels is not None:
        # Apply the new label values, but don't keep any labels that
        # have been set to None in the update
        connector_update.labels = {
            **{
                label: value
                for label, value in connector_model.labels.items()
                if label not in labels
            },
            **{
                label: value
                for label, value in labels.items()
                if value is not None
            },
        }
    else:
        connector_update.labels = connector_model.labels

    if verify:
        # Prefer to verify the connector config server-side if the
        # implementation, if available there, because it ensures
        # that the connector can be shared with other users or used
        # from other machines and because some auth methods rely on the
        # server-side authentication environment

        # Convert the update model to a request model for validation
        connector_request_dict = connector_update.model_dump()
        connector_request = ServiceConnectorRequest.model_validate(
            connector_request_dict
        )

        if connector.remote:
            connector_resources = (
                self.zen_store.verify_service_connector_config(
                    service_connector=connector_request,
                    list_resources=list_resources,
                )
            )
        else:
            connector_instance = (
                service_connector_registry.instantiate_connector(
                    model=connector_request,
                )
            )
            connector_resources = connector_instance.verify(
                list_resources=list_resources
            )

        if connector_resources.error:
            raise AuthorizationException(connector_resources.error)

        # For resource types that don't support multi-instances, it's
        # better to save the default resource ID in the connector, if
        # available. Otherwise, we'll need to instantiate the connector
        # again to get the default resource ID.
        connector_update.resource_id = (
            connector_update.resource_id
            or connector_resources.get_default_resource_id()
        )

    if not update:
        return connector_update, connector_resources

    # Update the model
    connector_response = self.zen_store.update_service_connector(
        service_connector_id=connector_model.id,
        update=connector_update,
    )

    if connector_resources:
        connector_resources.id = connector_response.id
        connector_resources.name = connector_response.name
        connector_resources.connector_type = (
            connector_response.connector_type
        )

    return connector_response, connector_resources
update_stack(name_id_or_prefix: Optional[Union[UUID, str]] = None, name: Optional[str] = None, stack_spec_file: Optional[str] = None, labels: Optional[Dict[str, Any]] = None, description: Optional[str] = None, component_updates: Optional[Dict[StackComponentType, List[Union[UUID, str]]]] = None) -> StackResponse

Updates a stack and its components.

Parameters:

Name Type Description Default
name_id_or_prefix Optional[Union[UUID, str]]

The name, id or prefix of the stack to update.

None
name Optional[str]

the new name of the stack.

None
stack_spec_file Optional[str]

path to the stack spec file.

None
labels Optional[Dict[str, Any]]

The new labels of the stack component.

None
description Optional[str]

the new description of the stack.

None
component_updates Optional[Dict[StackComponentType, List[Union[UUID, str]]]]

dictionary which maps stack component types to lists of new stack component names or ids.

None

Returns:

Type Description
StackResponse

The model of the updated stack.

Raises:

Type Description
EntityExistsError

If the stack name is already taken.

Source code in src/zenml/client.py
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
def update_stack(
    self,
    name_id_or_prefix: Optional[Union[UUID, str]] = None,
    name: Optional[str] = None,
    stack_spec_file: Optional[str] = None,
    labels: Optional[Dict[str, Any]] = None,
    description: Optional[str] = None,
    component_updates: Optional[
        Dict[StackComponentType, List[Union[UUID, str]]]
    ] = None,
) -> StackResponse:
    """Updates a stack and its components.

    Args:
        name_id_or_prefix: The name, id or prefix of the stack to update.
        name: the new name of the stack.
        stack_spec_file: path to the stack spec file.
        labels: The new labels of the stack component.
        description: the new description of the stack.
        component_updates: dictionary which maps stack component types to
            lists of new stack component names or ids.

    Returns:
        The model of the updated stack.

    Raises:
        EntityExistsError: If the stack name is already taken.
    """
    # First, get the stack
    stack = self.get_stack(
        name_id_or_prefix=name_id_or_prefix, allow_name_prefix_match=False
    )

    # Create the update model
    update_model = StackUpdate(
        stack_spec_path=stack_spec_file,
    )

    if name:
        if self.list_stacks(name=name):
            raise EntityExistsError(
                "There are already existing stacks with the name "
                f"'{name}'."
            )

        update_model.name = name

    if description:
        update_model.description = description

    # Get the current components
    if component_updates:
        components_dict = stack.components.copy()

        for component_type, component_id_list in component_updates.items():
            if component_id_list is not None:
                components_dict[component_type] = [
                    self.get_stack_component(
                        name_id_or_prefix=component_id,
                        component_type=component_type,
                    )
                    for component_id in component_id_list
                ]

        update_model.components = {
            c_type: [c.id for c in c_list]
            for c_type, c_list in components_dict.items()
        }

    if labels is not None:
        existing_labels = stack.labels or {}
        existing_labels.update(labels)

        existing_labels = {
            k: v for k, v in existing_labels.items() if v is not None
        }
        update_model.labels = existing_labels

    updated_stack = self.zen_store.update_stack(
        stack_id=stack.id,
        stack_update=update_model,
    )
    if updated_stack.id == self.active_stack_model.id:
        if self._config:
            self._config.set_active_stack(updated_stack)
        else:
            GlobalConfiguration().set_active_stack(updated_stack)
    return updated_stack
update_stack_component(name_id_or_prefix: Optional[Union[UUID, str]], component_type: StackComponentType, name: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, labels: Optional[Dict[str, Any]] = None, disconnect: Optional[bool] = None, connector_id: Optional[UUID] = None, connector_resource_id: Optional[str] = None) -> ComponentResponse

Updates a stack component.

Parameters:

Name Type Description Default
name_id_or_prefix Optional[Union[UUID, str]]

The name, id or prefix of the stack component to update.

required
component_type StackComponentType

The type of the stack component to update.

required
name Optional[str]

The new name of the stack component.

None
configuration Optional[Dict[str, Any]]

The new configuration of the stack component.

None
labels Optional[Dict[str, Any]]

The new labels of the stack component.

None
disconnect Optional[bool]

Whether to disconnect the stack component from its service connector.

None
connector_id Optional[UUID]

The new connector id of the stack component.

None
connector_resource_id Optional[str]

The new connector resource id of the stack component.

None

Returns:

Type Description
ComponentResponse

The updated stack component.

Raises:

Type Description
EntityExistsError

If the new name is already taken.

Source code in src/zenml/client.py
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
def update_stack_component(
    self,
    name_id_or_prefix: Optional[Union[UUID, str]],
    component_type: StackComponentType,
    name: Optional[str] = None,
    configuration: Optional[Dict[str, Any]] = None,
    labels: Optional[Dict[str, Any]] = None,
    disconnect: Optional[bool] = None,
    connector_id: Optional[UUID] = None,
    connector_resource_id: Optional[str] = None,
) -> ComponentResponse:
    """Updates a stack component.

    Args:
        name_id_or_prefix: The name, id or prefix of the stack component to
            update.
        component_type: The type of the stack component to update.
        name: The new name of the stack component.
        configuration: The new configuration of the stack component.
        labels: The new labels of the stack component.
        disconnect: Whether to disconnect the stack component from its
            service connector.
        connector_id: The new connector id of the stack component.
        connector_resource_id: The new connector resource id of the
            stack component.

    Returns:
        The updated stack component.

    Raises:
        EntityExistsError: If the new name is already taken.
    """
    # Get the existing component model
    component = self.get_stack_component(
        name_id_or_prefix=name_id_or_prefix,
        component_type=component_type,
        allow_name_prefix_match=False,
    )

    update_model = ComponentUpdate()

    if name is not None:
        existing_components = self.list_stack_components(
            name=name,
            type=component_type,
        )
        if existing_components.total > 0:
            raise EntityExistsError(
                f"There are already existing components with the "
                f"name '{name}'."
            )
        update_model.name = name

    if configuration is not None:
        existing_configuration = component.configuration
        existing_configuration.update(configuration)
        existing_configuration = {
            k: v
            for k, v in existing_configuration.items()
            if v is not None
        }

        from zenml.stack.utils import (
            validate_stack_component_config,
            warn_if_config_server_mismatch,
        )

        validated_config = validate_stack_component_config(
            configuration_dict=existing_configuration,
            flavor=component.flavor,
            component_type=component.type,
            # Always enforce validation of custom flavors
            validate_custom_flavors=True,
        )
        # Guaranteed to not be None by setting
        # `validate_custom_flavors=True` above
        assert validated_config is not None
        warn_if_config_server_mismatch(validated_config)

        update_model.configuration = existing_configuration

    if labels is not None:
        existing_labels = component.labels or {}
        existing_labels.update(labels)

        existing_labels = {
            k: v for k, v in existing_labels.items() if v is not None
        }
        update_model.labels = existing_labels

    if disconnect:
        update_model.connector = None
        update_model.connector_resource_id = None
    else:
        existing_component = self.get_stack_component(
            name_id_or_prefix=name_id_or_prefix,
            component_type=component_type,
            allow_name_prefix_match=False,
        )
        update_model.connector = connector_id
        update_model.connector_resource_id = connector_resource_id
        if connector_id is None and existing_component.connector:
            update_model.connector = existing_component.connector.id
            update_model.connector_resource_id = (
                existing_component.connector_resource_id
            )

    # Send the updated component to the ZenStore
    return self.zen_store.update_stack_component(
        component_id=component.id,
        component_update=update_model,
    )
update_tag(tag_name_or_id: Union[str, UUID], name: Optional[str] = None, exclusive: Optional[bool] = None, color: Optional[Union[str, ColorVariants]] = None) -> TagResponse

Updates an existing tag.

Parameters:

Name Type Description Default
tag_name_or_id Union[str, UUID]

name or UUID of the tag to be updated.

required
name Optional[str]

the name of the tag.

None
exclusive Optional[bool]

the boolean to decide whether the tag is an exclusive tag. An exclusive tag means that the tag can exist only for a single: - pipeline run within the scope of a pipeline - artifact version within the scope of an artifact - run template

None
color Optional[Union[str, ColorVariants]]

the color of the tag

None

Returns:

Type Description
TagResponse

The updated tag.

Source code in src/zenml/client.py
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
def update_tag(
    self,
    tag_name_or_id: Union[str, UUID],
    name: Optional[str] = None,
    exclusive: Optional[bool] = None,
    color: Optional[Union[str, ColorVariants]] = None,
) -> TagResponse:
    """Updates an existing tag.

    Args:
        tag_name_or_id: name or UUID of the tag to be updated.
        name: the name of the tag.
        exclusive: the boolean to decide whether the tag is an exclusive tag.
            An exclusive tag means that the tag can exist only for a single:
                - pipeline run within the scope of a pipeline
                - artifact version within the scope of an artifact
                - run template
        color: the color of the tag

    Returns:
        The updated tag.
    """
    update_model = TagUpdate()

    if name is not None:
        update_model.name = name

    if exclusive is not None:
        update_model.exclusive = exclusive

    if color is not None:
        if isinstance(color, str):
            update_model.color = ColorVariants(color)
        else:
            update_model.color = color

    return self.zen_store.update_tag(
        tag_name_or_id=tag_name_or_id,
        tag_update_model=update_model,
    )
update_trigger(name_id_or_prefix: Union[UUID, str], name: Optional[str] = None, description: Optional[str] = None, event_filter: Optional[Dict[str, Any]] = None, is_active: Optional[bool] = None, project: Optional[Union[str, UUID]] = None) -> TriggerResponse

Updates a trigger.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, id or prefix of the trigger to update.

required
name Optional[str]

the new name of the trigger.

None
description Optional[str]

the new description of the trigger.

None
event_filter Optional[Dict[str, Any]]

The event filter configuration.

None
is_active Optional[bool]

Whether the trigger is active or not.

None
project Optional[Union[str, UUID]]

The project name/ID to filter by.

None

Returns:

Type Description
TriggerResponse

The model of the updated trigger.

Raises:

Type Description
EntityExistsError

If the trigger name is already taken.

Source code in src/zenml/client.py
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
@_fail_for_sql_zen_store
def update_trigger(
    self,
    name_id_or_prefix: Union[UUID, str],
    name: Optional[str] = None,
    description: Optional[str] = None,
    event_filter: Optional[Dict[str, Any]] = None,
    is_active: Optional[bool] = None,
    project: Optional[Union[str, UUID]] = None,
) -> TriggerResponse:
    """Updates a trigger.

    Args:
        name_id_or_prefix: The name, id or prefix of the trigger to update.
        name: the new name of the trigger.
        description: the new description of the trigger.
        event_filter: The event filter configuration.
        is_active: Whether the trigger is active or not.
        project: The project name/ID to filter by.

    Returns:
        The model of the updated trigger.

    Raises:
        EntityExistsError: If the trigger name is already taken.
    """
    # First, get the eve
    trigger = self.get_trigger(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
        project=project,
    )

    # Create the update model
    update_model = TriggerUpdate(
        name=name,
        description=description,
        event_filter=event_filter,
        is_active=is_active,
    )

    if name:
        if self.list_triggers(name=name):
            raise EntityExistsError(
                "There are already is an existing trigger with the name "
                f"'{name}'."
            )

    updated_trigger = self.zen_store.update_trigger(
        trigger_id=trigger.id,
        trigger_update=update_model,
    )
    return updated_trigger
update_user(name_id_or_prefix: Union[str, UUID], updated_name: Optional[str] = None, updated_full_name: Optional[str] = None, updated_email: Optional[str] = None, updated_email_opt_in: Optional[bool] = None, updated_password: Optional[str] = None, old_password: Optional[str] = None, updated_is_admin: Optional[bool] = None, updated_metadata: Optional[Dict[str, Any]] = None, updated_default_project_id: Optional[UUID] = None, active: Optional[bool] = None) -> UserResponse

Update a user.

Parameters:

Name Type Description Default
name_id_or_prefix Union[str, UUID]

The name or ID of the user to update.

required
updated_name Optional[str]

The new name of the user.

None
updated_full_name Optional[str]

The new full name of the user.

None
updated_email Optional[str]

The new email of the user.

None
updated_email_opt_in Optional[bool]

The new email opt-in status of the user.

None
updated_password Optional[str]

The new password of the user.

None
old_password Optional[str]

The old password of the user. Required for password update.

None
updated_is_admin Optional[bool]

Whether the user should be an admin.

None
updated_metadata Optional[Dict[str, Any]]

The new metadata for the user.

None
updated_default_project_id Optional[UUID]

The new default project ID for the user.

None
active Optional[bool]

Use to activate or deactivate the user.

None

Returns:

Type Description
UserResponse

The updated user.

Raises:

Type Description
ValidationError

If the old password is not provided when updating the password.

Source code in src/zenml/client.py
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
def update_user(
    self,
    name_id_or_prefix: Union[str, UUID],
    updated_name: Optional[str] = None,
    updated_full_name: Optional[str] = None,
    updated_email: Optional[str] = None,
    updated_email_opt_in: Optional[bool] = None,
    updated_password: Optional[str] = None,
    old_password: Optional[str] = None,
    updated_is_admin: Optional[bool] = None,
    updated_metadata: Optional[Dict[str, Any]] = None,
    updated_default_project_id: Optional[UUID] = None,
    active: Optional[bool] = None,
) -> UserResponse:
    """Update a user.

    Args:
        name_id_or_prefix: The name or ID of the user to update.
        updated_name: The new name of the user.
        updated_full_name: The new full name of the user.
        updated_email: The new email of the user.
        updated_email_opt_in: The new email opt-in status of the user.
        updated_password: The new password of the user.
        old_password: The old password of the user. Required for password
            update.
        updated_is_admin: Whether the user should be an admin.
        updated_metadata: The new metadata for the user.
        updated_default_project_id: The new default project ID for the user.
        active: Use to activate or deactivate the user.

    Returns:
        The updated user.

    Raises:
        ValidationError: If the old password is not provided when updating
            the password.
    """
    user = self.get_user(
        name_id_or_prefix=name_id_or_prefix, allow_name_prefix_match=False
    )
    user_update = UserUpdate(name=updated_name or user.name)
    if updated_full_name:
        user_update.full_name = updated_full_name
    if updated_email is not None:
        user_update.email = updated_email
        user_update.email_opted_in = (
            updated_email_opt_in or user.email_opted_in
        )
    if updated_email_opt_in is not None:
        user_update.email_opted_in = updated_email_opt_in
    if updated_password is not None:
        user_update.password = updated_password
        if old_password is None:
            raise ValidationError(
                "Old password is required to update the password."
            )
        user_update.old_password = old_password
    if updated_is_admin is not None:
        user_update.is_admin = updated_is_admin
    if active is not None:
        user_update.active = active

    if updated_metadata is not None:
        user_update.user_metadata = updated_metadata

    if updated_default_project_id is not None:
        user_update.default_project_id = updated_default_project_id

    return self.zen_store.update_user(
        user_id=user.id, user_update=user_update
    )
verify_service_connector(name_id_or_prefix: Union[UUID, str], resource_type: Optional[str] = None, resource_id: Optional[str] = None, list_resources: bool = True) -> ServiceConnectorResourcesModel

Verifies if a service connector has access to one or more resources.

Parameters:

Name Type Description Default
name_id_or_prefix Union[UUID, str]

The name, id or prefix of the service connector to verify.

required
resource_type Optional[str]

The type of the resource for which to verify access. If not provided, the resource type from the service connector configuration will be used.

None
resource_id Optional[str]

The ID of the resource for which to verify access. If not provided, the resource ID from the service connector configuration will be used.

None
list_resources bool

Whether to list the resources that the service connector has access to.

True

Returns:

Type Description
ServiceConnectorResourcesModel

The list of resources that the service connector has access to,

ServiceConnectorResourcesModel

scoped to the supplied resource type and ID, if provided.

Raises:

Type Description
AuthorizationException

If the service connector does not have access to the resources.

Source code in src/zenml/client.py
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
def verify_service_connector(
    self,
    name_id_or_prefix: Union[UUID, str],
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
    list_resources: bool = True,
) -> "ServiceConnectorResourcesModel":
    """Verifies if a service connector has access to one or more resources.

    Args:
        name_id_or_prefix: The name, id or prefix of the service connector
            to verify.
        resource_type: The type of the resource for which to verify access.
            If not provided, the resource type from the service connector
            configuration will be used.
        resource_id: The ID of the resource for which to verify access. If
            not provided, the resource ID from the service connector
            configuration will be used.
        list_resources: Whether to list the resources that the service
            connector has access to.

    Returns:
        The list of resources that the service connector has access to,
        scoped to the supplied resource type and ID, if provided.

    Raises:
        AuthorizationException: If the service connector does not have
            access to the resources.
    """
    from zenml.service_connectors.service_connector_registry import (
        service_connector_registry,
    )

    # Get the service connector model
    service_connector = self.get_service_connector(
        name_id_or_prefix=name_id_or_prefix,
        allow_name_prefix_match=False,
    )

    connector_type = self.get_service_connector_type(
        service_connector.type
    )

    # Prefer to verify the connector config server-side if the
    # implementation if available there, because it ensures
    # that the connector can be shared with other users or used
    # from other machines and because some auth methods rely on the
    # server-side authentication environment
    if connector_type.remote:
        connector_resources = self.zen_store.verify_service_connector(
            service_connector_id=service_connector.id,
            resource_type=resource_type,
            resource_id=resource_id,
            list_resources=list_resources,
        )
    else:
        connector_instance = (
            service_connector_registry.instantiate_connector(
                model=service_connector
            )
        )
        connector_resources = connector_instance.verify(
            resource_type=resource_type,
            resource_id=resource_id,
            list_resources=list_resources,
        )

    if connector_resources.error:
        raise AuthorizationException(connector_resources.error)

    return connector_resources

ClientConfiguration

Bases: FileSyncModel

Pydantic object used for serializing client configuration options.

Attributes
active_project: ProjectResponse property

Get the active project for the local client.

Returns:

Type Description
ProjectResponse

The active project.

Raises:

Type Description
RuntimeError

If no active project is set.

Functions
set_active_project(project: ProjectResponse) -> None

Set the project for the local client.

Parameters:

Name Type Description Default
project ProjectResponse

The project to set active.

required
Source code in src/zenml/client.py
242
243
244
245
246
247
248
249
def set_active_project(self, project: "ProjectResponse") -> None:
    """Set the project for the local client.

    Args:
        project: The project to set active.
    """
    self._active_project = project
    self.active_project_id = project.id
set_active_stack(stack: StackResponse) -> None

Set the stack for the local client.

Parameters:

Name Type Description Default
stack StackResponse

The stack to set active.

required
Source code in src/zenml/client.py
251
252
253
254
255
256
257
258
def set_active_stack(self, stack: "StackResponse") -> None:
    """Set the stack for the local client.

    Args:
        stack: The stack to set active.
    """
    self.active_stack_id = stack.id
    self._active_stack = stack

ClientMetaClass(*args: Any, **kwargs: Any)

Bases: ABCMeta

Client singleton metaclass.

This metaclass is used to enforce a singleton instance of the Client class with the following additional properties:

  • the singleton Client instance is created on first access to reflect the global configuration and local client configuration.
  • the Client shouldn't be accessed from within pipeline steps (a warning is logged if this is attempted).

Initialize the Client class.

Parameters:

Name Type Description Default
*args Any

Positional arguments.

()
**kwargs Any

Keyword arguments.

{}
Source code in src/zenml/client.py
282
283
284
285
286
287
288
289
290
def __init__(cls, *args: Any, **kwargs: Any) -> None:
    """Initialize the Client class.

    Args:
        *args: Positional arguments.
        **kwargs: Keyword arguments.
    """
    super().__init__(*args, **kwargs)
    cls._global_client: Optional["Client"] = None
Functions

CodeRepositoryFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all code repositories.

CodeRepositoryRequest

Bases: ProjectScopedRequest

Request model for code repositories.

CodeRepositoryResponse

Bases: ProjectScopedResponse[CodeRepositoryResponseBody, CodeRepositoryResponseMetadata, CodeRepositoryResponseResources]

Response model for code repositories.

Attributes
config: Dict[str, Any] property

The config property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

description: Optional[str] property

The description property.

Returns:

Type Description
Optional[str]

the value of the property.

logo_url: Optional[str] property

The logo_url property.

Returns:

Type Description
Optional[str]

the value of the property.

source: Source property

The source property.

Returns:

Type Description
Source

the value of the property.

Functions
get_hydrated_version() -> CodeRepositoryResponse

Get the hydrated version of this code repository.

Returns:

Type Description
CodeRepositoryResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/code_repository.py
133
134
135
136
137
138
139
140
141
def get_hydrated_version(self) -> "CodeRepositoryResponse":
    """Get the hydrated version of this code repository.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_code_repository(self.id)

CodeRepositoryUpdate

Bases: BaseUpdate

Update model for code repositories.

ColorVariants

Bases: StrEnum

All possible color variants for frontend.

ComponentFilter

Bases: UserScopedFilter

Model to enable advanced stack component filtering.

Functions
generate_filter(table: Type[AnySchema]) -> Union[ColumnElement[bool]]

Generate the filter for the query.

Stack components can be scoped by type to narrow the search.

Parameters:

Name Type Description Default
table Type[AnySchema]

The Table that is being queried from.

required

Returns:

Type Description
Union[ColumnElement[bool]]

The filter expression for the query.

Source code in src/zenml/models/v2/core/component.py
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def generate_filter(
    self, table: Type["AnySchema"]
) -> Union["ColumnElement[bool]"]:
    """Generate the filter for the query.

    Stack components can be scoped by type to narrow the search.

    Args:
        table: The Table that is being queried from.

    Returns:
        The filter expression for the query.
    """
    from sqlmodel import and_, or_

    from zenml.zen_stores.schemas import (
        StackComponentSchema,
        StackCompositionSchema,
    )

    base_filter = super().generate_filter(table)
    if self.scope_type:
        type_filter = getattr(table, "type") == self.scope_type
        return and_(base_filter, type_filter)

    if self.stack_id:
        operator = (
            or_ if self.logical_operator == LogicalOperators.OR else and_
        )

        stack_filter = and_(
            StackCompositionSchema.stack_id == self.stack_id,
            StackCompositionSchema.component_id == StackComponentSchema.id,
        )
        base_filter = operator(base_filter, stack_filter)

    return base_filter
set_scope_type(component_type: str) -> None

Set the type of component on which to perform the filtering to scope the response.

Parameters:

Name Type Description Default
component_type str

The type of component to scope the query to.

required
Source code in src/zenml/models/v2/core/component.py
383
384
385
386
387
388
389
def set_scope_type(self, component_type: str) -> None:
    """Set the type of component on which to perform the filtering to scope the response.

    Args:
        component_type: The type of component to scope the query to.
    """
    self.scope_type = component_type

ComponentRequest

Bases: ComponentBase, UserScopedRequest

Request model for stack components.

Functions
name_cant_be_a_secret_reference(name: str) -> str classmethod

Validator to ensure that the given name is not a secret reference.

Parameters:

Name Type Description Default
name str

The name to validate.

required

Returns:

Type Description
str

The name if it is not a secret reference.

Raises:

Type Description
ValueError

If the name is a secret reference.

Source code in src/zenml/models/v2/core/component.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
@field_validator("name")
@classmethod
def name_cant_be_a_secret_reference(cls, name: str) -> str:
    """Validator to ensure that the given name is not a secret reference.

    Args:
        name: The name to validate.

    Returns:
        The name if it is not a secret reference.

    Raises:
        ValueError: If the name is a secret reference.
    """
    if secret_utils.is_secret_reference(name):
        raise ValueError(
            "Passing the `name` attribute of a stack component as a "
            "secret reference is not allowed."
        )
    return name

ComponentResponse

Bases: UserScopedResponse[ComponentResponseBody, ComponentResponseMetadata, ComponentResponseResources]

Response model for stack components.

Attributes
configuration: Dict[str, Any] property

The configuration property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

connector: Optional[ServiceConnectorResponse] property

The connector property.

Returns:

Type Description
Optional[ServiceConnectorResponse]

the value of the property.

connector_resource_id: Optional[str] property

The connector_resource_id property.

Returns:

Type Description
Optional[str]

the value of the property.

flavor: FlavorResponse property

The flavor property.

Returns:

Type Description
FlavorResponse

the value of the property.

flavor_name: str property

The flavor_name property.

Returns:

Type Description
str

the value of the property.

integration: Optional[str] property

The integration property.

Returns:

Type Description
Optional[str]

the value of the property.

labels: Optional[Dict[str, Any]] property

The labels property.

Returns:

Type Description
Optional[Dict[str, Any]]

the value of the property.

logo_url: Optional[str] property

The logo_url property.

Returns:

Type Description
Optional[str]

the value of the property.

type: StackComponentType property

The type property.

Returns:

Type Description
StackComponentType

the value of the property.

Functions
get_analytics_metadata() -> Dict[str, Any]

Add the component labels to analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in src/zenml/models/v2/core/component.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Add the component labels to analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()

    if self.labels is not None:
        metadata.update(
            {
                label[6:]: value
                for label, value in self.labels.items()
                if label.startswith("zenml:")
            }
        )
    metadata["flavor"] = self.flavor_name

    return metadata
get_hydrated_version() -> ComponentResponse

Get the hydrated version of this component.

Returns:

Type Description
ComponentResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/component.py
248
249
250
251
252
253
254
255
256
def get_hydrated_version(self) -> "ComponentResponse":
    """Get the hydrated version of this component.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_stack_component(self.id)

ComponentUpdate

Bases: BaseUpdate

Update model for stack components.

EntityExistsError(message: Optional[str] = None, url: Optional[str] = None)

Bases: ZenMLBaseException

Raised when trying to register an entity that already exists.

Source code in src/zenml/exceptions.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def __init__(
    self,
    message: Optional[str] = None,
    url: Optional[str] = None,
):
    """The BaseException used to format messages displayed to the user.

    Args:
        message: Message with details of exception. This message
                 will be appended with another message directing user to
                 `url` for more information. If `None`, then default
                 Exception behavior is used.
        url: URL to point to in exception message. If `None`, then no url
             is appended.
    """
    if message and url:
        message += f" For more information, visit {url}."
    super().__init__(message)

EventSourceFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all EventSourceModels.

EventSourceRequest

Bases: ProjectScopedRequest

BaseModel for all event sources.

EventSourceResponse

Bases: ProjectScopedResponse[EventSourceResponseBody, EventSourceResponseMetadata, EventSourceResponseResources]

Response model for event sources.

Attributes
configuration: Dict[str, Any] property

The configuration property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

description: str property

The description property.

Returns:

Type Description
str

the value of the property.

flavor: str property

The flavor property.

Returns:

Type Description
str

the value of the property.

is_active: bool property

The is_active property.

Returns:

Type Description
bool

the value of the property.

plugin_subtype: PluginSubType property

The plugin_subtype property.

Returns:

Type Description
PluginSubType

the value of the property.

Functions
get_hydrated_version() -> EventSourceResponse

Get the hydrated version of this event source.

Returns:

Type Description
EventSourceResponse

An instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/event_source.py
161
162
163
164
165
166
167
168
169
def get_hydrated_version(self) -> "EventSourceResponse":
    """Get the hydrated version of this event source.

    Returns:
        An instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_event_source(self.id)
set_configuration(configuration: Dict[str, Any]) -> None

Set the configuration property.

Parameters:

Name Type Description Default
configuration Dict[str, Any]

The value to set.

required
Source code in src/zenml/models/v2/core/event_source.py
217
218
219
220
221
222
223
def set_configuration(self, configuration: Dict[str, Any]) -> None:
    """Set the `configuration` property.

    Args:
        configuration: The value to set.
    """
    self.get_metadata().configuration = configuration

EventSourceUpdate

Bases: BaseUpdate

Update model for event sources.

Functions
from_response(response: EventSourceResponse) -> EventSourceUpdate classmethod

Create an update model from a response model.

Parameters:

Name Type Description Default
response EventSourceResponse

The response model to create the update model from.

required

Returns:

Type Description
EventSourceUpdate

The update model.

Source code in src/zenml/models/v2/core/event_source.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
@classmethod
def from_response(
    cls, response: "EventSourceResponse"
) -> "EventSourceUpdate":
    """Create an update model from a response model.

    Args:
        response: The response model to create the update model from.

    Returns:
        The update model.
    """
    return EventSourceUpdate(
        name=response.name,
        description=response.description,
        configuration=copy.deepcopy(response.configuration),
        is_active=response.is_active,
    )

FileSyncModel

Bases: BaseModel

Pydantic model synchronized with a configuration file.

Use this class as a base Pydantic model that is automatically synchronized with a configuration file on disk.

This class overrides the setattr and getattr magic methods to ensure that the FileSyncModel instance acts as an in-memory cache of the information stored in the associated configuration file.

Functions
config_validator(data: Any, handler: ValidatorFunctionWrapHandler, info: ValidationInfo) -> FileSyncModel classmethod

Wrap model validator to infer the config_file during initialization.

Parameters:

Name Type Description Default
data Any

The raw data that is provided before the validation.

required
handler ValidatorFunctionWrapHandler

The actual validation function pydantic would use for the built-in validation function.

required
info ValidationInfo

The context information during the execution of this validation function.

required

Returns:

Type Description
FileSyncModel

the actual instance after the validation

Raises:

Type Description
ValidationError

if you try to validate through a JSON string. You need to provide a config_file path when you create a FileSyncModel.

AssertionError

if the raw input does not include a config_file path for the configuration file.

Source code in src/zenml/utils/filesync_model.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
@model_validator(mode="wrap")
@classmethod
def config_validator(
    cls,
    data: Any,
    handler: ValidatorFunctionWrapHandler,
    info: ValidationInfo,
) -> "FileSyncModel":
    """Wrap model validator to infer the config_file during initialization.

    Args:
        data: The raw data that is provided before the validation.
        handler: The actual validation function pydantic would use for the
            built-in validation function.
        info: The context information during the execution of this
            validation function.

    Returns:
        the actual instance after the validation

    Raises:
        ValidationError: if you try to validate through a JSON string. You
            need to provide a config_file path when you create a
            FileSyncModel.
        AssertionError: if the raw input does not include a config_file
            path for the configuration file.
    """
    # Disable json validation
    if info.mode == "json":
        raise ValidationError(
            "You can not instantiate filesync models using the JSON mode."
        )

    if isinstance(data, dict):
        # Assert that the config file is defined
        assert "config_file" in data, (
            "You have to provide a path for the configuration file."
        )

        config_file = data.pop("config_file")

        # Load the current values and update with new values
        config_dict = {}
        if fileio.exists(config_file):
            config_dict = yaml_utils.read_yaml(config_file)
        config_dict.update(data)

        # Execute the regular validation
        model = handler(config_dict)

        assert isinstance(model, cls)

        # Assign the private attribute and save the config
        model._config_file = config_file
        model.write_config()

    else:
        # If the raw value is not a dict, apply proper validation.
        model = handler(data)

        assert isinstance(model, cls)

    return model
load_config() -> None

Loads the model from the configuration file on disk.

Source code in src/zenml/utils/filesync_model.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def load_config(self) -> None:
    """Loads the model from the configuration file on disk."""
    if not fileio.exists(self._config_file):
        return

    # don't reload the configuration if the file hasn't
    # been updated since the last load
    file_timestamp = os.path.getmtime(self._config_file)
    if file_timestamp == self._config_file_timestamp:
        return

    if self._config_file_timestamp is not None:
        logger.info(f"Reloading configuration file {self._config_file}")

    # refresh the model from the configuration file values
    config_dict = yaml_utils.read_yaml(self._config_file)
    for key, value in config_dict.items():
        super(FileSyncModel, self).__setattr__(key, value)

    self._config_file_timestamp = file_timestamp
write_config() -> None

Writes the model to the configuration file.

Source code in src/zenml/utils/filesync_model.py
137
138
139
140
def write_config(self) -> None:
    """Writes the model to the configuration file."""
    yaml_utils.write_yaml(self._config_file, self.model_dump(mode="json"))
    self._config_file_timestamp = os.path.getmtime(self._config_file)

FlavorFilter

Bases: UserScopedFilter

Model to enable advanced stack component flavor filtering.

FlavorResponse

Bases: UserScopedResponse[FlavorResponseBody, FlavorResponseMetadata, FlavorResponseResources]

Response model for stack component flavors.

Attributes
config_schema: Dict[str, Any] property

The config_schema property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

connector_requirements: Optional[ServiceConnectorRequirements] property

Returns the connector requirements for the flavor.

Returns:

Type Description
Optional[ServiceConnectorRequirements]

The connector requirements for the flavor.

connector_resource_id_attr: Optional[str] property

The connector_resource_id_attr property.

Returns:

Type Description
Optional[str]

the value of the property.

connector_resource_type: Optional[str] property

The connector_resource_type property.

Returns:

Type Description
Optional[str]

the value of the property.

connector_type: Optional[str] property

The connector_type property.

Returns:

Type Description
Optional[str]

the value of the property.

docs_url: Optional[str] property

The docs_url property.

Returns:

Type Description
Optional[str]

the value of the property.

integration: Optional[str] property

The integration property.

Returns:

Type Description
Optional[str]

the value of the property.

is_custom: bool property

The is_custom property.

Returns:

Type Description
bool

the value of the property.

logo_url: Optional[str] property

The logo_url property.

Returns:

Type Description
Optional[str]

the value of the property.

sdk_docs_url: Optional[str] property

The sdk_docs_url property.

Returns:

Type Description
Optional[str]

the value of the property.

source: str property

The source property.

Returns:

Type Description
str

the value of the property.

type: StackComponentType property

The type property.

Returns:

Type Description
StackComponentType

the value of the property.

Functions
get_hydrated_version() -> FlavorResponse

Get the hydrated version of the flavor.

Returns:

Type Description
FlavorResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/flavor.py
251
252
253
254
255
256
257
258
259
def get_hydrated_version(self) -> "FlavorResponse":
    """Get the hydrated version of the flavor.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_flavor(self.id)

GlobalConfiguration(**data: Any)

Bases: BaseModel

Stores global configuration options.

Configuration options are read from a config file, but can be overwritten by environment variables. See GlobalConfiguration.__getattribute__ for more details.

Attributes:

Name Type Description
user_id UUID

Unique user id.

user_email Optional[str]

Email address associated with this client.

user_email_opt_in Optional[bool]

Whether the user has opted in to email communication.

analytics_opt_in bool

If a user agreed to sending analytics or not.

version Optional[str]

Version of ZenML that was last used to create or update the global config.

store Optional[SerializeAsAny[StoreConfiguration]]

Store configuration.

active_stack_id Optional[UUID]

The ID of the active stack.

active_project_id Optional[UUID]

The ID of the active project.

Initializes a GlobalConfiguration using values from the config file.

GlobalConfiguration is a singleton class: only one instance can exist. Calling this constructor multiple times will always yield the same instance.

Parameters:

Name Type Description Default
data Any

Custom configuration options.

{}
Source code in src/zenml/config/global_config.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def __init__(self, **data: Any) -> None:
    """Initializes a GlobalConfiguration using values from the config file.

    GlobalConfiguration is a singleton class: only one instance can exist.
    Calling this constructor multiple times will always yield the same
    instance.

    Args:
        data: Custom configuration options.
    """
    config_values = self._read_config()
    config_values.update(data)

    super().__init__(**config_values)

    if not fileio.exists(self._config_file):
        self._write_config()
Attributes
config_directory: str property

Directory where the global configuration file is located.

Returns:

Type Description
str

The directory where the global configuration file is located.

is_initialized: bool property

Check if the global configuration is initialized.

Returns:

Type Description
bool

True if the global configuration is initialized.

local_stores_path: str property

Path where local stores information is stored.

Returns:

Type Description
str

The path where local stores information is stored.

store_configuration: StoreConfiguration property

Get the current store configuration.

Returns:

Type Description
StoreConfiguration

The store configuration.

zen_store: BaseZenStore property

Initialize and/or return the global zen store.

If the store hasn't been initialized yet, it is initialized when this property is first accessed according to the global store configuration.

Returns:

Type Description
BaseZenStore

The current zen store.

Functions
get_active_project() -> ProjectResponse

Get a model of the active project for the local client.

Returns:

Type Description
ProjectResponse

The model of the active project.

Source code in src/zenml/config/global_config.py
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
def get_active_project(self) -> "ProjectResponse":
    """Get a model of the active project for the local client.

    Returns:
        The model of the active project.
    """
    project_id = self.get_active_project_id()

    if self._active_project is not None:
        return self._active_project

    project = self.zen_store.get_project(
        project_name_or_id=project_id,
    )
    return self.set_active_project(project)
get_active_project_id() -> UUID

Get the ID of the active project.

Returns:

Type Description
UUID

The ID of the active project.

Raises:

Type Description
RuntimeError

If the active project is not set.

Source code in src/zenml/config/global_config.py
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
def get_active_project_id(self) -> UUID:
    """Get the ID of the active project.

    Returns:
        The ID of the active project.

    Raises:
        RuntimeError: If the active project is not set.
    """
    if self.active_project_id is None:
        _ = self.zen_store
        if self.active_project_id is None:
            raise RuntimeError(
                "No project is currently set as active. Please set the "
                "active project using the `zenml project set <NAME>` CLI "
                "command."
            )

    return self.active_project_id
get_active_stack_id() -> UUID

Get the ID of the active stack.

If the active stack doesn't exist yet, the ZenStore is reinitialized.

Returns:

Type Description
UUID

The active stack ID.

Source code in src/zenml/config/global_config.py
784
785
786
787
788
789
790
791
792
793
794
795
796
def get_active_stack_id(self) -> UUID:
    """Get the ID of the active stack.

    If the active stack doesn't exist yet, the ZenStore is reinitialized.

    Returns:
        The active stack ID.
    """
    if self.active_stack_id is None:
        _ = self.zen_store
        assert self.active_stack_id is not None

    return self.active_stack_id
get_config_environment_vars() -> Dict[str, str]

Convert the global configuration to environment variables.

Returns:

Type Description
Dict[str, str]

Environment variables dictionary.

Source code in src/zenml/config/global_config.py
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def get_config_environment_vars(self) -> Dict[str, str]:
    """Convert the global configuration to environment variables.

    Returns:
        Environment variables dictionary.
    """
    environment_vars = {}

    for key in type(self).model_fields.keys():
        if key == "store":
            # The store configuration uses its own environment variable
            # naming scheme
            continue

        value = getattr(self, key)
        if value is not None:
            environment_vars[CONFIG_ENV_VAR_PREFIX + key.upper()] = str(
                value
            )

    store_dict = self.store_configuration.model_dump(exclude_none=True)

    # The secrets store and backup secrets store configurations use their
    # own environment variables naming scheme
    secrets_store_dict = store_dict.pop("secrets_store", None) or {}
    backup_secrets_store_dict = (
        store_dict.pop("backup_secrets_store", None) or {}
    )

    for key, value in store_dict.items():
        if key in ["username", "password"]:
            # Never include the username and password in the env vars. Use
            # the API token instead.
            continue

        environment_vars[ENV_ZENML_STORE_PREFIX + key.upper()] = str(value)

    for key, value in secrets_store_dict.items():
        environment_vars[ENV_ZENML_SECRETS_STORE_PREFIX + key.upper()] = (
            str(value)
        )

    for key, value in backup_secrets_store_dict.items():
        environment_vars[
            ENV_ZENML_BACKUP_SECRETS_STORE_PREFIX + key.upper()
        ] = str(value)

    return environment_vars
get_default_store() -> StoreConfiguration

Get the default SQLite store configuration.

Returns:

Type Description
StoreConfiguration

The default SQLite store configuration.

Source code in src/zenml/config/global_config.py
639
640
641
642
643
644
645
646
647
648
649
650
651
652
def get_default_store(self) -> StoreConfiguration:
    """Get the default SQLite store configuration.

    Returns:
        The default SQLite store configuration.
    """
    from zenml.zen_stores.base_zen_store import BaseZenStore

    return BaseZenStore.get_default_store_config(
        path=os.path.join(
            self.local_stores_path,
            DEFAULT_STORE_DIRECTORY_NAME,
        )
    )
get_instance() -> Optional[GlobalConfiguration] classmethod

Return the GlobalConfiguration singleton instance.

Returns:

Type Description
Optional[GlobalConfiguration]

The GlobalConfiguration singleton instance or None, if the

Optional[GlobalConfiguration]

GlobalConfiguration hasn't been initialized yet.

Source code in src/zenml/config/global_config.py
150
151
152
153
154
155
156
157
158
@classmethod
def get_instance(cls) -> Optional["GlobalConfiguration"]:
    """Return the GlobalConfiguration singleton instance.

    Returns:
        The GlobalConfiguration singleton instance or None, if the
        GlobalConfiguration hasn't been initialized yet.
    """
    return cls._global_config
set_active_project(project: ProjectResponse) -> ProjectResponse

Set the project for the local client.

Parameters:

Name Type Description Default
project ProjectResponse

The project to set active.

required

Returns:

Type Description
ProjectResponse

The project that was set active.

Source code in src/zenml/config/global_config.py
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def set_active_project(
    self, project: "ProjectResponse"
) -> "ProjectResponse":
    """Set the project for the local client.

    Args:
        project: The project to set active.

    Returns:
        The project that was set active.
    """
    self.active_project_id = project.id
    self._active_project = project
    # Sanitize the global configuration to reflect the new project
    self._sanitize_config()
    return project
set_active_stack(stack: StackResponse) -> None

Set the active stack for the local client.

Parameters:

Name Type Description Default
stack StackResponse

The model of the stack to set active.

required
Source code in src/zenml/config/global_config.py
739
740
741
742
743
744
745
746
def set_active_stack(self, stack: "StackResponse") -> None:
    """Set the active stack for the local client.

    Args:
        stack: The model of the stack to set active.
    """
    self.active_stack_id = stack.id
    self._active_stack = stack
set_default_store() -> None

Initializes and sets the default store configuration.

Call this method to initialize or revert the store configuration to the default store.

Source code in src/zenml/config/global_config.py
654
655
656
657
658
659
660
661
662
663
664
665
def set_default_store(self) -> None:
    """Initializes and sets the default store configuration.

    Call this method to initialize or revert the store configuration to the
    default store.
    """
    # Apply the environment variables to the default store configuration
    default_store_cfg = self._get_store_configuration(
        baseline=self.get_default_store()
    )
    self._configure_store(default_store_cfg)
    logger.debug("Using the default store for the global config.")
set_store(config: StoreConfiguration, skip_default_registrations: bool = False, **kwargs: Any) -> None

Update the active store configuration.

Call this method to validate and update the active store configuration.

Parameters:

Name Type Description Default
config StoreConfiguration

The new store configuration to use.

required
skip_default_registrations bool

If True, the creation of the default stack and user in the store will be skipped.

False
**kwargs Any

Additional keyword arguments to pass to the store constructor.

{}
Source code in src/zenml/config/global_config.py
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
def set_store(
    self,
    config: StoreConfiguration,
    skip_default_registrations: bool = False,
    **kwargs: Any,
) -> None:
    """Update the active store configuration.

    Call this method to validate and update the active store configuration.

    Args:
        config: The new store configuration to use.
        skip_default_registrations: If `True`, the creation of the default
            stack and user in the store will be skipped.
        **kwargs: Additional keyword arguments to pass to the store
            constructor.
    """
    # Apply the environment variables to the custom store configuration
    config = self._get_store_configuration(baseline=config)
    self._configure_store(config, skip_default_registrations, **kwargs)
    logger.info("Updated the global store configuration.")
uses_default_store() -> bool

Check if the global configuration uses the default store.

Returns:

Type Description
bool

True if the global configuration uses the default store.

Source code in src/zenml/config/global_config.py
667
668
669
670
671
672
673
def uses_default_store(self) -> bool:
    """Check if the global configuration uses the default store.

    Returns:
        `True` if the global configuration uses the default store.
    """
    return self.store_configuration.url == self.get_default_store().url

IllegalOperationError(message: Optional[str] = None, url: Optional[str] = None)

Bases: ZenMLBaseException

Raised when an illegal operation is attempted.

Source code in src/zenml/exceptions.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def __init__(
    self,
    message: Optional[str] = None,
    url: Optional[str] = None,
):
    """The BaseException used to format messages displayed to the user.

    Args:
        message: Message with details of exception. This message
                 will be appended with another message directing user to
                 `url` for more information. If `None`, then default
                 Exception behavior is used.
        url: URL to point to in exception message. If `None`, then no url
             is appended.
    """
    if message and url:
        message += f" For more information, visit {url}."
    super().__init__(message)

InitializationException(message: Optional[str] = None, url: Optional[str] = None)

Bases: ZenMLBaseException

Raised when an error occurred during initialization of a ZenML repository.

Source code in src/zenml/exceptions.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def __init__(
    self,
    message: Optional[str] = None,
    url: Optional[str] = None,
):
    """The BaseException used to format messages displayed to the user.

    Args:
        message: Message with details of exception. This message
                 will be appended with another message directing user to
                 `url` for more information. If `None`, then default
                 Exception behavior is used.
        url: URL to point to in exception message. If `None`, then no url
             is appended.
    """
    if message and url:
        message += f" For more information, visit {url}."
    super().__init__(message)

LogicalOperators

Bases: StrEnum

Logical Ops to use to combine filters on list methods.

MetadataTypeEnum

Bases: StrEnum

String Enum of all possible types that metadata can have.

ModelFilter

Bases: ProjectScopedFilter, TaggableFilter

Model to enable advanced filtering of all models.

Functions
apply_sorting(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Apply sorting to the query for Models.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the sorting.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with sorting applied.

Source code in src/zenml/models/v2/core/model.py
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def apply_sorting(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Apply sorting to the query for Models.

    Args:
        query: The query to which to apply the sorting.
        table: The query table.

    Returns:
        The query with sorting applied.
    """
    from sqlmodel import asc, case, col, desc, func, select

    from zenml.enums import SorterOps
    from zenml.zen_stores.schemas import (
        ModelSchema,
        ModelVersionSchema,
    )

    sort_by, operand = self.sorting_params

    if sort_by == SORT_BY_LATEST_VERSION_KEY:
        # Subquery to find the latest version per model
        latest_version_subquery = (
            select(
                ModelSchema.id,
                case(
                    (
                        func.max(ModelVersionSchema.created).is_(None),
                        ModelSchema.created,
                    ),
                    else_=func.max(ModelVersionSchema.created),
                ).label("latest_version_created"),
            )
            .outerjoin(
                ModelVersionSchema,
                ModelSchema.id == ModelVersionSchema.model_id,  # type: ignore[arg-type]
            )
            .group_by(col(ModelSchema.id))
            .subquery()
        )

        query = query.add_columns(
            latest_version_subquery.c.latest_version_created,
        ).where(ModelSchema.id == latest_version_subquery.c.id)

        # Apply sorting based on the operand
        if operand == SorterOps.ASCENDING:
            query = query.order_by(
                asc(latest_version_subquery.c.latest_version_created),
                asc(ModelSchema.id),
            )
        else:
            query = query.order_by(
                desc(latest_version_subquery.c.latest_version_created),
                desc(ModelSchema.id),
            )
        return query

    # For other sorting cases, delegate to the parent class
    return super().apply_sorting(query=query, table=table)

ModelRequest

Bases: ProjectScopedRequest

Request model for models.

ModelResponse

Bases: ProjectScopedResponse[ModelResponseBody, ModelResponseMetadata, ModelResponseResources]

Response model for models.

Attributes
audience: Optional[str] property

The audience property.

Returns:

Type Description
Optional[str]

the value of the property.

description: Optional[str] property

The description property.

Returns:

Type Description
Optional[str]

the value of the property.

ethics: Optional[str] property

The ethics property.

Returns:

Type Description
Optional[str]

the value of the property.

latest_version_id: Optional[UUID] property

The latest_version_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

latest_version_name: Optional[str] property

The latest_version_name property.

Returns:

Type Description
Optional[str]

the value of the property.

license: Optional[str] property

The license property.

Returns:

Type Description
Optional[str]

the value of the property.

limitations: Optional[str] property

The limitations property.

Returns:

Type Description
Optional[str]

the value of the property.

save_models_to_registry: bool property

The save_models_to_registry property.

Returns:

Type Description
bool

the value of the property.

tags: List[TagResponse] property

The tags property.

Returns:

Type Description
List[TagResponse]

the value of the property.

trade_offs: Optional[str] property

The trade_offs property.

Returns:

Type Description
Optional[str]

the value of the property.

use_cases: Optional[str] property

The use_cases property.

Returns:

Type Description
Optional[str]

the value of the property.

versions: List[Model] property

List all versions of the model.

Returns:

Type Description
List[Model]

The list of all model version.

Functions
get_hydrated_version() -> ModelResponse

Get the hydrated version of this model.

Returns:

Type Description
ModelResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/model.py
202
203
204
205
206
207
208
209
210
def get_hydrated_version(self) -> "ModelResponse":
    """Get the hydrated version of this model.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_model(self.id)

ModelStages

Bases: StrEnum

All possible stages of a Model Version.

ModelUpdate

Bases: BaseUpdate

Update model for models.

ModelVersionArtifactFilter

Bases: BaseFilter

Model version pipeline run links filter model.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[Union[ColumnElement[bool]]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[Union[ColumnElement[bool]]]

A list of custom filters.

Source code in src/zenml/models/v2/core/model_version_artifact.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List[Union["ColumnElement[bool]"]]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import and_, col

    from zenml.zen_stores.schemas import (
        ArtifactSchema,
        ArtifactVersionSchema,
        ModelVersionArtifactSchema,
        UserSchema,
    )

    if self.artifact_name:
        value, filter_operator = self._resolve_operator(self.artifact_name)
        filter_ = StrFilter(
            operation=GenericFilterOps(filter_operator),
            column="name",
            value=value,
        )
        artifact_name_filter = and_(
            ModelVersionArtifactSchema.artifact_version_id
            == ArtifactVersionSchema.id,
            ArtifactVersionSchema.artifact_id == ArtifactSchema.id,
            filter_.generate_query_conditions(ArtifactSchema),
        )
        custom_filters.append(artifact_name_filter)

    if self.only_data_artifacts:
        data_artifact_filter = and_(
            ModelVersionArtifactSchema.artifact_version_id
            == ArtifactVersionSchema.id,
            col(ArtifactVersionSchema.type).not_in(
                ["ServiceArtifact", "ModelArtifact"]
            ),
        )
        custom_filters.append(data_artifact_filter)

    if self.only_model_artifacts:
        model_artifact_filter = and_(
            ModelVersionArtifactSchema.artifact_version_id
            == ArtifactVersionSchema.id,
            ArtifactVersionSchema.type == "ModelArtifact",
        )
        custom_filters.append(model_artifact_filter)

    if self.only_deployment_artifacts:
        deployment_artifact_filter = and_(
            ModelVersionArtifactSchema.artifact_version_id
            == ArtifactVersionSchema.id,
            ArtifactVersionSchema.type == "ServiceArtifact",
        )
        custom_filters.append(deployment_artifact_filter)

    if self.has_custom_name is not None:
        custom_name_filter = and_(
            ModelVersionArtifactSchema.artifact_version_id
            == ArtifactVersionSchema.id,
            ArtifactVersionSchema.artifact_id == ArtifactSchema.id,
            ArtifactSchema.has_custom_name == self.has_custom_name,
        )
        custom_filters.append(custom_name_filter)

    if self.user:
        user_filter = and_(
            ModelVersionArtifactSchema.artifact_version_id
            == ArtifactVersionSchema.id,
            ArtifactVersionSchema.user_id == UserSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.user,
                table=UserSchema,
                additional_columns=["full_name"],
            ),
        )
        custom_filters.append(user_filter)

    return custom_filters

ModelVersionArtifactResponse

Bases: BaseIdentifiedResponse[ModelVersionArtifactResponseBody, BaseResponseMetadata, ModelVersionArtifactResponseResources]

Response model for links between model versions and artifacts.

Attributes
artifact_version: ArtifactVersionResponse property

The artifact_version property.

Returns:

Type Description
ArtifactVersionResponse

the value of the property.

model_version: UUID property

The model_version property.

Returns:

Type Description
UUID

the value of the property.

ModelVersionFilter

Bases: ProjectScopedFilter, TaggableFilter, RunMetadataFilterMixin

Filter model for model versions.

Functions
apply_filter(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Applies the filter to a query.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the filter.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with filter applied.

Raises:

Type Description
ValueError

if the filter is not scoped to a model.

Source code in src/zenml/models/v2/core/model_version.py
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
def apply_filter(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Applies the filter to a query.

    Args:
        query: The query to which to apply the filter.
        table: The query table.

    Returns:
        The query with filter applied.

    Raises:
        ValueError: if the filter is not scoped to a model.
    """
    query = super().apply_filter(query=query, table=table)

    # The model scope must always be set and must be a UUID. If the
    # client sets this to a string, the server will try to resolve it to a
    # model ID.
    #
    # If not set by the client, the server will raise a ValueError.
    #
    # See: SqlZenStore._set_filter_model_id

    if not self.model:
        raise ValueError("Model scope missing from the filter.")

    if not isinstance(self.model, UUID):
        raise ValueError(
            f"Model scope must be a UUID, got {type(self.model)}."
        )

    query = query.where(getattr(table, "model_id") == self.model)

    return query

ModelVersionPipelineRunFilter

Bases: BaseFilter

Model version pipeline run links filter model.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/model_version_pipeline_run.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import and_

    from zenml.zen_stores.schemas import (
        ModelVersionPipelineRunSchema,
        PipelineRunSchema,
        UserSchema,
    )

    if self.pipeline_run_name:
        value, filter_operator = self._resolve_operator(
            self.pipeline_run_name
        )
        filter_ = StrFilter(
            operation=GenericFilterOps(filter_operator),
            column="name",
            value=value,
        )
        pipeline_run_name_filter = and_(
            ModelVersionPipelineRunSchema.pipeline_run_id
            == PipelineRunSchema.id,
            filter_.generate_query_conditions(PipelineRunSchema),
        )
        custom_filters.append(pipeline_run_name_filter)

    if self.user:
        user_filter = and_(
            ModelVersionPipelineRunSchema.pipeline_run_id
            == PipelineRunSchema.id,
            PipelineRunSchema.user_id == UserSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.user,
                table=UserSchema,
                additional_columns=["full_name"],
            ),
        )
        custom_filters.append(user_filter)

    return custom_filters

ModelVersionPipelineRunResponse

Bases: BaseIdentifiedResponse[ModelVersionPipelineRunResponseBody, BaseResponseMetadata, ModelVersionPipelineRunResponseResources]

Response model for links between model versions and pipeline runs.

Attributes
model_version: UUID property

The model_version property.

Returns:

Type Description
UUID

the value of the property.

pipeline_run: PipelineRunResponse property

The pipeline_run property.

Returns:

Type Description
PipelineRunResponse

the value of the property.

ModelVersionRequest

Bases: ProjectScopedRequest

Request model for model versions.

ModelVersionResponse

Bases: ProjectScopedResponse[ModelVersionResponseBody, ModelVersionResponseMetadata, ModelVersionResponseResources]

Response model for model versions.

Attributes
data_artifact_ids: Dict[str, Dict[str, UUID]] property

The data_artifact_ids property.

Returns:

Type Description
Dict[str, Dict[str, UUID]]

the value of the property.

data_artifacts: Dict[str, Dict[str, ArtifactVersionResponse]] property

Get all data artifacts linked to this model version.

Returns:

Type Description
Dict[str, Dict[str, ArtifactVersionResponse]]

Dictionary of data artifacts with versions as

Dict[str, Dict[str, ArtifactVersionResponse]]

Dict[str, Dict[str, ArtifactResponse]]

deployment_artifact_ids: Dict[str, Dict[str, UUID]] property

The deployment_artifact_ids property.

Returns:

Type Description
Dict[str, Dict[str, UUID]]

the value of the property.

deployment_artifacts: Dict[str, Dict[str, ArtifactVersionResponse]] property

Get all deployment artifacts linked to this model version.

Returns:

Type Description
Dict[str, Dict[str, ArtifactVersionResponse]]

Dictionary of deployment artifacts with versions as

Dict[str, Dict[str, ArtifactVersionResponse]]

Dict[str, Dict[str, ArtifactResponse]]

description: Optional[str] property

The description property.

Returns:

Type Description
Optional[str]

the value of the property.

model: ModelResponse property

The model property.

Returns:

Type Description
ModelResponse

the value of the property.

model_artifact_ids: Dict[str, Dict[str, UUID]] property

The model_artifact_ids property.

Returns:

Type Description
Dict[str, Dict[str, UUID]]

the value of the property.

model_artifacts: Dict[str, Dict[str, ArtifactVersionResponse]] property

Get all model artifacts linked to this model version.

Returns:

Type Description
Dict[str, Dict[str, ArtifactVersionResponse]]

Dictionary of model artifacts with versions as

Dict[str, Dict[str, ArtifactVersionResponse]]

Dict[str, Dict[str, ArtifactResponse]]

number: int property

The number property.

Returns:

Type Description
int

the value of the property.

pipeline_run_ids: Dict[str, UUID] property

The pipeline_run_ids property.

Returns:

Type Description
Dict[str, UUID]

the value of the property.

pipeline_runs: Dict[str, PipelineRunResponse] property

Get all pipeline runs linked to this version.

Returns:

Type Description
Dict[str, PipelineRunResponse]

Dictionary of Pipeline Runs as PipelineRunResponseModel

run_metadata: Dict[str, MetadataType] property

The run_metadata property.

Returns:

Type Description
Dict[str, MetadataType]

the value of the property.

stage: Optional[str] property

The stage property.

Returns:

Type Description
Optional[str]

the value of the property.

tags: List[TagResponse] property

The tags property.

Returns:

Type Description
List[TagResponse]

the value of the property.

Functions
get_artifact(name: str, version: Optional[str] = None) -> Optional[ArtifactVersionResponse]

Get the artifact linked to this model version.

Parameters:

Name Type Description Default
name str

The name of the artifact to retrieve.

required
version Optional[str]

The version of the artifact to retrieve (None for latest/non-versioned)

None

Returns:

Type Description
Optional[ArtifactVersionResponse]

Specific version of an artifact or None

Source code in src/zenml/models/v2/core/model_version.py
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def get_artifact(
    self,
    name: str,
    version: Optional[str] = None,
) -> Optional["ArtifactVersionResponse"]:
    """Get the artifact linked to this model version.

    Args:
        name: The name of the artifact to retrieve.
        version: The version of the artifact to retrieve (None for
            latest/non-versioned)

    Returns:
        Specific version of an artifact or None
    """
    return self._get_linked_object(name, version)
get_data_artifact(name: str, version: Optional[str] = None) -> Optional[ArtifactVersionResponse]

Get the data artifact linked to this model version.

Parameters:

Name Type Description Default
name str

The name of the data artifact to retrieve.

required
version Optional[str]

The version of the data artifact to retrieve (None for latest/non-versioned)

None

Returns:

Type Description
Optional[ArtifactVersionResponse]

Specific version of the data artifact or None

Source code in src/zenml/models/v2/core/model_version.py
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
def get_data_artifact(
    self,
    name: str,
    version: Optional[str] = None,
) -> Optional["ArtifactVersionResponse"]:
    """Get the data artifact linked to this model version.

    Args:
        name: The name of the data artifact to retrieve.
        version: The version of the data artifact to retrieve (None for
            latest/non-versioned)

    Returns:
        Specific version of the data artifact or None
    """
    return self._get_linked_object(name, version, ArtifactType.DATA)
get_deployment_artifact(name: str, version: Optional[str] = None) -> Optional[ArtifactVersionResponse]

Get the deployment artifact linked to this model version.

Parameters:

Name Type Description Default
name str

The name of the deployment artifact to retrieve.

required
version Optional[str]

The version of the deployment artifact to retrieve (None for latest/non-versioned)

None

Returns:

Type Description
Optional[ArtifactVersionResponse]

Specific version of the deployment artifact or None

Source code in src/zenml/models/v2/core/model_version.py
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
def get_deployment_artifact(
    self,
    name: str,
    version: Optional[str] = None,
) -> Optional["ArtifactVersionResponse"]:
    """Get the deployment artifact linked to this model version.

    Args:
        name: The name of the deployment artifact to retrieve.
        version: The version of the deployment artifact to retrieve (None for
            latest/non-versioned)

    Returns:
        Specific version of the deployment artifact or None
    """
    return self._get_linked_object(name, version, ArtifactType.SERVICE)
get_hydrated_version() -> ModelVersionResponse

Get the hydrated version of this model version.

Returns:

Type Description
ModelVersionResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/model_version.py
307
308
309
310
311
312
313
314
315
def get_hydrated_version(self) -> "ModelVersionResponse":
    """Get the hydrated version of this model version.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_model_version(self.id)
get_model_artifact(name: str, version: Optional[str] = None) -> Optional[ArtifactVersionResponse]

Get the model artifact linked to this model version.

Parameters:

Name Type Description Default
name str

The name of the model artifact to retrieve.

required
version Optional[str]

The version of the model artifact to retrieve (None for latest/non-versioned)

None

Returns:

Type Description
Optional[ArtifactVersionResponse]

Specific version of the model artifact or None

Source code in src/zenml/models/v2/core/model_version.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def get_model_artifact(
    self,
    name: str,
    version: Optional[str] = None,
) -> Optional["ArtifactVersionResponse"]:
    """Get the model artifact linked to this model version.

    Args:
        name: The name of the model artifact to retrieve.
        version: The version of the model artifact to retrieve (None for
            latest/non-versioned)

    Returns:
        Specific version of the model artifact or None
    """
    return self._get_linked_object(name, version, ArtifactType.MODEL)
get_pipeline_run(name: str) -> PipelineRunResponse

Get pipeline run linked to this version.

Parameters:

Name Type Description Default
name str

The name of the pipeline run to retrieve.

required

Returns:

Type Description
PipelineRunResponse

PipelineRun as PipelineRunResponseModel

Source code in src/zenml/models/v2/core/model_version.py
525
526
527
528
529
530
531
532
533
534
535
536
def get_pipeline_run(self, name: str) -> "PipelineRunResponse":
    """Get pipeline run linked to this version.

    Args:
        name: The name of the pipeline run to retrieve.

    Returns:
        PipelineRun as PipelineRunResponseModel
    """
    from zenml.client import Client

    return Client().get_pipeline_run(self.pipeline_run_ids[name])
set_stage(stage: Union[str, ModelStages], force: bool = False) -> None

Sets this Model Version to a desired stage.

Parameters:

Name Type Description Default
stage Union[str, ModelStages]

the target stage for model version.

required
force bool

whether to force archiving of current model version in target stage or raise.

False

Raises:

Type Description
ValueError

if model_stage is not valid.

Source code in src/zenml/models/v2/core/model_version.py
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
def set_stage(
    self, stage: Union[str, ModelStages], force: bool = False
) -> None:
    """Sets this Model Version to a desired stage.

    Args:
        stage: the target stage for model version.
        force: whether to force archiving of current model version in
            target stage or raise.

    Raises:
        ValueError: if model_stage is not valid.
    """
    from zenml.client import Client

    stage = getattr(stage, "value", stage)
    if stage not in [stage.value for stage in ModelStages]:
        raise ValueError(f"`{stage}` is not a valid model stage.")

    Client().update_model_version(
        model_name_or_id=self.model.id,
        version_name_or_id=self.id,
        stage=stage,
        force=force,
    )
to_model_class(suppress_class_validation_warnings: bool = True) -> Model

Convert response model to Model object.

Parameters:

Name Type Description Default
suppress_class_validation_warnings bool

internally used to suppress repeated warnings.

True

Returns:

Type Description
Model

Model object

Source code in src/zenml/models/v2/core/model_version.py
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def to_model_class(
    self,
    suppress_class_validation_warnings: bool = True,
) -> "Model":
    """Convert response model to Model object.

    Args:
        suppress_class_validation_warnings: internally used to suppress
            repeated warnings.

    Returns:
        Model object
    """
    from zenml.model.model import Model

    mv = Model(
        name=self.model.name,
        license=self.model.license,
        description=self.description,
        audience=self.model.audience,
        use_cases=self.model.use_cases,
        limitations=self.model.limitations,
        trade_offs=self.model.trade_offs,
        ethics=self.model.ethics,
        tags=[t.name for t in self.tags],
        version=self.name,
        suppress_class_validation_warnings=suppress_class_validation_warnings,
        model_version_id=self.id,
    )

    return mv

ModelVersionUpdate

Bases: BaseUpdate

Update model for model versions.

OAuthDeviceFilter

Bases: UserScopedFilter

Model to enable advanced filtering of OAuth2 devices.

OAuthDeviceResponse

Bases: UserScopedResponse[OAuthDeviceResponseBody, OAuthDeviceResponseMetadata, OAuthDeviceResponseResources]

Response model for OAuth2 devices.

Attributes
city: Optional[str] property

The city property.

Returns:

Type Description
Optional[str]

the value of the property.

client_id: UUID property

The client_id property.

Returns:

Type Description
UUID

the value of the property.

country: Optional[str] property

The country property.

Returns:

Type Description
Optional[str]

the value of the property.

expires: Optional[datetime] property

The expires property.

Returns:

Type Description
Optional[datetime]

the value of the property.

failed_auth_attempts: int property

The failed_auth_attempts property.

Returns:

Type Description
int

the value of the property.

hostname: Optional[str] property

The hostname property.

Returns:

Type Description
Optional[str]

the value of the property.

ip_address: Optional[str] property

The ip_address property.

Returns:

Type Description
Optional[str]

the value of the property.

last_login: Optional[datetime] property

The last_login property.

Returns:

Type Description
Optional[datetime]

the value of the property.

os: Optional[str] property

The os property.

Returns:

Type Description
Optional[str]

the value of the property.

python_version: Optional[str] property

The python_version property.

Returns:

Type Description
Optional[str]

the value of the property.

region: Optional[str] property

The region property.

Returns:

Type Description
Optional[str]

the value of the property.

status: OAuthDeviceStatus property

The status property.

Returns:

Type Description
OAuthDeviceStatus

the value of the property.

trusted_device: bool property

The trusted_device property.

Returns:

Type Description
bool

the value of the property.

zenml_version: Optional[str] property

The zenml_version property.

Returns:

Type Description
Optional[str]

the value of the property.

Functions
get_hydrated_version() -> OAuthDeviceResponse

Get the hydrated version of this OAuth2 device.

Returns:

Type Description
OAuthDeviceResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/device.py
241
242
243
244
245
246
247
248
249
def get_hydrated_version(self) -> "OAuthDeviceResponse":
    """Get the hydrated version of this OAuth2 device.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_authorized_device(self.id)

OAuthDeviceStatus

Bases: StrEnum

The OAuth device status.

OAuthDeviceUpdate

Bases: BaseUpdate

OAuth2 device update model.

Page

Bases: BaseModel, Generic[B]

Return Model for List Models to accommodate pagination.

Attributes
size: int property

Return the item count of the page.

Returns:

Type Description
int

The amount of items in the page.

PipelineBuildFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all pipeline builds.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/pipeline_build.py
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
def get_custom_filters(
    self,
    table: Type["AnySchema"],
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import and_

    from zenml.enums import StackComponentType
    from zenml.zen_stores.schemas import (
        PipelineBuildSchema,
        StackComponentSchema,
        StackCompositionSchema,
        StackSchema,
    )

    if self.container_registry_id:
        container_registry_filter = and_(
            PipelineBuildSchema.stack_id == StackSchema.id,
            StackSchema.id == StackCompositionSchema.stack_id,
            StackCompositionSchema.component_id == StackComponentSchema.id,
            StackComponentSchema.type
            == StackComponentType.CONTAINER_REGISTRY.value,
            StackComponentSchema.id == self.container_registry_id,
        )
        custom_filters.append(container_registry_filter)

    return custom_filters

PipelineBuildResponse

Bases: ProjectScopedResponse[PipelineBuildResponseBody, PipelineBuildResponseMetadata, PipelineBuildResponseResources]

Response model for pipeline builds.

Attributes
checksum: Optional[str] property

The checksum property.

Returns:

Type Description
Optional[str]

the value of the property.

contains_code: bool property

The contains_code property.

Returns:

Type Description
bool

the value of the property.

duration: Optional[int] property

The duration property.

Returns:

Type Description
Optional[int]

the value of the property.

images: Dict[str, BuildItem] property

The images property.

Returns:

Type Description
Dict[str, BuildItem]

the value of the property.

is_local: bool property

The is_local property.

Returns:

Type Description
bool

the value of the property.

pipeline: Optional[PipelineResponse] property

The pipeline property.

Returns:

Type Description
Optional[PipelineResponse]

the value of the property.

python_version: Optional[str] property

The python_version property.

Returns:

Type Description
Optional[str]

the value of the property.

requires_code_download: bool property

Whether the build requires code download.

Returns:

Type Description
bool

Whether the build requires code download.

stack: Optional[StackResponse] property

The stack property.

Returns:

Type Description
Optional[StackResponse]

the value of the property.

stack_checksum: Optional[str] property

The stack_checksum property.

Returns:

Type Description
Optional[str]

the value of the property.

zenml_version: Optional[str] property

The zenml_version property.

Returns:

Type Description
Optional[str]

the value of the property.

Functions
get_hydrated_version() -> PipelineBuildResponse

Return the hydrated version of this pipeline build.

Returns:

Type Description
PipelineBuildResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/pipeline_build.py
247
248
249
250
251
252
253
254
255
def get_hydrated_version(self) -> "PipelineBuildResponse":
    """Return the hydrated version of this pipeline build.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_build(self.id)
get_image(component_key: str, step: Optional[str] = None) -> str

Get the image built for a specific key.

Parameters:

Name Type Description Default
component_key str

The key for which to get the image.

required
step Optional[str]

The pipeline step for which to get the image. If no image exists for this step, will fall back to the pipeline image for the same key.

None

Returns:

Type Description
str

The image name or digest.

Source code in src/zenml/models/v2/core/pipeline_build.py
315
316
317
318
319
320
321
322
323
324
325
326
327
def get_image(self, component_key: str, step: Optional[str] = None) -> str:
    """Get the image built for a specific key.

    Args:
        component_key: The key for which to get the image.
        step: The pipeline step for which to get the image. If no image
            exists for this step, will fall back to the pipeline image for
            the same key.

    Returns:
        The image name or digest.
    """
    return self._get_item(component_key=component_key, step=step).image
get_image_key(component_key: str, step: Optional[str] = None) -> str staticmethod

Get the image key.

Parameters:

Name Type Description Default
component_key str

The component key.

required
step Optional[str]

The pipeline step for which the image was built.

None

Returns:

Type Description
str

The image key.

Source code in src/zenml/models/v2/core/pipeline_build.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
@staticmethod
def get_image_key(component_key: str, step: Optional[str] = None) -> str:
    """Get the image key.

    Args:
        component_key: The component key.
        step: The pipeline step for which the image was built.

    Returns:
        The image key.
    """
    if step:
        return f"{step}.{component_key}"
    else:
        return component_key
get_settings_checksum(component_key: str, step: Optional[str] = None) -> Optional[str]

Get the settings checksum for a specific key.

Parameters:

Name Type Description Default
component_key str

The key for which to get the checksum.

required
step Optional[str]

The pipeline step for which to get the checksum. If no image exists for this step, will fall back to the pipeline image for the same key.

None

Returns:

Type Description
Optional[str]

The settings checksum.

Source code in src/zenml/models/v2/core/pipeline_build.py
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def get_settings_checksum(
    self, component_key: str, step: Optional[str] = None
) -> Optional[str]:
    """Get the settings checksum for a specific key.

    Args:
        component_key: The key for which to get the checksum.
        step: The pipeline step for which to get the checksum. If no
            image exists for this step, will fall back to the pipeline image
            for the same key.

    Returns:
        The settings checksum.
    """
    return self._get_item(
        component_key=component_key, step=step
    ).settings_checksum
to_yaml() -> Dict[str, Any]

Create a yaml representation of the pipeline build.

Create a yaml representation of the pipeline build that can be used to create a PipelineBuildBase instance.

Returns:

Type Description
Dict[str, Any]

The yaml representation of the pipeline build.

Source code in src/zenml/models/v2/core/pipeline_build.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def to_yaml(self) -> Dict[str, Any]:
    """Create a yaml representation of the pipeline build.

    Create a yaml representation of the pipeline build that can be used
    to create a PipelineBuildBase instance.

    Returns:
        The yaml representation of the pipeline build.
    """
    # Get the base attributes
    yaml_dict: Dict[str, Any] = json.loads(
        self.model_dump_json(
            exclude={
                "body",
                "metadata",
            }
        )
    )
    images = json.loads(
        self.get_metadata().model_dump_json(
            exclude={
                "pipeline",
                "stack",
                "project",
            }
        )
    )
    yaml_dict.update(images)
    return yaml_dict

PipelineDeploymentFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all pipeline deployments.

PipelineDeploymentResponse

Bases: ProjectScopedResponse[PipelineDeploymentResponseBody, PipelineDeploymentResponseMetadata, PipelineDeploymentResponseResources]

Response model for pipeline deployments.

Attributes
build: Optional[PipelineBuildResponse] property

The build property.

Returns:

Type Description
Optional[PipelineBuildResponse]

the value of the property.

client_environment: Dict[str, str] property

The client_environment property.

Returns:

Type Description
Dict[str, str]

the value of the property.

client_version: Optional[str] property

The client_version property.

Returns:

Type Description
Optional[str]

the value of the property.

code_path: Optional[str] property

The code_path property.

Returns:

Type Description
Optional[str]

the value of the property.

code_reference: Optional[CodeReferenceResponse] property

The code_reference property.

Returns:

Type Description
Optional[CodeReferenceResponse]

the value of the property.

pipeline: Optional[PipelineResponse] property

The pipeline property.

Returns:

Type Description
Optional[PipelineResponse]

the value of the property.

pipeline_configuration: PipelineConfiguration property

The pipeline_configuration property.

Returns:

Type Description
PipelineConfiguration

the value of the property.

pipeline_spec: Optional[PipelineSpec] property

The pipeline_spec property.

Returns:

Type Description
Optional[PipelineSpec]

the value of the property.

pipeline_version_hash: Optional[str] property

The pipeline_version_hash property.

Returns:

Type Description
Optional[str]

the value of the property.

run_name_template: str property

The run_name_template property.

Returns:

Type Description
str

the value of the property.

schedule: Optional[ScheduleResponse] property

The schedule property.

Returns:

Type Description
Optional[ScheduleResponse]

the value of the property.

server_version: Optional[str] property

The server_version property.

Returns:

Type Description
Optional[str]

the value of the property.

stack: Optional[StackResponse] property

The stack property.

Returns:

Type Description
Optional[StackResponse]

the value of the property.

step_configurations: Dict[str, Step] property

The step_configurations property.

Returns:

Type Description
Dict[str, Step]

the value of the property.

template_id: Optional[UUID] property

The template_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

Functions
get_hydrated_version() -> PipelineDeploymentResponse

Return the hydrated version of this pipeline deployment.

Returns:

Type Description
PipelineDeploymentResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/pipeline_deployment.py
206
207
208
209
210
211
212
213
214
def get_hydrated_version(self) -> "PipelineDeploymentResponse":
    """Return the hydrated version of this pipeline deployment.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_deployment(self.id)

PipelineFilter

Bases: ProjectScopedFilter, TaggableFilter

Pipeline filter model.

Functions
apply_filter(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Applies the filter to a query.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the filter.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with filter applied.

Source code in src/zenml/models/v2/core/pipeline.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def apply_filter(
    self, query: AnyQuery, table: Type["AnySchema"]
) -> AnyQuery:
    """Applies the filter to a query.

    Args:
        query: The query to which to apply the filter.
        table: The query table.

    Returns:
        The query with filter applied.
    """
    query = super().apply_filter(query, table)

    from sqlmodel import and_, col, func, select

    from zenml.zen_stores.schemas import PipelineRunSchema, PipelineSchema

    if self.latest_run_status:
        latest_pipeline_run_subquery = (
            select(
                PipelineRunSchema.pipeline_id,
                func.max(PipelineRunSchema.created).label("created"),
            )
            .where(col(PipelineRunSchema.pipeline_id).is_not(None))
            .group_by(col(PipelineRunSchema.pipeline_id))
            .subquery()
        )

        query = (
            query.join(
                PipelineRunSchema,
                PipelineSchema.id == PipelineRunSchema.pipeline_id,
            )
            .join(
                latest_pipeline_run_subquery,
                and_(
                    PipelineRunSchema.pipeline_id
                    == latest_pipeline_run_subquery.c.pipeline_id,
                    PipelineRunSchema.created
                    == latest_pipeline_run_subquery.c.created,
                ),
            )
            .where(
                self.generate_custom_query_conditions_for_column(
                    value=self.latest_run_status,
                    table=PipelineRunSchema,
                    column="status",
                )
            )
        )

    return query
apply_sorting(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Apply sorting to the query.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the sorting.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with sorting applied.

Source code in src/zenml/models/v2/core/pipeline.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def apply_sorting(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Apply sorting to the query.

    Args:
        query: The query to which to apply the sorting.
        table: The query table.

    Returns:
        The query with sorting applied.
    """
    from sqlmodel import asc, case, col, desc, func, select

    from zenml.enums import SorterOps
    from zenml.zen_stores.schemas import PipelineRunSchema, PipelineSchema

    sort_by, operand = self.sorting_params

    if sort_by == SORT_PIPELINES_BY_LATEST_RUN_KEY:
        # Subquery to find the latest run per pipeline
        latest_run_subquery = (
            select(
                PipelineSchema.id,
                case(
                    (
                        func.max(PipelineRunSchema.created).is_(None),
                        PipelineSchema.created,
                    ),
                    else_=func.max(PipelineRunSchema.created),
                ).label("latest_run"),
            )
            .outerjoin(
                PipelineRunSchema,
                PipelineSchema.id == PipelineRunSchema.pipeline_id,  # type: ignore[arg-type]
            )
            .group_by(col(PipelineSchema.id))
            .subquery()
        )

        query = query.add_columns(
            latest_run_subquery.c.latest_run,
        ).where(PipelineSchema.id == latest_run_subquery.c.id)

        if operand == SorterOps.ASCENDING:
            query = query.order_by(
                asc(latest_run_subquery.c.latest_run),
                asc(PipelineSchema.id),
            )
        else:
            query = query.order_by(
                desc(latest_run_subquery.c.latest_run),
                desc(PipelineSchema.id),
            )
        return query
    else:
        return super().apply_sorting(query=query, table=table)

PipelineResponse

Bases: ProjectScopedResponse[PipelineResponseBody, PipelineResponseMetadata, PipelineResponseResources]

Response model for pipelines.

Attributes
last_run: PipelineRunResponse property

Returns the last run of this pipeline.

Returns:

Type Description
PipelineRunResponse

The last run of this pipeline.

Raises:

Type Description
RuntimeError

If no runs were found for this pipeline.

last_successful_run: PipelineRunResponse property

Returns the last successful run of this pipeline.

Returns:

Type Description
PipelineRunResponse

The last successful run of this pipeline.

Raises:

Type Description
RuntimeError

If no successful runs were found for this pipeline.

latest_run_id: Optional[UUID] property

The latest_run_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

latest_run_status: Optional[ExecutionStatus] property

The latest_run_status property.

Returns:

Type Description
Optional[ExecutionStatus]

the value of the property.

num_runs: int property

Returns the number of runs of this pipeline.

Returns:

Type Description
int

The number of runs of this pipeline.

runs: List[PipelineRunResponse] property

Returns the 20 most recent runs of this pipeline in descending order.

Returns:

Type Description
List[PipelineRunResponse]

The 20 most recent runs of this pipeline in descending order.

tags: List[TagResponse] property

The tags property.

Returns:

Type Description
List[TagResponse]

the value of the property.

Functions
get_hydrated_version() -> PipelineResponse

Get the hydrated version of this pipeline.

Returns:

Type Description
PipelineResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/pipeline.py
146
147
148
149
150
151
152
153
154
def get_hydrated_version(self) -> "PipelineResponse":
    """Get the hydrated version of this pipeline.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_pipeline(self.id)
get_runs(**kwargs: Any) -> List[PipelineRunResponse]

Get runs of this pipeline.

Can be used to fetch runs other than self.runs and supports fine-grained filtering and pagination.

Parameters:

Name Type Description Default
**kwargs Any

Further arguments for filtering or pagination that are passed to client.list_pipeline_runs().

{}

Returns:

Type Description
List[PipelineRunResponse]

List of runs of this pipeline.

Source code in src/zenml/models/v2/core/pipeline.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def get_runs(self, **kwargs: Any) -> List["PipelineRunResponse"]:
    """Get runs of this pipeline.

    Can be used to fetch runs other than `self.runs` and supports
    fine-grained filtering and pagination.

    Args:
        **kwargs: Further arguments for filtering or pagination that are
            passed to `client.list_pipeline_runs()`.

    Returns:
        List of runs of this pipeline.
    """
    from zenml.client import Client

    return Client().list_pipeline_runs(pipeline_id=self.id, **kwargs).items

PipelineRunConfiguration

Bases: StrictBaseModel, YAMLSerializationMixin

Class for pipeline run configurations.

PipelineRunFilter

Bases: ProjectScopedFilter, TaggableFilter, RunMetadataFilterMixin

Model to enable advanced filtering of all pipeline runs.

Functions
apply_sorting(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Apply sorting to the query.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the sorting.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with sorting applied.

Source code in src/zenml/models/v2/core/pipeline_run.py
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
def apply_sorting(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Apply sorting to the query.

    Args:
        query: The query to which to apply the sorting.
        table: The query table.

    Returns:
        The query with sorting applied.
    """
    from sqlmodel import asc, desc

    from zenml.enums import SorterOps
    from zenml.zen_stores.schemas import (
        ModelSchema,
        ModelVersionSchema,
        PipelineDeploymentSchema,
        PipelineRunSchema,
        PipelineSchema,
        StackSchema,
    )

    sort_by, operand = self.sorting_params

    if sort_by == "pipeline":
        query = query.outerjoin(
            PipelineSchema,
            PipelineRunSchema.pipeline_id == PipelineSchema.id,
        )
        column = PipelineSchema.name
    elif sort_by == "stack":
        query = query.outerjoin(
            PipelineDeploymentSchema,
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
        ).outerjoin(
            StackSchema,
            PipelineDeploymentSchema.stack_id == StackSchema.id,
        )
        column = StackSchema.name
    elif sort_by == "model":
        query = query.outerjoin(
            ModelVersionSchema,
            PipelineRunSchema.model_version_id == ModelVersionSchema.id,
        ).outerjoin(
            ModelSchema,
            ModelVersionSchema.model_id == ModelSchema.id,
        )
        column = ModelSchema.name
    elif sort_by == "model_version":
        query = query.outerjoin(
            ModelVersionSchema,
            PipelineRunSchema.model_version_id == ModelVersionSchema.id,
        )
        column = ModelVersionSchema.name
    else:
        return super().apply_sorting(query=query, table=table)

    query = query.add_columns(column)

    if operand == SorterOps.ASCENDING:
        query = query.order_by(asc(column))
    else:
        query = query.order_by(desc(column))

    return query
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/pipeline_run.py
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
def get_custom_filters(
    self,
    table: Type["AnySchema"],
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import and_, col, or_

    from zenml.zen_stores.schemas import (
        CodeReferenceSchema,
        CodeRepositorySchema,
        ModelSchema,
        ModelVersionSchema,
        PipelineBuildSchema,
        PipelineDeploymentSchema,
        PipelineRunSchema,
        PipelineSchema,
        ScheduleSchema,
        StackComponentSchema,
        StackCompositionSchema,
        StackSchema,
    )

    if self.unlisted is not None:
        if self.unlisted is True:
            unlisted_filter = PipelineRunSchema.pipeline_id.is_(None)  # type: ignore[union-attr]
        else:
            unlisted_filter = PipelineRunSchema.pipeline_id.is_not(None)  # type: ignore[union-attr]
        custom_filters.append(unlisted_filter)

    if self.code_repository_id:
        code_repo_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.code_reference_id
            == CodeReferenceSchema.id,
            CodeReferenceSchema.code_repository_id
            == self.code_repository_id,
        )
        custom_filters.append(code_repo_filter)

    if self.stack_id:
        stack_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.stack_id == StackSchema.id,
            StackSchema.id == self.stack_id,
        )
        custom_filters.append(stack_filter)

    if self.schedule_id:
        schedule_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.schedule_id == ScheduleSchema.id,
            ScheduleSchema.id == self.schedule_id,
        )
        custom_filters.append(schedule_filter)

    if self.build_id:
        pipeline_build_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.build_id == PipelineBuildSchema.id,
            PipelineBuildSchema.id == self.build_id,
        )
        custom_filters.append(pipeline_build_filter)

    if self.template_id:
        run_template_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.template_id == self.template_id,
        )
        custom_filters.append(run_template_filter)

    if self.pipeline:
        pipeline_filter = and_(
            PipelineRunSchema.pipeline_id == PipelineSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.pipeline, table=PipelineSchema
            ),
        )
        custom_filters.append(pipeline_filter)

    if self.stack:
        stack_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.stack_id == StackSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.stack,
                table=StackSchema,
            ),
        )
        custom_filters.append(stack_filter)

    if self.code_repository:
        code_repo_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.code_reference_id
            == CodeReferenceSchema.id,
            CodeReferenceSchema.code_repository_id
            == CodeRepositorySchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.code_repository,
                table=CodeRepositorySchema,
            ),
        )
        custom_filters.append(code_repo_filter)

    if self.model:
        model_filter = and_(
            PipelineRunSchema.model_version_id == ModelVersionSchema.id,
            ModelVersionSchema.model_id == ModelSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.model, table=ModelSchema
            ),
        )
        custom_filters.append(model_filter)

    if self.stack_component:
        component_filter = and_(
            PipelineRunSchema.deployment_id == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.stack_id == StackSchema.id,
            StackSchema.id == StackCompositionSchema.stack_id,
            StackCompositionSchema.component_id == StackComponentSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.stack_component,
                table=StackComponentSchema,
            ),
        )
        custom_filters.append(component_filter)

    if self.pipeline_name:
        pipeline_name_filter = and_(
            PipelineRunSchema.pipeline_id == PipelineSchema.id,
            self.generate_custom_query_conditions_for_column(
                value=self.pipeline_name,
                table=PipelineSchema,
                column="name",
            ),
        )
        custom_filters.append(pipeline_name_filter)

    if self.templatable is not None:
        if self.templatable is True:
            templatable_filter = and_(
                # The following condition is not perfect as it does not
                # consider stacks with custom flavor components or local
                # components, but the best we can do currently with our
                # table columns.
                PipelineRunSchema.deployment_id
                == PipelineDeploymentSchema.id,
                PipelineDeploymentSchema.build_id
                == PipelineBuildSchema.id,
                col(PipelineBuildSchema.is_local).is_(False),
                col(PipelineBuildSchema.stack_id).is_not(None),
            )
        else:
            templatable_filter = or_(
                col(PipelineRunSchema.deployment_id).is_(None),
                and_(
                    PipelineRunSchema.deployment_id
                    == PipelineDeploymentSchema.id,
                    col(PipelineDeploymentSchema.build_id).is_(None),
                ),
                and_(
                    PipelineRunSchema.deployment_id
                    == PipelineDeploymentSchema.id,
                    PipelineDeploymentSchema.build_id
                    == PipelineBuildSchema.id,
                    or_(
                        col(PipelineBuildSchema.is_local).is_(True),
                        col(PipelineBuildSchema.stack_id).is_(None),
                    ),
                ),
            )

        custom_filters.append(templatable_filter)

    return custom_filters

PipelineRunResponse

Bases: ProjectScopedResponse[PipelineRunResponseBody, PipelineRunResponseMetadata, PipelineRunResponseResources]

Response model for pipeline runs.

Attributes
artifact_versions: List[ArtifactVersionResponse] property

Get all artifact versions that are outputs of steps of this run.

Returns:

Type Description
List[ArtifactVersionResponse]

All output artifact versions of this run (including cached ones).

build: Optional[PipelineBuildResponse] property

The build property.

Returns:

Type Description
Optional[PipelineBuildResponse]

the value of the property.

client_environment: Dict[str, str] property

The client_environment property.

Returns:

Type Description
Dict[str, str]

the value of the property.

code_path: Optional[str] property

The code_path property.

Returns:

Type Description
Optional[str]

the value of the property.

code_reference: Optional[CodeReferenceResponse] property

The schedule property.

Returns:

Type Description
Optional[CodeReferenceResponse]

the value of the property.

config: PipelineConfiguration property

The config property.

Returns:

Type Description
PipelineConfiguration

the value of the property.

deployment_id: Optional[UUID] property

The deployment_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

end_time: Optional[datetime] property

The end_time property.

Returns:

Type Description
Optional[datetime]

the value of the property.

is_templatable: bool property

The is_templatable property.

Returns:

Type Description
bool

the value of the property.

logs: Optional[LogsResponse] property

The logs property.

Returns:

Type Description
Optional[LogsResponse]

the value of the property.

model_version: Optional[ModelVersionResponse] property

The model_version property.

Returns:

Type Description
Optional[ModelVersionResponse]

the value of the property.

model_version_id: Optional[UUID] property

The model_version_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

orchestrator_environment: Dict[str, str] property

The orchestrator_environment property.

Returns:

Type Description
Dict[str, str]

the value of the property.

orchestrator_run_id: Optional[str] property

The orchestrator_run_id property.

Returns:

Type Description
Optional[str]

the value of the property.

pipeline: Optional[PipelineResponse] property

The pipeline property.

Returns:

Type Description
Optional[PipelineResponse]

the value of the property.

produced_artifact_versions: List[ArtifactVersionResponse] property

Get all artifact versions produced during this pipeline run.

Returns:

Type Description
List[ArtifactVersionResponse]

A list of all artifact versions produced during this pipeline run.

run_metadata: Dict[str, MetadataType] property

The run_metadata property.

Returns:

Type Description
Dict[str, MetadataType]

the value of the property.

schedule: Optional[ScheduleResponse] property

The schedule property.

Returns:

Type Description
Optional[ScheduleResponse]

the value of the property.

stack: Optional[StackResponse] property

The stack property.

Returns:

Type Description
Optional[StackResponse]

the value of the property.

start_time: Optional[datetime] property

The start_time property.

Returns:

Type Description
Optional[datetime]

the value of the property.

status: ExecutionStatus property

The status property.

Returns:

Type Description
ExecutionStatus

the value of the property.

step_substitutions: Dict[str, Dict[str, str]] property

The step_substitutions property.

Returns:

Type Description
Dict[str, Dict[str, str]]

the value of the property.

steps: Dict[str, StepRunResponse] property

The steps property.

Returns:

Type Description
Dict[str, StepRunResponse]

the value of the property.

tags: List[TagResponse] property

The tags property.

Returns:

Type Description
List[TagResponse]

the value of the property.

template_id: Optional[UUID] property

The template_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

trigger_execution: Optional[TriggerExecutionResponse] property

The trigger_execution property.

Returns:

Type Description
Optional[TriggerExecutionResponse]

the value of the property.

Functions
get_hydrated_version() -> PipelineRunResponse

Get the hydrated version of this pipeline run.

Returns:

Type Description
PipelineRunResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/pipeline_run.py
289
290
291
292
293
294
295
296
297
def get_hydrated_version(self) -> "PipelineRunResponse":
    """Get the hydrated version of this pipeline run.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_run(self.id)
refresh_run_status() -> PipelineRunResponse

Method to refresh the status of a run if it is initializing/running.

Returns:

Type Description
PipelineRunResponse

The updated pipeline.

Raises:

Type Description
ValueError

If the stack of the run response is None.

Source code in src/zenml/models/v2/core/pipeline_run.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def refresh_run_status(self) -> "PipelineRunResponse":
    """Method to refresh the status of a run if it is initializing/running.

    Returns:
        The updated pipeline.

    Raises:
        ValueError: If the stack of the run response is None.
    """
    if self.status in [
        ExecutionStatus.INITIALIZING,
        ExecutionStatus.RUNNING,
    ]:
        # Check if the stack still accessible
        if self.stack is None:
            raise ValueError(
                "The stack that this pipeline run response was executed on"
                "has been deleted."
            )

        # Create the orchestrator instance
        from zenml.enums import StackComponentType
        from zenml.orchestrators.base_orchestrator import BaseOrchestrator
        from zenml.stack.stack_component import StackComponent

        # Check if the stack still accessible
        orchestrator_list = self.stack.components.get(
            StackComponentType.ORCHESTRATOR, []
        )
        if len(orchestrator_list) == 0:
            raise ValueError(
                "The orchestrator that this pipeline run response was "
                "executed with has been deleted."
            )

        orchestrator = cast(
            BaseOrchestrator,
            StackComponent.from_model(
                component_model=orchestrator_list[0]
            ),
        )

        # Fetch the status
        status = orchestrator.fetch_status(run=self)

        # If it is different from the current status, update it
        if status != self.status:
            from zenml.client import Client
            from zenml.models import PipelineRunUpdate

            client = Client()
            return client.zen_store.update_run(
                run_id=self.id,
                run_update=PipelineRunUpdate(status=status),
            )

    return self

PluginSubType

Bases: StrEnum

All possible types of Plugins.

PluginType

Bases: StrEnum

All possible types of Plugins.

ProjectFilter

Bases: BaseFilter

Model to enable advanced filtering of all projects.

ProjectRequest

Bases: BaseRequest

Request model for projects.

ProjectResponse

Bases: BaseIdentifiedResponse[ProjectResponseBody, ProjectResponseMetadata, ProjectResponseResources]

Response model for projects.

Attributes
description: str property

The description property.

Returns:

Type Description
str

the value of the property.

display_name: str property

The display_name property.

Returns:

Type Description
str

the value of the property.

Functions
get_hydrated_version() -> ProjectResponse

Get the hydrated version of this project.

Returns:

Type Description
ProjectResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/project.py
158
159
160
161
162
163
164
165
166
def get_hydrated_version(self) -> "ProjectResponse":
    """Get the hydrated version of this project.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_project(self.id)

ProjectUpdate

Bases: BaseUpdate

Update model for projects.

RunMetadataRequest

Bases: ProjectScopedRequest

Request model for run metadata.

Functions
validate_values_keys() -> RunMetadataRequest

Validates if the keys in the metadata are properly defined.

Returns:

Type Description
RunMetadataRequest

self

Raises:

Type Description
ValueError

if one of the key in the metadata contains :

Source code in src/zenml/models/v2/core/run_metadata.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
@model_validator(mode="after")
def validate_values_keys(self) -> "RunMetadataRequest":
    """Validates if the keys in the metadata are properly defined.

    Returns:
        self

    Raises:
        ValueError: if one of the key in the metadata contains `:`
    """
    invalid_keys = [key for key in self.values.keys() if ":" in key]
    if invalid_keys:
        raise ValueError(
            "You can not use colons (`:`) in the key names when you "
            "are creating metadata for your ZenML objects. Please change "
            f"the following keys: {invalid_keys}"
        )
    return self

RunMetadataResource

Bases: BaseModel

Utility class to help identify resources to tag metadata to.

RunTemplateFilter

Bases: ProjectScopedFilter, TaggableFilter

Model for filtering of run templates.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/run_template.py
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import and_, col

    from zenml.zen_stores.schemas import (
        CodeReferenceSchema,
        PipelineDeploymentSchema,
        PipelineSchema,
        RunTemplateSchema,
        StackSchema,
    )

    if self.hidden is not None:
        custom_filters.append(
            col(RunTemplateSchema.hidden).is_(self.hidden)
        )

    if self.code_repository_id:
        code_repo_filter = and_(
            RunTemplateSchema.source_deployment_id
            == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.code_reference_id
            == CodeReferenceSchema.id,
            CodeReferenceSchema.code_repository_id
            == self.code_repository_id,
        )
        custom_filters.append(code_repo_filter)

    if self.stack_id:
        stack_filter = and_(
            RunTemplateSchema.source_deployment_id
            == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.stack_id == self.stack_id,
        )
        custom_filters.append(stack_filter)

    if self.build_id:
        build_filter = and_(
            RunTemplateSchema.source_deployment_id
            == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.build_id == self.build_id,
        )
        custom_filters.append(build_filter)

    if self.pipeline_id:
        pipeline_filter = and_(
            RunTemplateSchema.source_deployment_id
            == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.pipeline_id == self.pipeline_id,
        )
        custom_filters.append(pipeline_filter)

    if self.pipeline:
        pipeline_filter = and_(
            RunTemplateSchema.source_deployment_id
            == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.pipeline_id == PipelineSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.pipeline,
                table=PipelineSchema,
            ),
        )
        custom_filters.append(pipeline_filter)

    if self.stack:
        stack_filter = and_(
            RunTemplateSchema.source_deployment_id
            == PipelineDeploymentSchema.id,
            PipelineDeploymentSchema.stack_id == StackSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.stack,
                table=StackSchema,
            ),
        )
        custom_filters.append(stack_filter)

    return custom_filters

RunTemplateRequest

Bases: ProjectScopedRequest

Request model for run templates.

RunTemplateResponse

Bases: ProjectScopedResponse[RunTemplateResponseBody, RunTemplateResponseMetadata, RunTemplateResponseResources]

Response model for run templates.

Attributes
build: Optional[PipelineBuildResponse] property

The build property.

Returns:

Type Description
Optional[PipelineBuildResponse]

the value of the property.

code_reference: Optional[CodeReferenceResponse] property

The code_reference property.

Returns:

Type Description
Optional[CodeReferenceResponse]

the value of the property.

config_schema: Optional[Dict[str, Any]] property

The config_schema property.

Returns:

Type Description
Optional[Dict[str, Any]]

the value of the property.

config_template: Optional[Dict[str, Any]] property

The config_template property.

Returns:

Type Description
Optional[Dict[str, Any]]

the value of the property.

description: Optional[str] property

The description property.

Returns:

Type Description
Optional[str]

the value of the property.

hidden: bool property

The hidden property.

Returns:

Type Description
bool

the value of the property.

latest_run_id: Optional[UUID] property

The latest_run_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

latest_run_status: Optional[ExecutionStatus] property

The latest_run_status property.

Returns:

Type Description
Optional[ExecutionStatus]

the value of the property.

pipeline: Optional[PipelineResponse] property

The pipeline property.

Returns:

Type Description
Optional[PipelineResponse]

the value of the property.

pipeline_spec: Optional[PipelineSpec] property

The pipeline_spec property.

Returns:

Type Description
Optional[PipelineSpec]

the value of the property.

runnable: bool property

The runnable property.

Returns:

Type Description
bool

the value of the property.

source_deployment: Optional[PipelineDeploymentResponse] property

The source_deployment property.

Returns:

Type Description
Optional[PipelineDeploymentResponse]

the value of the property.

tags: List[TagResponse] property

The tags property.

Returns:

Type Description
List[TagResponse]

the value of the property.

Functions
get_hydrated_version() -> RunTemplateResponse

Return the hydrated version of this run template.

Returns:

Type Description
RunTemplateResponse

The hydrated run template.

Source code in src/zenml/models/v2/core/run_template.py
198
199
200
201
202
203
204
205
206
207
208
def get_hydrated_version(self) -> "RunTemplateResponse":
    """Return the hydrated version of this run template.

    Returns:
        The hydrated run template.
    """
    from zenml.client import Client

    return Client().zen_store.get_run_template(
        template_id=self.id, hydrate=True
    )

RunTemplateUpdate

Bases: BaseUpdate

Run template update model.

ScheduleFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all Users.

ScheduleResponse

Bases: ProjectScopedResponse[ScheduleResponseBody, ScheduleResponseMetadata, ScheduleResponseResources]

Response model for schedules.

Attributes
active: bool property

The active property.

Returns:

Type Description
bool

the value of the property.

catchup: bool property

The catchup property.

Returns:

Type Description
bool

the value of the property.

cron_expression: Optional[str] property

The cron_expression property.

Returns:

Type Description
Optional[str]

the value of the property.

end_time: Optional[datetime] property

The end_time property.

Returns:

Type Description
Optional[datetime]

the value of the property.

interval_second: Optional[timedelta] property

The interval_second property.

Returns:

Type Description
Optional[timedelta]

the value of the property.

orchestrator_id: Optional[UUID] property

The orchestrator_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

pipeline_id: Optional[UUID] property

The pipeline_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

run_metadata: Dict[str, MetadataType] property

The run_metadata property.

Returns:

Type Description
Dict[str, MetadataType]

the value of the property.

run_once_start_time: Optional[datetime] property

The run_once_start_time property.

Returns:

Type Description
Optional[datetime]

the value of the property.

start_time: Optional[datetime] property

The start_time property.

Returns:

Type Description
Optional[datetime]

the value of the property.

utc_end_time: Optional[str] property

Optional ISO-formatted string of the UTC end time.

Returns:

Type Description
Optional[str]

Optional ISO-formatted string of the UTC end time.

utc_start_time: Optional[str] property

Optional ISO-formatted string of the UTC start time.

Returns:

Type Description
Optional[str]

Optional ISO-formatted string of the UTC start time.

Functions
get_hydrated_version() -> ScheduleResponse

Get the hydrated version of this schedule.

Returns:

Type Description
ScheduleResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/schedule.py
177
178
179
180
181
182
183
184
185
def get_hydrated_version(self) -> "ScheduleResponse":
    """Get the hydrated version of this schedule.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_schedule(self.id)

SecretFilter

Bases: UserScopedFilter

Model to enable advanced secret filtering.

Functions
apply_filter(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Applies the filter to a query.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the filter.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with filter applied.

Source code in src/zenml/models/v2/core/secret.py
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def apply_filter(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Applies the filter to a query.

    Args:
        query: The query to which to apply the filter.
        table: The query table.

    Returns:
        The query with filter applied.
    """
    # The secret user scoping works a bit differently than the other
    # scoped filters. We have to filter out all private secrets that are
    # not owned by the current user.
    if not self.scope_user:
        return super().apply_filter(query=query, table=table)

    scope_user = self.scope_user

    # First we apply the inherited filters without the user scoping
    # applied.
    self.scope_user = None
    query = super().apply_filter(query=query, table=table)
    self.scope_user = scope_user

    # Then we apply the user scoping filter.
    if self.scope_user:
        from sqlmodel import and_, or_

        query = query.where(
            or_(
                and_(
                    getattr(table, "user_id") == self.scope_user,
                    getattr(table, "private") == True,  # noqa: E712
                ),
                getattr(table, "private") == False,  # noqa: E712
            )
        )

    else:
        query = query.where(getattr(table, "private") == False)  # noqa: E712

    return query

SecretRequest

Bases: UserScopedRequest

Request model for secrets.

Attributes
secret_values: Dict[str, str] property

A dictionary with all un-obfuscated values stored in this secret.

The values are returned as strings, not SecretStr. If a value is None, it is not included in the returned dictionary. This is to enable the use of None values in the update model to indicate that a secret value should be deleted.

Returns:

Type Description
Dict[str, str]

A dictionary containing the secret's values.

SecretResponse

Bases: UserScopedResponse[SecretResponseBody, SecretResponseMetadata, SecretResponseResources]

Response model for secrets.

Attributes
has_missing_values: bool property

Returns True if the secret has missing values (i.e. None).

Values can be missing from a secret for example if the user retrieves a secret but does not have the permission to view the secret values.

Returns:

Type Description
bool

True if the secret has any values set to None.

private: bool property

The private property.

Returns:

Type Description
bool

the value of the property.

secret_values: Dict[str, str] property

A dictionary with all un-obfuscated values stored in this secret.

The values are returned as strings, not SecretStr. If a value is None, it is not included in the returned dictionary. This is to enable the use of None values in the update model to indicate that a secret value should be deleted.

Returns:

Type Description
Dict[str, str]

A dictionary containing the secret's values.

values: Dict[str, Optional[SecretStr]] property

The values property.

Returns:

Type Description
Dict[str, Optional[SecretStr]]

the value of the property.

Functions
add_secret(key: str, value: str) -> None

Adds a secret value to the secret.

Parameters:

Name Type Description Default
key str

The key of the secret value.

required
value str

The secret value.

required
Source code in src/zenml/models/v2/core/secret.py
225
226
227
228
229
230
231
232
def add_secret(self, key: str, value: str) -> None:
    """Adds a secret value to the secret.

    Args:
        key: The key of the secret value.
        value: The secret value.
    """
    self.get_body().values[key] = SecretStr(value)
get_hydrated_version() -> SecretResponse

Get the hydrated version of this secret.

Returns:

Type Description
SecretResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/secret.py
164
165
166
167
168
169
170
171
172
def get_hydrated_version(self) -> "SecretResponse":
    """Get the hydrated version of this secret.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_secret(self.id)
remove_secret(key: str) -> None

Removes a secret value from the secret.

Parameters:

Name Type Description Default
key str

The key of the secret value.

required
Source code in src/zenml/models/v2/core/secret.py
234
235
236
237
238
239
240
def remove_secret(self, key: str) -> None:
    """Removes a secret value from the secret.

    Args:
        key: The key of the secret value.
    """
    del self.get_body().values[key]
remove_secrets() -> None

Removes all secret values from the secret but keep the keys.

Source code in src/zenml/models/v2/core/secret.py
242
243
244
def remove_secrets(self) -> None:
    """Removes all secret values from the secret but keep the keys."""
    self.get_body().values = {k: None for k in self.values.keys()}
set_secrets(values: Dict[str, str]) -> None

Sets the secret values of the secret.

Parameters:

Name Type Description Default
values Dict[str, str]

The secret values to set.

required
Source code in src/zenml/models/v2/core/secret.py
246
247
248
249
250
251
252
def set_secrets(self, values: Dict[str, str]) -> None:
    """Sets the secret values of the secret.

    Args:
        values: The secret values to set.
    """
    self.get_body().values = {k: SecretStr(v) for k, v in values.items()}

SecretUpdate

Bases: BaseUpdate

Update model for secrets.

Functions
get_secret_values_update() -> Dict[str, Optional[str]]

Returns a dictionary with the secret values to update.

Returns:

Type Description
Dict[str, Optional[str]]

A dictionary with the secret values to update.

Source code in src/zenml/models/v2/core/secret.py
109
110
111
112
113
114
115
116
117
118
119
120
121
def get_secret_values_update(self) -> Dict[str, Optional[str]]:
    """Returns a dictionary with the secret values to update.

    Returns:
        A dictionary with the secret values to update.
    """
    if self.values is not None:
        return {
            k: v.get_secret_value() if v is not None else None
            for k, v in self.values.items()
        }

    return {}

ServerSettingsResponse

Bases: BaseResponse[ServerSettingsResponseBody, ServerSettingsResponseMetadata, ServerSettingsResponseResources]

Response model for server settings.

Attributes
active: bool property

The active property.

Returns:

Type Description
bool

the value of the property.

display_announcements: Optional[bool] property

The display_announcements property.

Returns:

Type Description
Optional[bool]

the value of the property.

display_updates: Optional[bool] property

The display_updates property.

Returns:

Type Description
Optional[bool]

the value of the property.

enable_analytics: bool property

The enable_analytics property.

Returns:

Type Description
bool

the value of the property.

last_user_activity: datetime property

The last_user_activity property.

Returns:

Type Description
datetime

the value of the property.

logo_url: Optional[str] property

The logo_url property.

Returns:

Type Description
Optional[str]

the value of the property.

server_id: UUID property

The server_id property.

Returns:

Type Description
UUID

the value of the property.

server_name: str property

The server_name property.

Returns:

Type Description
str

the value of the property.

updated: datetime property

The updated property.

Returns:

Type Description
datetime

the value of the property.

Functions
get_hydrated_version() -> ServerSettingsResponse

Get the hydrated version of the server settings.

Returns:

Type Description
ServerSettingsResponse

An instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/server_settings.py
110
111
112
113
114
115
116
117
118
def get_hydrated_version(self) -> "ServerSettingsResponse":
    """Get the hydrated version of the server settings.

    Returns:
        An instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_server_settings(hydrate=True)

ServerSettingsUpdate

Bases: BaseUpdate

Model for updating server settings.

ServiceAccountFilter

Bases: BaseFilter

Model to enable advanced filtering of service accounts.

Functions
apply_filter(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Override to filter out user accounts from the query.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the filter.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with filter applied.

Source code in src/zenml/models/v2/core/service_account.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def apply_filter(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Override to filter out user accounts from the query.

    Args:
        query: The query to which to apply the filter.
        table: The query table.

    Returns:
        The query with filter applied.
    """
    query = super().apply_filter(query=query, table=table)
    query = query.where(
        getattr(table, "is_service_account") == True  # noqa: E712
    )

    return query

ServiceAccountRequest

Bases: BaseRequest

Request model for service accounts.

ServiceAccountResponse

Bases: BaseIdentifiedResponse[ServiceAccountResponseBody, ServiceAccountResponseMetadata, ServiceAccountResponseResources]

Response model for service accounts.

Attributes
active: bool property

The active property.

Returns:

Type Description
bool

the value of the property.

description: str property

The description property.

Returns:

Type Description
str

the value of the property.

Functions
get_hydrated_version() -> ServiceAccountResponse

Get the hydrated version of this service account.

Returns:

Type Description
ServiceAccountResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/service_account.py
126
127
128
129
130
131
132
133
134
def get_hydrated_version(self) -> "ServiceAccountResponse":
    """Get the hydrated version of this service account.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_service_account(self.id)
to_user_model() -> UserResponse

Converts the service account to a user model.

For now, a lot of code still relies on the active user and resource owners being a UserResponse object, which is a superset of the ServiceAccountResponse object. We need this method to convert the service account to a user.

Returns:

Type Description
UserResponse

The user model.

Source code in src/zenml/models/v2/core/service_account.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def to_user_model(self) -> "UserResponse":
    """Converts the service account to a user model.

    For now, a lot of code still relies on the active user and resource
    owners being a UserResponse object, which is a superset of the
    ServiceAccountResponse object. We need this method to convert the
    service account to a user.

    Returns:
        The user model.
    """
    from zenml.models.v2.core.user import (
        UserResponse,
        UserResponseBody,
        UserResponseMetadata,
    )

    return UserResponse(
        id=self.id,
        name=self.name,
        body=UserResponseBody(
            active=self.active,
            is_service_account=True,
            email_opted_in=False,
            created=self.created,
            updated=self.updated,
            is_admin=False,
        ),
        metadata=UserResponseMetadata(
            description=self.description,
        ),
    )

ServiceAccountUpdate

Bases: BaseUpdate

Update model for service accounts.

ServiceConfig(**data: Any)

Bases: BaseTypedModel

Generic service configuration.

Concrete service classes should extend this class and add additional attributes that they want to see reflected and used in the service configuration.

Attributes:

Name Type Description
name str

name for the service instance

description str

description of the service

pipeline_name str

name of the pipeline that spun up the service

pipeline_step_name str

name of the pipeline step that spun up the service

run_name str

name of the pipeline run that spun up the service.

Initialize the service configuration.

Parameters:

Name Type Description Default
**data Any

keyword arguments.

{}

Raises:

Type Description
ValueError

if neither 'name' nor 'model_name' is set.

Source code in src/zenml/services/service.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def __init__(self, **data: Any):
    """Initialize the service configuration.

    Args:
        **data: keyword arguments.

    Raises:
        ValueError: if neither 'name' nor 'model_name' is set.
    """
    super().__init__(**data)
    if self.name or self.model_name:
        self.service_name = data.get(
            "service_name",
            f"{ZENM_ENDPOINT_PREFIX}{self.name or self.model_name}",
        )
    else:
        raise ValueError("Either 'name' or 'model_name' must be set.")
Functions
get_service_labels() -> Dict[str, str]

Get the service labels.

Returns:

Type Description
Dict[str, str]

a dictionary of service labels.

Source code in src/zenml/services/service.py
149
150
151
152
153
154
155
156
157
158
159
def get_service_labels(self) -> Dict[str, str]:
    """Get the service labels.

    Returns:
        a dictionary of service labels.
    """
    labels = {}
    for k, v in self.model_dump().items():
        label = f"zenml_{k}".upper()
        labels[label] = str(v)
    return labels

ServiceConnector(**kwargs: Any)

Bases: BaseModel

Base service connector class.

Service connectors are standalone components that can be used to link ZenML to external resources. They are responsible for validating and storing authentication configuration and sensitive credentials and for providing authentication services to other ZenML components. Service connectors are built on top of the (otherwise opaque) ZenML secrets and secrets store mechanisms and add secret auto-configuration, secret discovery and secret schema validation capabilities.

The implementation independent service connector abstraction is made possible through the use of generic "resource types" and "resource IDs". These constitute the "contract" between connectors and the consumers of the authentication services that they provide. In a nutshell, a connector instance advertises what resource(s) it can be used to gain access to, whereas a consumer may run a query to search for compatible connectors by specifying the resource(s) that they need to access and then use a matching connector instance to connect to said resource(s).

The resource types and authentication methods supported by a connector are declared in the connector type specification. The role of this specification is two-fold:

  • it declares a schema for the configuration that needs to be provided to configure the connector. This can be used to validate the configuration without having to instantiate the connector itself (e.g. in the CLI and dashboard), which also makes it possible to configure connectors and store their configuration without having to instantiate them.
  • it provides a way for ZenML to keep a registry of available connector implementations and configured connector instances. Users who want to connect ZenML to external resources via connectors can use this registry to discover what types of connectors are available and what types of resources they can be configured to access. Consumers can also use the registry to find connector instances that are compatible with the types of resources that they need to access.

Initialize a new service connector instance.

Parameters:

Name Type Description Default
kwargs Any

Additional keyword arguments to pass to the base class constructor.

{}
Source code in src/zenml/service_connectors/service_connector.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def __init__(self, **kwargs: Any) -> None:
    """Initialize a new service connector instance.

    Args:
        kwargs: Additional keyword arguments to pass to the base class
            constructor.
    """
    super().__init__(**kwargs)

    # Convert the resource ID to its canonical form. For resource types
    # that don't support multiple instances:
    # - if a resource ID is not provided, we use the default resource ID for
    # the resource type
    # - if a resource ID is provided, we verify that it matches the default
    # resource ID for the resource type
    if self.resource_type:
        try:
            self.resource_id = self._validate_resource_id(
                self.resource_type, self.resource_id
            )
        except AuthorizationException as e:
            error = (
                f"Authorization error validating resource ID "
                f"{self.resource_id} for resource type "
                f"{self.resource_type}: {e}"
            )
            # Log an exception if debug logging is enabled
            if logger.isEnabledFor(logging.DEBUG):
                logger.exception(error)
            else:
                logger.warning(error)

            self.resource_id = None
Attributes
supported_resource_types: List[str] property

The resource types supported by this connector instance.

Returns:

Type Description
List[str]

A list with the resource types supported by this connector instance.

type: ServiceConnectorTypeModel property

Get the connector type specification.

Returns:

Type Description
ServiceConnectorTypeModel

The connector type specification.

Functions
auto_configure(auth_method: Optional[str] = None, resource_type: Optional[str] = None, resource_id: Optional[str] = None, **kwargs: Any) -> Optional[ServiceConnector] classmethod

Auto-configure a connector instance.

Instantiate a connector with a configuration extracted from the authentication configuration available in the environment (e.g. environment variables or local client/SDK configuration files).

Parameters:

Name Type Description Default
auth_method Optional[str]

The particular authentication method to use. If omitted and if the connector implementation cannot decide which authentication method to use, it may raise an exception.

None
resource_type Optional[str]

The type of resource to configure. If not specified, the method returns a connector instance configured to access any of the supported resource types (multi-type connector) or configured to use a default resource type. If the connector doesn't support multi-type configurations or if it cannot decide which resource type to use, it may raise an exception.

None
resource_id Optional[str]

The ID of the resource instance to configure. The connector implementation may choose to either require or ignore this parameter if it does not support or detect a resource type that supports multiple instances.

None
kwargs Any

Additional implementation specific keyword arguments to use.

{}

Returns:

Type Description
Optional[ServiceConnector]

A connector instance configured with authentication credentials

Optional[ServiceConnector]

automatically extracted from the environment or None if

Optional[ServiceConnector]

auto-configuration is not supported.

Raises:

Type Description
ValueError

If the connector does not support the requested authentication method or resource type.

AuthorizationException

If the connector's authentication credentials have expired.

Source code in src/zenml/service_connectors/service_connector.py
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
@classmethod
def auto_configure(
    cls,
    auth_method: Optional[str] = None,
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
    **kwargs: Any,
) -> Optional["ServiceConnector"]:
    """Auto-configure a connector instance.

    Instantiate a connector with a configuration extracted from the
    authentication configuration available in the environment (e.g.
    environment variables or local client/SDK configuration files).

    Args:
        auth_method: The particular authentication method to use. If
            omitted and if the connector implementation cannot decide which
            authentication method to use, it may raise an exception.
        resource_type: The type of resource to configure. If not specified,
            the method returns a connector instance configured to access any
            of the supported resource types (multi-type connector) or
            configured to use a default resource type. If the connector
            doesn't support multi-type configurations or if it cannot decide
            which resource type to use, it may raise an exception.
        resource_id: The ID of the resource instance to configure. The
            connector implementation may choose to either require or ignore
            this parameter if it does not support or detect a resource type
            that supports multiple instances.
        kwargs: Additional implementation specific keyword arguments to use.

    Returns:
        A connector instance configured with authentication credentials
        automatically extracted from the environment or None if
        auto-configuration is not supported.

    Raises:
        ValueError: If the connector does not support the requested
            authentication method or resource type.
        AuthorizationException: If the connector's authentication
            credentials have expired.
    """
    spec = cls.get_type()

    if not spec.supports_auto_configuration:
        return None

    if auth_method and auth_method not in spec.auth_method_dict:
        raise ValueError(
            f"connector type {spec.name} does not support authentication "
            f"method: '{auth_method}'"
        )

    if resource_type and resource_type not in spec.resource_type_dict:
        raise ValueError(
            f"connector type {spec.name} does not support resource type: "
            f"'{resource_type}'"
        )

    connector = cls._auto_configure(
        auth_method=auth_method,
        resource_type=resource_type,
        resource_id=resource_id,
        **kwargs,
    )

    if connector.has_expired():
        raise AuthorizationException(
            "the connector's auto-configured authentication credentials "
            "have expired."
        )

    connector._verify(
        resource_type=connector.resource_type,
        resource_id=connector.resource_id,
    )
    return connector
configure_local_client(**kwargs: Any) -> None

Configure a local client to authenticate and connect to a resource.

This method uses the connector's configuration to configure a local client or SDK installed on the localhost so that it can authenticate and connect to the resource that the connector is configured to access.

The connector has to be fully configured for this method to succeed (i.e. the connector's configuration must be valid, a resource type must be specified and the resource ID must be specified if the resource type supports multiple instances). This method should only be called on a connector client retrieved by calling get_connector_client on the main service connector.

Parameters:

Name Type Description Default
kwargs Any

Additional implementation specific keyword arguments to use to configure the client.

{}

Raises:

Type Description
AuthorizationException

If the connector's authentication credentials have expired.

Source code in src/zenml/service_connectors/service_connector.py
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
def configure_local_client(
    self,
    **kwargs: Any,
) -> None:
    """Configure a local client to authenticate and connect to a resource.

    This method uses the connector's configuration to configure a local
    client or SDK installed on the localhost so that it can authenticate
    and connect to the resource that the connector is configured to access.

    The connector has to be fully configured for this method to succeed
    (i.e. the connector's configuration must be valid, a resource type must
    be specified and the resource ID must be specified if the resource type
    supports multiple instances). This method should only be called on a
    connector client retrieved by calling `get_connector_client` on the
    main service connector.

    Args:
        kwargs: Additional implementation specific keyword arguments to use
            to configure the client.

    Raises:
        AuthorizationException: If the connector's authentication
            credentials have expired.
    """
    resource_type, resource_id = self.validate_runtime_args(
        resource_type=self.resource_type,
        resource_id=self.resource_id,
        require_resource_type=True,
        require_resource_id=True,
    )

    if self.has_expired():
        raise AuthorizationException(
            "the connector's authentication credentials have expired."
        )

    self._verify(
        resource_type=resource_type,
        resource_id=resource_id,
    )

    self._configure_local_client(
        **kwargs,
    )
connect(verify: bool = True, **kwargs: Any) -> Any

Authenticate and connect to a resource.

Initialize and return an implementation specific object representing an authenticated service client, connection or session that can be used to access the resource that the connector is configured to access.

The connector has to be fully configured for this method to succeed (i.e. the connector's configuration must be valid, a resource type and a resource ID must be configured). This method should only be called on a connector client retrieved by calling get_connector_client on the main service connector.

Parameters:

Name Type Description Default
verify bool

Whether to verify that the connector can access the configured resource before connecting to it.

True
kwargs Any

Additional implementation specific keyword arguments to use to configure the client.

{}

Returns:

Type Description
Any

An implementation specific object representing the authenticated

Any

service client, connection or session.

Raises:

Type Description
AuthorizationException

If the connector's authentication credentials have expired.

Source code in src/zenml/service_connectors/service_connector.py
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
def connect(
    self,
    verify: bool = True,
    **kwargs: Any,
) -> Any:
    """Authenticate and connect to a resource.

    Initialize and return an implementation specific object representing an
    authenticated service client, connection or session that can be used
    to access the resource that the connector is configured to access.

    The connector has to be fully configured for this method to succeed
    (i.e. the connector's configuration must be valid, a resource type and
    a resource ID must be configured). This method should only be called on
    a connector client retrieved by calling `get_connector_client` on the
    main service connector.

    Args:
        verify: Whether to verify that the connector can access the
            configured resource before connecting to it.
        kwargs: Additional implementation specific keyword arguments to use
            to configure the client.

    Returns:
        An implementation specific object representing the authenticated
        service client, connection or session.

    Raises:
        AuthorizationException: If the connector's authentication
            credentials have expired.
    """
    if verify:
        resource_type, resource_id = self.validate_runtime_args(
            resource_type=self.resource_type,
            resource_id=self.resource_id,
            require_resource_type=True,
            require_resource_id=True,
        )

        if self.has_expired():
            raise AuthorizationException(
                "the connector's authentication credentials have expired."
            )

        self._verify(
            resource_type=resource_type,
            resource_id=resource_id,
        )

    return self._connect_to_resource(
        **kwargs,
    )
from_model(model: Union[ServiceConnectorRequest, ServiceConnectorResponse]) -> ServiceConnector classmethod

Creates a service connector instance from a service connector model.

Parameters:

Name Type Description Default
model Union[ServiceConnectorRequest, ServiceConnectorResponse]

The service connector model.

required

Returns:

Type Description
ServiceConnector

The created service connector instance.

Raises:

Type Description
ValueError

If the connector configuration is invalid.

Source code in src/zenml/service_connectors/service_connector.py
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
@classmethod
def from_model(
    cls,
    model: Union["ServiceConnectorRequest", "ServiceConnectorResponse"],
) -> "ServiceConnector":
    """Creates a service connector instance from a service connector model.

    Args:
        model: The service connector model.

    Returns:
        The created service connector instance.

    Raises:
        ValueError: If the connector configuration is invalid.
    """
    # Validate the connector configuration model
    spec = cls.get_type()

    # Multiple resource types in the model means that the connector
    # instance is configured to access any of the supported resource
    # types (a multi-type connector). We represent that here by setting the
    # resource type to None.
    resource_type: Optional[str] = None
    if len(model.resource_types) == 1:
        resource_type = model.resource_types[0]

    expiration_seconds: Optional[int] = None
    try:
        method_spec, _ = spec.find_resource_specifications(
            model.auth_method,
            resource_type,
        )
        expiration_seconds = method_spec.validate_expiration(
            model.expiration_seconds
        )
    except (KeyError, ValueError) as e:
        raise ValueError(
            f"connector configuration is not valid: {e}"
        ) from e

    # Unpack the authentication configuration
    config = model.configuration.copy()
    if isinstance(model, ServiceConnectorResponse) and model.secret_id:
        try:
            secret = Client().get_secret(model.secret_id)
        except KeyError as e:
            raise ValueError(
                f"could not fetch secret with ID '{model.secret_id}' "
                f"referenced in the connector configuration: {e}"
            ) from e

        if secret.has_missing_values:
            raise ValueError(
                f"secret with ID '{model.secret_id}' referenced in the "
                "connector configuration has missing values. This can "
                "happen for example if your user lacks the permissions "
                "required to access the secret."
            )

        config.update(secret.secret_values)

    if model.secrets:
        config.update(
            {
                k: v.get_secret_value()
                for k, v in model.secrets.items()
                if v
            }
        )

    if method_spec.config_class is None:
        raise ValueError(
            f"the implementation of the {model.name} connector type is "
            "not available in the environment. Please check that you "
            "have installed the required dependencies."
        )

    # Validate the authentication configuration
    try:
        auth_config = method_spec.config_class(**config)
    except ValidationError as e:
        raise ValueError(
            f"connector configuration is not valid: {e}"
        ) from e

    assert isinstance(auth_config, AuthenticationConfig)

    connector = cls(
        auth_method=model.auth_method,
        resource_type=resource_type,
        resource_id=model.resource_id,
        config=auth_config,
        expires_at=model.expires_at,
        expires_skew_tolerance=model.expires_skew_tolerance,
        expiration_seconds=expiration_seconds,
    )
    if isinstance(model, ServiceConnectorResponse):
        connector.id = model.id
        connector.name = model.name

    return connector
get_connector_client(resource_type: Optional[str] = None, resource_id: Optional[str] = None) -> ServiceConnector

Get a connector client that can be used to connect to a resource.

The connector client can be used by consumers to connect to a resource (i.e. make calls to connect and configure_local_client).

The returned connector may be the same as the original connector or it may a different instance configured with different credentials or even of a different connector type.

Parameters:

Name Type Description Default
resource_type Optional[str]

The type of the resource to connect to.

None
resource_id Optional[str]

The ID of a particular resource to connect to.

None

Returns:

Type Description
ServiceConnector

A service connector client that can be used to connect to the

ServiceConnector

resource.

Raises:

Type Description
AuthorizationException

If authentication failed.

Source code in src/zenml/service_connectors/service_connector.py
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
def get_connector_client(
    self,
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
) -> "ServiceConnector":
    """Get a connector client that can be used to connect to a resource.

    The connector client can be used by consumers to connect to a resource
    (i.e. make calls to `connect` and `configure_local_client`).

    The returned connector may be the same as the original connector
    or it may a different instance configured with different credentials or
    even of a different connector type.

    Args:
        resource_type: The type of the resource to connect to.
        resource_id: The ID of a particular resource to connect to.

    Returns:
        A service connector client that can be used to connect to the
        resource.

    Raises:
        AuthorizationException: If authentication failed.
    """
    resource_type, resource_id = self.validate_runtime_args(
        resource_type=resource_type,
        resource_id=resource_id,
        require_resource_type=True,
        require_resource_id=True,
    )

    if self.has_expired():
        raise AuthorizationException(
            "the connector's authentication credentials have expired."
        )

    # Verify if the connector allows access to the requested resource type
    # and instance.
    self._verify(
        resource_type=resource_type,
        resource_id=resource_id,
    )

    assert resource_type is not None
    assert resource_id is not None

    connector_client = self._get_connector_client(
        resource_type=resource_type,
        resource_id=resource_id,
    )
    # Transfer the expiration skew tolerance to the connector client
    # if an expiration time is set for the connector client credentials.
    if connector_client.expires_at is not None:
        connector_client.expires_skew_tolerance = (
            self.expires_skew_tolerance
        )

    if connector_client.has_expired():
        raise AuthorizationException(
            "the connector's authentication credentials have expired."
        )

    connector_client._verify(
        resource_type=resource_type,
        resource_id=connector_client.resource_id,
    )

    return connector_client
get_type() -> ServiceConnectorTypeModel classmethod

Get the connector type specification.

Returns:

Type Description
ServiceConnectorTypeModel

The connector type specification.

Source code in src/zenml/service_connectors/service_connector.py
559
560
561
562
563
564
565
566
567
568
569
570
571
572
@classmethod
def get_type(cls) -> ServiceConnectorTypeModel:
    """Get the connector type specification.

    Returns:
        The connector type specification.
    """
    if cls._TYPE is not None:
        return cls._TYPE

    connector_type = cls._get_connector_type()
    connector_type.set_connector_class(cls)
    cls._TYPE = connector_type
    return cls._TYPE
has_expired() -> bool

Check if the connector authentication credentials have expired.

Verify that the authentication credentials associated with the connector have not expired by checking the expiration time against the current time.

Returns:

Type Description
bool

True if the connector has expired, False otherwise.

Source code in src/zenml/service_connectors/service_connector.py
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
def has_expired(self) -> bool:
    """Check if the connector authentication credentials have expired.

    Verify that the authentication credentials associated with the connector
    have not expired by checking the expiration time against the current
    time.

    Returns:
        True if the connector has expired, False otherwise.
    """
    if not self.expires_at:
        return False

    expires_at = self.expires_at.replace(tzinfo=timezone.utc)
    # Subtract some time to account for clock skew or other delays.
    expires_at = expires_at - timedelta(
        seconds=self.expires_skew_tolerance
        if self.expires_skew_tolerance is not None
        else SERVICE_CONNECTOR_SKEW_TOLERANCE_SECONDS
    )
    now = utc_now(tz_aware=expires_at)
    delta = expires_at - now
    result = delta < timedelta(seconds=0)

    logger.debug(
        f"Checking if connector {self.name} has expired.\n"
        f"Expires at: {self.expires_at}\n"
        f"Expires at (+skew): {expires_at}\n"
        f"Current UTC time: {now}\n"
        f"Delta: {delta}\n"
        f"Result: {result}\n"
    )

    return result
to_model(name: Optional[str] = None, description: str = '', labels: Optional[Dict[str, str]] = None) -> ServiceConnectorRequest

Convert the connector instance to a service connector model.

Parameters:

Name Type Description Default
name Optional[str]

The name of the connector.

None
description str

The description of the connector.

''
labels Optional[Dict[str, str]]

The labels of the connector.

None

Returns:

Type Description
ServiceConnectorRequest

The service connector model corresponding to the connector

ServiceConnectorRequest

instance.

Raises:

Type Description
ValueError

If the connector configuration is not valid.

Source code in src/zenml/service_connectors/service_connector.py
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
def to_model(
    self,
    name: Optional[str] = None,
    description: str = "",
    labels: Optional[Dict[str, str]] = None,
) -> "ServiceConnectorRequest":
    """Convert the connector instance to a service connector model.

    Args:
        name: The name of the connector.
        description: The description of the connector.
        labels: The labels of the connector.

    Returns:
        The service connector model corresponding to the connector
        instance.

    Raises:
        ValueError: If the connector configuration is not valid.
    """
    spec = self.get_type()

    name = name or self.name
    if name is None:
        raise ValueError(
            "connector configuration is not valid: name must be set"
        )

    model = ServiceConnectorRequest(
        connector_type=spec.connector_type,
        name=name,
        description=description,
        auth_method=self.auth_method,
        expires_at=self.expires_at,
        expires_skew_tolerance=self.expires_skew_tolerance,
        expiration_seconds=self.expiration_seconds,
        labels=labels or {},
    )

    # Validate the connector configuration.
    model.validate_and_configure_resources(
        connector_type=spec,
        resource_types=self.resource_type,
        resource_id=self.resource_id,
        configuration=self.config.non_secret_values,
        secrets=self.config.secret_values,  # type: ignore[arg-type]
    )

    return model
to_response_model(user: Optional[UserResponse] = None, name: Optional[str] = None, id: Optional[UUID] = None, description: str = '', labels: Optional[Dict[str, str]] = None) -> ServiceConnectorResponse

Convert the connector instance to a service connector response model.

Parameters:

Name Type Description Default
user Optional[UserResponse]

The user that created the connector.

None
name Optional[str]

The name of the connector.

None
id Optional[UUID]

The ID of the connector.

None
description str

The description of the connector.

''
labels Optional[Dict[str, str]]

The labels of the connector.

None

Returns:

Type Description
ServiceConnectorResponse

The service connector response model corresponding to the connector

ServiceConnectorResponse

instance.

Raises:

Type Description
ValueError

If the connector configuration is not valid.

Source code in src/zenml/service_connectors/service_connector.py
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
def to_response_model(
    self,
    user: Optional[UserResponse] = None,
    name: Optional[str] = None,
    id: Optional[UUID] = None,
    description: str = "",
    labels: Optional[Dict[str, str]] = None,
) -> "ServiceConnectorResponse":
    """Convert the connector instance to a service connector response model.

    Args:
        user: The user that created the connector.
        name: The name of the connector.
        id: The ID of the connector.
        description: The description of the connector.
        labels: The labels of the connector.

    Returns:
        The service connector response model corresponding to the connector
        instance.

    Raises:
        ValueError: If the connector configuration is not valid.
    """
    spec = self.get_type()

    name = name or self.name
    id = id or self.id
    if name is None or id is None:
        raise ValueError(
            "connector configuration is not valid: name and ID must be set"
        )

    now = utc_now()
    model = ServiceConnectorResponse(
        id=id,
        name=name,
        body=ServiceConnectorResponseBody(
            user=user,
            created=now,
            updated=now,
            description=description,
            connector_type=self.get_type(),
            auth_method=self.auth_method,
            expires_at=self.expires_at,
            expires_skew_tolerance=self.expires_skew_tolerance,
        ),
        metadata=ServiceConnectorResponseMetadata(
            expiration_seconds=self.expiration_seconds,
            labels=labels or {},
        ),
    )

    # Validate the connector configuration.
    model.validate_and_configure_resources(
        connector_type=spec,
        resource_types=self.resource_type,
        resource_id=self.resource_id,
        configuration=self.config.non_secret_values,
        secrets=self.config.secret_values,  # type: ignore[arg-type]
    )

    return model
validate_runtime_args(resource_type: Optional[str], resource_id: Optional[str] = None, require_resource_type: bool = False, require_resource_id: bool = False, **kwargs: Any) -> Tuple[Optional[str], Optional[str]]

Validate the runtime arguments against the connector configuration.

Validate that the supplied runtime arguments are compatible with the connector configuration and its specification. This includes validating that the resource type and resource ID are compatible with the connector configuration and its capabilities.

Parameters:

Name Type Description Default
resource_type Optional[str]

The type of the resource supplied at runtime by the connector's consumer. Must be the same as the resource type that the connector is configured to access, unless the connector is configured to access any resource type.

required
resource_id Optional[str]

The ID of the resource requested by the connector's consumer. Can be different than the resource ID that the connector is configured to access, e.g. if it is not in the canonical form.

None
require_resource_type bool

Whether the resource type is required.

False
require_resource_id bool

Whether the resource ID is required.

False
kwargs Any

Additional runtime arguments.

{}

Returns:

Type Description
Tuple[Optional[str], Optional[str]]

The validated resource type and resource ID.

Raises:

Type Description
ValueError

If the runtime arguments are not valid.

Source code in src/zenml/service_connectors/service_connector.py
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
def validate_runtime_args(
    self,
    resource_type: Optional[str],
    resource_id: Optional[str] = None,
    require_resource_type: bool = False,
    require_resource_id: bool = False,
    **kwargs: Any,
) -> Tuple[Optional[str], Optional[str]]:
    """Validate the runtime arguments against the connector configuration.

    Validate that the supplied runtime arguments are compatible with the
    connector configuration and its specification. This includes validating
    that the resource type and resource ID are compatible with the connector
    configuration and its capabilities.

    Args:
        resource_type: The type of the resource supplied at runtime by the
            connector's consumer. Must be the same as the resource type that
            the connector is configured to access, unless the connector is
            configured to access any resource type.
        resource_id: The ID of the resource requested by the connector's
            consumer. Can be different than the resource ID that the
            connector is configured to access, e.g. if it is not in the
            canonical form.
        require_resource_type: Whether the resource type is required.
        require_resource_id: Whether the resource ID is required.
        kwargs: Additional runtime arguments.

    Returns:
        The validated resource type and resource ID.

    Raises:
        ValueError: If the runtime arguments are not valid.
    """
    if (
        self.resource_type
        and resource_type
        and (self.resource_type != resource_type)
    ):
        raise ValueError(
            f"the connector is configured to provide access to a "
            f"'{self.resource_type}' resource type, but a different "
            f"resource type was requested: '{resource_type}'."
        )

    resource_type = resource_type or self.resource_type
    resource_id = resource_id or self.resource_id

    if require_resource_type and not resource_type:
        raise ValueError(
            "the connector is configured to provide access to multiple "
            "resource types. A resource type must be specified when "
            "requesting access to a resource."
        )

    spec = self.get_type()

    try:
        # Get the resource specification corresponding to the
        # connector configuration.
        _, resource_spec = spec.find_resource_specifications(
            self.auth_method,
            resource_type,
        )
    except (KeyError, ValueError) as e:
        raise ValueError(
            f"connector configuration is not valid: {e}"
        ) from e

    if not resource_type or not resource_spec:
        if resource_id:
            raise ValueError(
                "the connector is configured to provide access to multiple "
                "resource types, but only a resource name was specified. A "
                "resource type must also be specified when "
                "requesting access to a resource."
            )

        return resource_type, resource_id

    # Validate and convert the resource ID to its canonical form.
    # A default resource ID is returned for resource types that do not
    # support instances, if no resource ID is specified.
    resource_id = self._validate_resource_id(
        resource_type=resource_type,
        resource_id=resource_id,
    )

    if resource_id:
        if self.resource_id and self.resource_id != resource_id:
            raise ValueError(
                f"the connector is configured to provide access to a "
                f"single {resource_spec.name} resource with a "
                f"resource name of '{self.resource_id}', but a "
                f"different resource name was requested: "
                f"'{resource_id}'."
            )

    else:
        if not self.resource_id and require_resource_id:
            raise ValueError(
                f"the connector is configured to provide access to "
                f"multiple {resource_spec.name} resources. A resource name "
                "must be specified when requesting access to a resource."
            )

    return resource_type, resource_id
verify(resource_type: Optional[str] = None, resource_id: Optional[str] = None, list_resources: bool = True) -> ServiceConnectorResourcesModel

Verify and optionally list all the resources that the connector can access.

This method uses the connector's configuration to verify that it can authenticate and access the indicated resource(s).

If list_resources is set, the list of resources that the connector can access, scoped to the supplied resource type and resource ID is included in the response, otherwise the connector only verifies that it can globally authenticate and doesn't verify or return resource information (i.e. the resource_ids fields in the response are empty).

Parameters:

Name Type Description Default
resource_type Optional[str]

The type of the resource to verify. If the connector instance is already configured with a resource type, this argument must be the same as the one configured if supplied.

None
resource_id Optional[str]

The ID of a particular resource instance to check whether the connector can access. If the connector instance is already configured with a resource ID that is not the same or equivalent to the one requested, a ValueError exception is raised.

None
list_resources bool

Whether to list the resources that the connector can access.

True

Returns:

Type Description
ServiceConnectorResourcesModel

A list of resources that the connector can access.

Raises:

Type Description
ValueError

If the arguments or the connector configuration are not valid.

Source code in src/zenml/service_connectors/service_connector.py
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
def verify(
    self,
    resource_type: Optional[str] = None,
    resource_id: Optional[str] = None,
    list_resources: bool = True,
) -> ServiceConnectorResourcesModel:
    """Verify and optionally list all the resources that the connector can access.

    This method uses the connector's configuration to verify that it can
    authenticate and access the indicated resource(s).

    If `list_resources` is set, the list of resources that the connector can
    access, scoped to the supplied resource type and resource ID is included
    in the response, otherwise the connector only verifies that it can
    globally authenticate and doesn't verify or return resource information
    (i.e. the `resource_ids` fields in the response are empty).

    Args:
        resource_type: The type of the resource to verify. If the connector
            instance is already configured with a resource type, this
            argument must be the same as the one configured if supplied.
        resource_id: The ID of a particular resource instance to check
            whether the connector can access. If the connector instance is
            already configured with a resource ID that is not the same or
            equivalent to the one requested, a `ValueError` exception is
            raised.
        list_resources: Whether to list the resources that the connector can
            access.

    Returns:
        A list of resources that the connector can access.

    Raises:
        ValueError: If the arguments or the connector configuration are
            not valid.
    """
    spec = self.get_type()

    resources = ServiceConnectorResourcesModel(
        connector_type=spec,
        id=self.id,
        name=self.name,
    )

    name_msg = f" '{self.name}'" if self.name else ""

    resource_types = self.supported_resource_types
    if resource_type:
        if resource_type not in resource_types:
            raise ValueError(
                f"connector{name_msg} does not support resource type: "
                f"'{resource_type}'. Supported resource types are: "
                f"{', '.join(resource_types)}"
            )
        resource_types = [resource_type]

    # Pre-populate the list of resources with entries corresponding to the
    # supported resource types and scoped to the supplied resource type
    resources.resources = [
        ServiceConnectorTypedResourcesModel(
            resource_type=rt,
        )
        for rt in resource_types
    ]

    if self.has_expired():
        error = "the connector's authentication credentials have expired."
        # Log the error in the resources object
        resources.set_error(error)
        return resources

    verify_resource_types: List[Optional[str]] = []
    verify_resource_id = None
    if not list_resources and not resource_id:
        # If we're not listing resources, we're only verifying that the
        # connector can authenticate globally (i.e. without supplying a
        # resource type or resource ID). This is the same as if no resource
        # type or resource ID was supplied. The only exception is when the
        # verification scope is already set to a single resource ID, in
        # which case we still perform the verification on that resource ID.
        verify_resource_types = [None]
        verify_resource_id = None
    else:
        if len(resource_types) > 1:
            # This forces the connector to verify that it can authenticate
            # globally (i.e. without supplying a resource type or resource
            # ID) before listing individual resources in the case of
            # multi-type service connectors.
            verify_resource_types = [None]

        verify_resource_types.extend(resource_types)
        if len(verify_resource_types) == 1:
            verify_resource_id = resource_id

    # Here we go through each resource type and attempt to verify and list
    # the resources that the connector can access for that resource type.
    # This list may start with a `None` resource type, which indicates that
    # the connector should verify that it can authenticate globally.
    for resource_type in verify_resource_types:
        try:
            resource_type, resource_id = self.validate_runtime_args(
                resource_type=resource_type,
                resource_id=verify_resource_id,
                require_resource_type=False,
                require_resource_id=False,
            )

            resource_ids = self._verify(
                resource_type=resource_type,
                resource_id=resource_id,
            )
        except ValueError as exc:
            raise ValueError(
                f"The connector configuration is incomplete or invalid: "
                f"{exc}",
            )
        except AuthorizationException as exc:
            error = f"connector{name_msg} authorization failure: {exc}"
            # Log an exception if debug logging is enabled
            if logger.isEnabledFor(logging.DEBUG):
                logger.exception(error)
            else:
                logger.warning(error)

            # Log the error in the resources object
            resources.set_error(error, resource_type=resource_type)
            if resource_type:
                continue
            else:
                # We stop on a global failure
                break
        except Exception as exc:
            error = (
                f"connector{name_msg} verification failed with "
                f"unexpected error: {exc}"
            )
            # Log an exception if debug logging is enabled
            if logger.isEnabledFor(logging.DEBUG):
                logger.exception(error)
            else:
                logger.warning(error)
            error = (
                "an unexpected error occurred while verifying the "
                "connector."
            )
            # Log the error in the resources object
            resources.set_error(error, resource_type=resource_type)
            if resource_type:
                continue
            else:
                # We stop on a global failure
                break

        if not resource_type:
            # If a resource type is not provided as argument, we don't
            # expect any resources to be listed
            continue

        resource_type_spec = spec.resource_type_dict[resource_type]

        if resource_id:
            # A single resource was requested, so we expect a single
            # resource to be listed
            if [resource_id] != resource_ids:
                logger.error(
                    f"a different resource ID '{resource_ids}' was "
                    f"returned than the one requested: {resource_ids}. "
                    f"This is likely a bug in the {self.__class__} "
                    "connector implementation."
                )
            resources.set_resource_ids(resource_type, [resource_id])
        elif not resource_ids:
            # If no resources were listed, signal this as an error that the
            # connector cannot access any resources.
            error = (
                f"connector{name_msg} didn't list any "
                f"{resource_type_spec.name} resources. This is likely "
                "caused by the connector credentials not being valid or "
                "not having sufficient permissions to list or access "
                "resources of this type. Please check the connector "
                "configuration and its credentials and try again."
            )
            logger.debug(error)
            resources.set_error(error, resource_type=resource_type)
        else:
            resources.set_resource_ids(resource_type, resource_ids)

    return resources

ServiceConnectorFilter

Bases: UserScopedFilter

Model to enable advanced filtering of service connectors.

Functions
validate_labels() -> ServiceConnectorFilter

Parse the labels string into a label dictionary and vice-versa.

Returns:

Type Description
ServiceConnectorFilter

The validated values.

Source code in src/zenml/models/v2/core/service_connector.py
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
@model_validator(mode="after")
def validate_labels(self) -> "ServiceConnectorFilter":
    """Parse the labels string into a label dictionary and vice-versa.

    Returns:
        The validated values.
    """
    if self.labels_str is not None:
        try:
            self.labels = json.loads(self.labels_str)
        except json.JSONDecodeError:
            # Interpret as comma-separated values instead
            self.labels = {
                label.split("=", 1)[0]: label.split("=", 1)[1]
                if "=" in label
                else None
                for label in self.labels_str.split(",")
            }
    elif self.labels is not None:
        self.labels_str = json.dumps(self.labels)

    return self

ServiceConnectorRequest

Bases: UserScopedRequest

Request model for service connectors.

Attributes
emojified_connector_type: str property

Get the emojified connector type.

Returns:

Type Description
str

The emojified connector type.

emojified_resource_types: List[str] property

Get the emojified connector type.

Returns:

Type Description
List[str]

The emojified connector type.

type: str property

Get the connector type.

Returns:

Type Description
str

The connector type.

Functions
get_analytics_metadata() -> Dict[str, Any]

Format the resource types in the analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in src/zenml/models/v2/core/service_connector.py
120
121
122
123
124
125
126
127
128
129
130
131
132
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Format the resource types in the analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    if len(self.resource_types) == 1:
        metadata["resource_types"] = self.resource_types[0]
    else:
        metadata["resource_types"] = ", ".join(self.resource_types)
    metadata["connector_type"] = self.type
    return metadata
validate_and_configure_resources(connector_type: ServiceConnectorTypeModel, resource_types: Optional[Union[str, List[str]]] = None, resource_id: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, secrets: Optional[Dict[str, Optional[SecretStr]]] = None) -> None

Validate and configure the resources that the connector can be used to access.

Parameters:

Name Type Description Default
connector_type ServiceConnectorTypeModel

The connector type specification used to validate the connector configuration.

required
resource_types Optional[Union[str, List[str]]]

The type(s) of resource that the connector instance can be used to access. If omitted, a multi-type connector is configured.

None
resource_id Optional[str]

Uniquely identifies a specific resource instance that the connector instance can be used to access.

None
configuration Optional[Dict[str, Any]]

The connector configuration.

None
secrets Optional[Dict[str, Optional[SecretStr]]]

The connector secrets.

None
Source code in src/zenml/models/v2/core/service_connector.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def validate_and_configure_resources(
    self,
    connector_type: "ServiceConnectorTypeModel",
    resource_types: Optional[Union[str, List[str]]] = None,
    resource_id: Optional[str] = None,
    configuration: Optional[Dict[str, Any]] = None,
    secrets: Optional[Dict[str, Optional[SecretStr]]] = None,
) -> None:
    """Validate and configure the resources that the connector can be used to access.

    Args:
        connector_type: The connector type specification used to validate
            the connector configuration.
        resource_types: The type(s) of resource that the connector instance
            can be used to access. If omitted, a multi-type connector is
            configured.
        resource_id: Uniquely identifies a specific resource instance that
            the connector instance can be used to access.
        configuration: The connector configuration.
        secrets: The connector secrets.
    """
    _validate_and_configure_resources(
        connector=self,
        connector_type=connector_type,
        resource_types=resource_types,
        resource_id=resource_id,
        configuration=configuration,
        secrets=secrets,
    )

ServiceConnectorResourcesModel

Bases: BaseModel

Service connector resources list.

Lists the resource types and resource instances that a service connector can provide access to.

Attributes
emojified_connector_type: str property

Get the emojified connector type.

Returns:

Type Description
str

The emojified connector type.

resource_types: List[str] property

Get the resource types.

Returns:

Type Description
List[str]

The resource types.

resources_dict: Dict[str, ServiceConnectorTypedResourcesModel] property

Get the resources as a dictionary indexed by resource type.

Returns:

Type Description
Dict[str, ServiceConnectorTypedResourcesModel]

The resources as a dictionary indexed by resource type.

type: str property

Get the connector type.

Returns:

Type Description
str

The connector type.

Functions
from_connector_model(connector_model: ServiceConnectorResponse, resource_type: Optional[str] = None) -> ServiceConnectorResourcesModel classmethod

Initialize a resource model from a connector model.

Parameters:

Name Type Description Default
connector_model ServiceConnectorResponse

The connector model.

required
resource_type Optional[str]

The resource type to set on the resource model. If omitted, the resource type is set according to the connector model.

None

Returns:

Type Description
ServiceConnectorResourcesModel

A resource list model instance.

Source code in src/zenml/models/v2/misc/service_connector_type.py
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
@classmethod
def from_connector_model(
    cls,
    connector_model: "ServiceConnectorResponse",
    resource_type: Optional[str] = None,
) -> "ServiceConnectorResourcesModel":
    """Initialize a resource model from a connector model.

    Args:
        connector_model: The connector model.
        resource_type: The resource type to set on the resource model. If
            omitted, the resource type is set according to the connector
            model.

    Returns:
        A resource list model instance.
    """
    resources = cls(
        id=connector_model.id,
        name=connector_model.name,
        connector_type=connector_model.type,
    )

    resource_types = resource_type or connector_model.resource_types
    for resource_type in resource_types:
        resources.resources.append(
            ServiceConnectorTypedResourcesModel(
                resource_type=resource_type,
                resource_ids=[connector_model.resource_id]
                if connector_model.resource_id
                else None,
            )
        )

    return resources
get_default_resource_id() -> Optional[str]

Get the default resource ID, if included in the resource list.

The default resource ID is a resource ID supplied by the connector implementation only for resource types that do not support multiple instances.

Returns:

Type Description
Optional[str]

The default resource ID, or None if no resource ID is set.

Source code in src/zenml/models/v2/misc/service_connector_type.py
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
def get_default_resource_id(self) -> Optional[str]:
    """Get the default resource ID, if included in the resource list.

    The default resource ID is a resource ID supplied by the connector
    implementation only for resource types that do not support multiple
    instances.

    Returns:
        The default resource ID, or None if no resource ID is set.
    """
    if len(self.resources) != 1:
        # multi-type connectors do not have a default resource ID
        return None

    if isinstance(self.connector_type, str):
        # can't determine default resource ID for unknown connector types
        return None

    resource_type_spec = self.connector_type.resource_type_dict[
        self.resources[0].resource_type
    ]
    if resource_type_spec.supports_instances:
        # resource types that support multiple instances do not have a
        # default resource ID
        return None

    resource_ids = self.resources[0].resource_ids

    if not resource_ids or len(resource_ids) != 1:
        return None

    return resource_ids[0]
get_emojified_resource_types(resource_type: Optional[str] = None) -> List[str]

Get the emojified resource type.

Parameters:

Name Type Description Default
resource_type Optional[str]

The resource type to get the emojified resource type for. If omitted, the emojified resource type for all resource types is returned.

None

Returns:

Type Description
List[str]

The list of emojified resource types.

Source code in src/zenml/models/v2/misc/service_connector_type.py
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def get_emojified_resource_types(
    self, resource_type: Optional[str] = None
) -> List[str]:
    """Get the emojified resource type.

    Args:
        resource_type: The resource type to get the emojified resource type
            for. If omitted, the emojified resource type for all resource
            types is returned.


    Returns:
        The list of emojified resource types.
    """
    if not isinstance(self.connector_type, str):
        if resource_type:
            return [
                self.connector_type.resource_type_dict[
                    resource_type
                ].emojified_resource_type
            ]
        return [
            self.connector_type.resource_type_dict[
                resource_type
            ].emojified_resource_type
            for resource_type in self.resources_dict.keys()
        ]
    if resource_type:
        return [resource_type]
    return list(self.resources_dict.keys())
set_error(error: str, resource_type: Optional[str] = None) -> None

Set a global error message or an error for a single resource type.

Parameters:

Name Type Description Default
error str

The error message.

required
resource_type Optional[str]

The resource type to set the error message for. If omitted, or if there is only one resource type involved, the error message is (also) set globally.

None

Raises:

Type Description
KeyError

If the resource type is not found in the resources list.

Source code in src/zenml/models/v2/misc/service_connector_type.py
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
def set_error(
    self, error: str, resource_type: Optional[str] = None
) -> None:
    """Set a global error message or an error for a single resource type.

    Args:
        error: The error message.
        resource_type: The resource type to set the error message for. If
            omitted, or if there is only one resource type involved, the
            error message is (also) set globally.

    Raises:
        KeyError: If the resource type is not found in the resources list.
    """
    if resource_type:
        resource = self.resources_dict.get(resource_type)
        if not resource:
            raise KeyError(
                f"resource type '{resource_type}' not found in "
                "service connector resources list"
            )
        resource.error = error
        resource.resource_ids = None
        if len(self.resources) == 1:
            # If there is only one resource type involved, set the global
            # error message as well.
            self.error = error
    else:
        self.error = error
        for resource in self.resources:
            resource.error = error
            resource.resource_ids = None
set_resource_ids(resource_type: str, resource_ids: List[str]) -> None

Set the resource IDs for a resource type.

Parameters:

Name Type Description Default
resource_type str

The resource type to set the resource IDs for.

required
resource_ids List[str]

The resource IDs to set.

required

Raises:

Type Description
KeyError

If the resource type is not found in the resources list.

Source code in src/zenml/models/v2/misc/service_connector_type.py
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
def set_resource_ids(
    self, resource_type: str, resource_ids: List[str]
) -> None:
    """Set the resource IDs for a resource type.

    Args:
        resource_type: The resource type to set the resource IDs for.
        resource_ids: The resource IDs to set.

    Raises:
        KeyError: If the resource type is not found in the resources list.
    """
    resource = self.resources_dict.get(resource_type)
    if not resource:
        raise KeyError(
            f"resource type '{resource_type}' not found in "
            "service connector resources list"
        )
    resource.resource_ids = resource_ids
    resource.error = None

ServiceConnectorResponse

Bases: UserScopedResponse[ServiceConnectorResponseBody, ServiceConnectorResponseMetadata, ServiceConnectorResponseResources]

Response model for service connectors.

Attributes
auth_method: str property

The auth_method property.

Returns:

Type Description
str

the value of the property.

configuration: Dict[str, Any] property

The configuration property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

connector_type: Union[str, ServiceConnectorTypeModel] property

The connector_type property.

Returns:

Type Description
Union[str, ServiceConnectorTypeModel]

the value of the property.

description: str property

The description property.

Returns:

Type Description
str

the value of the property.

emojified_connector_type: str property

Get the emojified connector type.

Returns:

Type Description
str

The emojified connector type.

emojified_resource_types: List[str] property

Get the emojified connector type.

Returns:

Type Description
List[str]

The emojified connector type.

expiration_seconds: Optional[int] property

The expiration_seconds property.

Returns:

Type Description
Optional[int]

the value of the property.

expires_at: Optional[datetime] property

The expires_at property.

Returns:

Type Description
Optional[datetime]

the value of the property.

expires_skew_tolerance: Optional[int] property

The expires_skew_tolerance property.

Returns:

Type Description
Optional[int]

the value of the property.

full_configuration: Dict[str, str] property

Get the full connector configuration, including secrets.

Returns:

Type Description
Dict[str, str]

The full connector configuration, including secrets.

is_multi_instance: bool property

Checks if the connector is multi-instance.

A multi-instance connector is configured to access multiple instances of the configured resource type.

Returns:

Type Description
bool

True if the connector is multi-instance, False otherwise.

is_multi_type: bool property

Checks if the connector is multi-type.

A multi-type connector can be used to access multiple types of resources.

Returns:

Type Description
bool

True if the connector is multi-type, False otherwise.

is_single_instance: bool property

Checks if the connector is single-instance.

A single-instance connector is configured to access only a single instance of the configured resource type or does not support multiple resource instances.

Returns:

Type Description
bool

True if the connector is single-instance, False otherwise.

labels: Dict[str, str] property

The labels property.

Returns:

Type Description
Dict[str, str]

the value of the property.

resource_id: Optional[str] property

The resource_id property.

Returns:

Type Description
Optional[str]

the value of the property.

resource_types: List[str] property

The resource_types property.

Returns:

Type Description
List[str]

the value of the property.

secret_id: Optional[UUID] property

The secret_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

secrets: Dict[str, Optional[SecretStr]] property

The secrets property.

Returns:

Type Description
Dict[str, Optional[SecretStr]]

the value of the property.

supports_instances: bool property

The supports_instances property.

Returns:

Type Description
bool

the value of the property.

type: str property

Get the connector type.

Returns:

Type Description
str

The connector type.

Functions
get_analytics_metadata() -> Dict[str, Any]

Add the service connector labels to analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in src/zenml/models/v2/core/service_connector.py
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Add the service connector labels to analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()

    metadata.update(
        {
            label[6:]: value
            for label, value in self.labels.items()
            if label.startswith("zenml:")
        }
    )
    return metadata
get_hydrated_version() -> ServiceConnectorResponse

Get the hydrated version of this service connector.

Returns:

Type Description
ServiceConnectorResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/service_connector.py
515
516
517
518
519
520
521
522
523
def get_hydrated_version(self) -> "ServiceConnectorResponse":
    """Get the hydrated version of this service connector.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_service_connector(self.id)
set_connector_type(value: Union[str, ServiceConnectorTypeModel]) -> None

Auxiliary method to set the connector type.

Parameters:

Name Type Description Default
value Union[str, ServiceConnectorTypeModel]

the new value for the connector type.

required
Source code in src/zenml/models/v2/core/service_connector.py
620
621
622
623
624
625
626
627
628
def set_connector_type(
    self, value: Union[str, "ServiceConnectorTypeModel"]
) -> None:
    """Auxiliary method to set the connector type.

    Args:
        value: the new value for the connector type.
    """
    self.get_body().connector_type = value
validate_and_configure_resources(connector_type: ServiceConnectorTypeModel, resource_types: Optional[Union[str, List[str]]] = None, resource_id: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, secrets: Optional[Dict[str, Optional[SecretStr]]] = None) -> None

Validate and configure the resources that the connector can be used to access.

Parameters:

Name Type Description Default
connector_type ServiceConnectorTypeModel

The connector type specification used to validate the connector configuration.

required
resource_types Optional[Union[str, List[str]]]

The type(s) of resource that the connector instance can be used to access. If omitted, a multi-type connector is configured.

None
resource_id Optional[str]

Uniquely identifies a specific resource instance that the connector instance can be used to access.

None
configuration Optional[Dict[str, Any]]

The connector configuration.

None
secrets Optional[Dict[str, Optional[SecretStr]]]

The connector secrets.

None
Source code in src/zenml/models/v2/core/service_connector.py
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def validate_and_configure_resources(
    self,
    connector_type: "ServiceConnectorTypeModel",
    resource_types: Optional[Union[str, List[str]]] = None,
    resource_id: Optional[str] = None,
    configuration: Optional[Dict[str, Any]] = None,
    secrets: Optional[Dict[str, Optional[SecretStr]]] = None,
) -> None:
    """Validate and configure the resources that the connector can be used to access.

    Args:
        connector_type: The connector type specification used to validate
            the connector configuration.
        resource_types: The type(s) of resource that the connector instance
            can be used to access. If omitted, a multi-type connector is
            configured.
        resource_id: Uniquely identifies a specific resource instance that
            the connector instance can be used to access.
        configuration: The connector configuration.
        secrets: The connector secrets.
    """
    _validate_and_configure_resources(
        connector=self,
        connector_type=connector_type,
        resource_types=resource_types,
        resource_id=resource_id,
        configuration=configuration,
        secrets=secrets,
    )

ServiceConnectorTypeModel

Bases: BaseModel

Service connector type specification.

Describes the types of resources to which the service connector can be used to gain access and the authentication methods that are supported by the service connector.

The connector type, resource types, resource IDs and authentication methods can all be used as search criteria to lookup and filter service connector instances that are compatible with the requirements of a consumer (e.g. a stack component).

Attributes
auth_method_dict: Dict[str, AuthenticationMethodModel] property

Returns a map of authentication methods to authentication method specifications.

Returns:

Type Description
Dict[str, AuthenticationMethodModel]

A map of authentication methods to authentication method

Dict[str, AuthenticationMethodModel]

specifications.

connector_class: Optional[Type[ServiceConnector]] property

Get the service connector class.

Returns:

Type Description
Optional[Type[ServiceConnector]]

The service connector class.

emojified_connector_type: str property

Get the emojified connector type.

Returns:

Type Description
str

The emojified connector type.

emojified_resource_types: List[str] property

Get the emojified connector types.

Returns:

Type Description
List[str]

The emojified connector types.

resource_type_dict: Dict[str, ResourceTypeModel] property

Returns a map of resource types to resource type specifications.

Returns:

Type Description
Dict[str, ResourceTypeModel]

A map of resource types to resource type specifications.

Functions
find_resource_specifications(auth_method: str, resource_type: Optional[str] = None) -> Tuple[AuthenticationMethodModel, Optional[ResourceTypeModel]]

Find the specifications for a configurable resource.

Validate the supplied connector configuration parameters against the connector specification and return the matching authentication method specification and resource specification.

Parameters:

Name Type Description Default
auth_method str

The name of the authentication method.

required
resource_type Optional[str]

The type of resource being configured.

None

Returns:

Type Description
AuthenticationMethodModel

The authentication method specification and resource specification

Optional[ResourceTypeModel]

for the specified authentication method and resource type.

Raises:

Type Description
KeyError

If the authentication method is not supported by the connector for the specified resource type and ID.

Source code in src/zenml/models/v2/misc/service_connector_type.py
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
def find_resource_specifications(
    self,
    auth_method: str,
    resource_type: Optional[str] = None,
) -> Tuple[AuthenticationMethodModel, Optional[ResourceTypeModel]]:
    """Find the specifications for a configurable resource.

    Validate the supplied connector configuration parameters against the
    connector specification and return the matching authentication method
    specification and resource specification.

    Args:
        auth_method: The name of the authentication method.
        resource_type: The type of resource being configured.

    Returns:
        The authentication method specification and resource specification
        for the specified authentication method and resource type.

    Raises:
        KeyError: If the authentication method is not supported by the
            connector for the specified resource type and ID.
    """
    # Verify the authentication method
    auth_method_dict = self.auth_method_dict
    if auth_method in auth_method_dict:
        # A match was found for the authentication method
        auth_method_spec = auth_method_dict[auth_method]
    else:
        # No match was found for the authentication method
        raise KeyError(
            f"connector type '{self.connector_type}' does not support the "
            f"'{auth_method}' authentication method. Supported "
            f"authentication methods are: {list(auth_method_dict.keys())}."
        )

    if resource_type is None:
        # No resource type was specified, so no resource type
        # specification can be returned.
        return auth_method_spec, None

    # Verify the resource type
    resource_type_dict = self.resource_type_dict
    if resource_type in resource_type_dict:
        resource_type_spec = resource_type_dict[resource_type]
    else:
        raise KeyError(
            f"connector type '{self.connector_type}' does not support "
            f"resource type '{resource_type}'. Supported resource types "
            f"are: {list(resource_type_dict.keys())}."
        )

    if auth_method not in resource_type_spec.auth_methods:
        raise KeyError(
            f"the '{self.connector_type}' connector type does not support "
            f"the '{auth_method}' authentication method for the "
            f"'{resource_type}' resource type. Supported authentication "
            f"methods are: {resource_type_spec.auth_methods}."
        )

    return auth_method_spec, resource_type_spec
set_connector_class(connector_class: Type[ServiceConnector]) -> None

Set the service connector class.

Parameters:

Name Type Description Default
connector_class Type[ServiceConnector]

The service connector class.

required
Source code in src/zenml/models/v2/misc/service_connector_type.py
321
322
323
324
325
326
327
328
329
def set_connector_class(
    self, connector_class: Type["ServiceConnector"]
) -> None:
    """Set the service connector class.

    Args:
        connector_class: The service connector class.
    """
    self._connector_class = connector_class
validate_auth_methods(values: List[AuthenticationMethodModel]) -> List[AuthenticationMethodModel] classmethod

Validate that the authentication methods are unique.

Parameters:

Name Type Description Default
values List[AuthenticationMethodModel]

The list of authentication methods.

required

Returns:

Type Description
List[AuthenticationMethodModel]

The list of authentication methods.

Raises:

Type Description
ValueError

If two or more authentication method specifications share the same authentication method value.

Source code in src/zenml/models/v2/misc/service_connector_type.py
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
@field_validator("auth_methods")
@classmethod
def validate_auth_methods(
    cls, values: List[AuthenticationMethodModel]
) -> List[AuthenticationMethodModel]:
    """Validate that the authentication methods are unique.

    Args:
        values: The list of authentication methods.

    Returns:
        The list of authentication methods.

    Raises:
        ValueError: If two or more authentication method specifications
            share the same authentication method value.
    """
    # Gather all auth methods from the list of auth method
    # specifications.
    auth_methods = [a.auth_method for a in values]
    if len(auth_methods) != len(set(auth_methods)):
        raise ValueError(
            "Two or more authentication method specifications must not "
            "share the same authentication method value."
        )

    return values
validate_resource_types(values: List[ResourceTypeModel]) -> List[ResourceTypeModel] classmethod

Validate that the resource types are unique.

Parameters:

Name Type Description Default
values List[ResourceTypeModel]

The list of resource types.

required

Returns:

Type Description
List[ResourceTypeModel]

The list of resource types.

Raises:

Type Description
ValueError

If two or more resource type specifications list the same resource type.

Source code in src/zenml/models/v2/misc/service_connector_type.py
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
@field_validator("resource_types")
@classmethod
def validate_resource_types(
    cls, values: List[ResourceTypeModel]
) -> List[ResourceTypeModel]:
    """Validate that the resource types are unique.

    Args:
        values: The list of resource types.

    Returns:
        The list of resource types.

    Raises:
        ValueError: If two or more resource type specifications list the
            same resource type.
    """
    # Gather all resource types from the list of resource type
    # specifications.
    resource_types = [r.resource_type for r in values]
    if len(resource_types) != len(set(resource_types)):
        raise ValueError(
            "Two or more resource type specifications must not list "
            "the same resource type."
        )

    return values

ServiceConnectorUpdate

Bases: BaseUpdate

Model used for service connector updates.

Most fields in the update model are optional and will not be updated if omitted. However, the following fields are "special" and leaving them out will also cause the corresponding value to be removed from the service connector in the database:

  • the resource_id field
  • the expiration_seconds field

In addition to the above exceptions, the following rules apply:

  • the configuration and secrets fields together represent a full valid configuration update, not just a partial update. If either is set (i.e. not None) in the update, their values are merged together and will replace the existing configuration and secrets values.
  • the labels field is also a full labels update: if set (i.e. not None), all existing labels are removed and replaced by the new labels in the update.

NOTE: the attributes here override the ones in the base class, so they have a None default value.

Attributes
type: Optional[str] property

Get the connector type.

Returns:

Type Description
Optional[str]

The connector type.

Functions
convert_to_request() -> ServiceConnectorRequest

Method to generate a service connector request object from self.

For certain operations, the service connector update model need to adhere to the limitations set by the request model. In order to use update models in such situations, we need to be able to convert an update model into a request model.

Returns:

Type Description
ServiceConnectorRequest

The equivalent request model

Raises:

Type Description
RuntimeError

if the model can not be converted to a request model.

Source code in src/zenml/models/v2/core/service_connector.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
def convert_to_request(self) -> "ServiceConnectorRequest":
    """Method to generate a service connector request object from self.

    For certain operations, the service connector update model need to
    adhere to the limitations set by the request model. In order to use
    update models in such situations, we need to be able to convert an
    update model into a request model.

    Returns:
        The equivalent request model

    Raises:
        RuntimeError: if the model can not be converted to a request model.
    """
    try:
        return ServiceConnectorRequest.model_validate(self.model_dump())
    except ValidationError as e:
        raise RuntimeError(
            "The service connector update model can not be converted into "
            f"an equivalent request model: {e}"
        )
get_analytics_metadata() -> Dict[str, Any]

Format the resource types in the analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in src/zenml/models/v2/core/service_connector.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Format the resource types in the analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()

    if self.resource_types is not None:
        if len(self.resource_types) == 1:
            metadata["resource_types"] = self.resource_types[0]
        else:
            metadata["resource_types"] = ", ".join(self.resource_types)

    if self.connector_type is not None:
        metadata["connector_type"] = self.type

    return metadata
validate_and_configure_resources(connector_type: ServiceConnectorTypeModel, resource_types: Optional[Union[str, List[str]]] = None, resource_id: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, secrets: Optional[Dict[str, Optional[SecretStr]]] = None) -> None

Validate and configure the resources that the connector can be used to access.

Parameters:

Name Type Description Default
connector_type ServiceConnectorTypeModel

The connector type specification used to validate the connector configuration.

required
resource_types Optional[Union[str, List[str]]]

The type(s) of resource that the connector instance can be used to access. If omitted, a multi-type connector is configured.

None
resource_id Optional[str]

Uniquely identifies a specific resource instance that the connector instance can be used to access.

None
configuration Optional[Dict[str, Any]]

The connector configuration.

None
secrets Optional[Dict[str, Optional[SecretStr]]]

The connector secrets.

None
Source code in src/zenml/models/v2/core/service_connector.py
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
def validate_and_configure_resources(
    self,
    connector_type: "ServiceConnectorTypeModel",
    resource_types: Optional[Union[str, List[str]]] = None,
    resource_id: Optional[str] = None,
    configuration: Optional[Dict[str, Any]] = None,
    secrets: Optional[Dict[str, Optional[SecretStr]]] = None,
) -> None:
    """Validate and configure the resources that the connector can be used to access.

    Args:
        connector_type: The connector type specification used to validate
            the connector configuration.
        resource_types: The type(s) of resource that the connector instance
            can be used to access. If omitted, a multi-type connector is
            configured.
        resource_id: Uniquely identifies a specific resource instance that
            the connector instance can be used to access.
        configuration: The connector configuration.
        secrets: The connector secrets.
    """
    _validate_and_configure_resources(
        connector=self,
        connector_type=connector_type,
        resource_types=resource_types,
        resource_id=resource_id,
        configuration=configuration,
        secrets=secrets,
    )

ServiceFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of services.

Functions
generate_filter(table: Type[AnySchema]) -> Union[ColumnElement[bool]]

Generate the filter for the query.

Services can be scoped by type to narrow the search.

Parameters:

Name Type Description Default
table Type[AnySchema]

The Table that is being queried from.

required

Returns:

Type Description
Union[ColumnElement[bool]]

The filter expression for the query.

Source code in src/zenml/models/v2/core/service.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
def generate_filter(
    self, table: Type["AnySchema"]
) -> Union["ColumnElement[bool]"]:
    """Generate the filter for the query.

    Services can be scoped by type to narrow the search.

    Args:
        table: The Table that is being queried from.

    Returns:
        The filter expression for the query.
    """
    from sqlmodel import and_

    base_filter = super().generate_filter(table)

    if self.type:
        type_filter = getattr(table, "type") == self.type
        base_filter = and_(base_filter, type_filter)

    if self.flavor:
        flavor_filter = getattr(table, "flavor") == self.flavor
        base_filter = and_(base_filter, flavor_filter)

    if self.pipeline_name:
        pipeline_name_filter = (
            getattr(table, "pipeline_name") == self.pipeline_name
        )
        base_filter = and_(base_filter, pipeline_name_filter)

    if self.pipeline_step_name:
        pipeline_step_name_filter = (
            getattr(table, "pipeline_step_name") == self.pipeline_step_name
        )
        base_filter = and_(base_filter, pipeline_step_name_filter)

    return base_filter
set_flavor(flavor: str) -> None

Set the flavor of the service.

Parameters:

Name Type Description Default
flavor str

The flavor of the service.

required
Source code in src/zenml/models/v2/core/service.py
467
468
469
470
471
472
473
def set_flavor(self, flavor: str) -> None:
    """Set the flavor of the service.

    Args:
        flavor: The flavor of the service.
    """
    self.flavor = flavor
set_type(type: str) -> None

Set the type of the service.

Parameters:

Name Type Description Default
type str

The type of the service.

required
Source code in src/zenml/models/v2/core/service.py
459
460
461
462
463
464
465
def set_type(self, type: str) -> None:
    """Set the type of the service.

    Args:
        type: The type of the service.
    """
    self.type = type

ServiceRequest

Bases: ProjectScopedRequest

Request model for services.

ServiceResponse

Bases: ProjectScopedResponse[ServiceResponseBody, ServiceResponseMetadata, ServiceResponseResources]

Response model for services.

Attributes
admin_state: Optional[ServiceState] property

The admin_state property.

Returns:

Type Description
Optional[ServiceState]

the value of the property.

config: Dict[str, Any] property

The config property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

created: datetime property

The created property.

Returns:

Type Description
datetime

the value of the property.

endpoint: Optional[Dict[str, Any]] property

The endpoint property.

Returns:

Type Description
Optional[Dict[str, Any]]

the value of the property.

health_check_url: Optional[str] property

The health_check_url property.

Returns:

Type Description
Optional[str]

the value of the property.

labels: Optional[Dict[str, str]] property

The labels property.

Returns:

Type Description
Optional[Dict[str, str]]

the value of the property.

model_version: Optional[ModelVersionResponse] property

The model_version property.

Returns:

Type Description
Optional[ModelVersionResponse]

the value of the property.

pipeline_run: Optional[PipelineRunResponse] property

The pipeline_run property.

Returns:

Type Description
Optional[PipelineRunResponse]

the value of the property.

prediction_url: Optional[str] property

The prediction_url property.

Returns:

Type Description
Optional[str]

the value of the property.

service_source: Optional[str] property

The service_source property.

Returns:

Type Description
Optional[str]

the value of the property.

service_type: ServiceType property

The service_type property.

Returns:

Type Description
ServiceType

the value of the property.

state: Optional[ServiceState] property

The state property.

Returns:

Type Description
Optional[ServiceState]

the value of the property.

status: Optional[Dict[str, Any]] property

The status property.

Returns:

Type Description
Optional[Dict[str, Any]]

the value of the property.

updated: datetime property

The updated property.

Returns:

Type Description
datetime

the value of the property.

Functions
get_hydrated_version() -> ServiceResponse

Get the hydrated version of this artifact.

Returns:

Type Description
ServiceResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/service.py
265
266
267
268
269
270
271
272
273
def get_hydrated_version(self) -> "ServiceResponse":
    """Get the hydrated version of this artifact.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_service(self.id)

ServiceState

Bases: StrEnum

Possible states for the service and service endpoint.

ServiceType

Bases: BaseModel

Service type descriptor.

Attributes:

Name Type Description
type str

service type

flavor str

service flavor

name str

name of the service type

description str

description of the service type

logo_url str

logo of the service type

ServiceUpdate

Bases: BaseUpdate

Update model for stack components.

SorterOps

Bases: StrEnum

Ops for all filters for string values on list methods.

Source

Bases: BaseModel

Source specification.

A source specifies a module name as well as an optional attribute of that module. These values can be used to import the module and get the value of the attribute inside the module.

Example

The source Source(module="zenml.config.source", attribute="Source") references the class that this docstring is describing. This class is defined in the zenml.config.source module and the name of the attribute is the class name Source.

Attributes:

Name Type Description
module str

The module name.

attribute Optional[str]

Optional name of the attribute inside the module.

type SourceType

The type of the source.

Attributes
import_path: str property

The import path of the source.

Returns:

Type Description
str

The import path of the source.

is_internal: bool property

If the source is internal (=from the zenml package).

Returns:

Type Description
bool

True if the source is internal, False otherwise

is_module_source: bool property

If the source is a module source.

Returns:

Type Description
bool

If the source is a module source.

Functions
from_import_path(import_path: str, is_module_path: bool = False) -> Source classmethod

Creates a source from an import path.

Parameters:

Name Type Description Default
import_path str

The import path.

required
is_module_path bool

If the import path points to a module or not.

False

Raises:

Type Description
ValueError

If the import path is empty.

Returns:

Type Description
Source

The source.

Source code in src/zenml/config/source.py
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
@classmethod
def from_import_path(
    cls, import_path: str, is_module_path: bool = False
) -> "Source":
    """Creates a source from an import path.

    Args:
        import_path: The import path.
        is_module_path: If the import path points to a module or not.

    Raises:
        ValueError: If the import path is empty.

    Returns:
        The source.
    """
    if not import_path:
        raise ValueError(
            "Invalid empty import path. The import path needs to refer "
            "to a Python module and an optional attribute of that module."
        )

    # Remove internal version pins for backwards compatibility
    if "@" in import_path:
        import_path = import_path.split("@", 1)[0]

    if is_module_path or "." not in import_path:
        module = import_path
        attribute = None
    else:
        module, attribute = import_path.rsplit(".", maxsplit=1)

    return Source(
        module=module, attribute=attribute, type=SourceType.UNKNOWN
    )
model_dump(**kwargs: Any) -> Dict[str, Any]

Dump the source as a dictionary.

Parameters:

Name Type Description Default
**kwargs Any

Additional keyword arguments.

{}

Returns:

Type Description
Dict[str, Any]

The source as a dictionary.

Source code in src/zenml/config/source.py
143
144
145
146
147
148
149
150
151
152
def model_dump(self, **kwargs: Any) -> Dict[str, Any]:
    """Dump the source as a dictionary.

    Args:
        **kwargs: Additional keyword arguments.

    Returns:
        The source as a dictionary.
    """
    return super().model_dump(serialize_as_any=True, **kwargs)
model_dump_json(**kwargs: Any) -> str

Dump the source as a JSON string.

Parameters:

Name Type Description Default
**kwargs Any

Additional keyword arguments.

{}

Returns:

Type Description
str

The source as a JSON string.

Source code in src/zenml/config/source.py
154
155
156
157
158
159
160
161
162
163
def model_dump_json(self, **kwargs: Any) -> str:
    """Dump the source as a JSON string.

    Args:
        **kwargs: Additional keyword arguments.

    Returns:
        The source as a JSON string.
    """
    return super().model_dump_json(serialize_as_any=True, **kwargs)

Stack(id: UUID, name: str, *, orchestrator: BaseOrchestrator, artifact_store: BaseArtifactStore, container_registry: Optional[BaseContainerRegistry] = None, step_operator: Optional[BaseStepOperator] = None, feature_store: Optional[BaseFeatureStore] = None, model_deployer: Optional[BaseModelDeployer] = None, experiment_tracker: Optional[BaseExperimentTracker] = None, alerter: Optional[BaseAlerter] = None, annotator: Optional[BaseAnnotator] = None, data_validator: Optional[BaseDataValidator] = None, image_builder: Optional[BaseImageBuilder] = None, model_registry: Optional[BaseModelRegistry] = None)

ZenML stack class.

A ZenML stack is a collection of multiple stack components that are required to run ZenML pipelines. Some of these components (orchestrator, and artifact store) are required to run any kind of pipeline, other components like the container registry are only required if other stack components depend on them.

Initializes and validates a stack instance.

Parameters:

Name Type Description Default
id UUID

Unique ID of the stack.

required
name str

Name of the stack.

required
orchestrator BaseOrchestrator

Orchestrator component of the stack.

required
artifact_store BaseArtifactStore

Artifact store component of the stack.

required
container_registry Optional[BaseContainerRegistry]

Container registry component of the stack.

None
step_operator Optional[BaseStepOperator]

Step operator component of the stack.

None
feature_store Optional[BaseFeatureStore]

Feature store component of the stack.

None
model_deployer Optional[BaseModelDeployer]

Model deployer component of the stack.

None
experiment_tracker Optional[BaseExperimentTracker]

Experiment tracker component of the stack.

None
alerter Optional[BaseAlerter]

Alerter component of the stack.

None
annotator Optional[BaseAnnotator]

Annotator component of the stack.

None
data_validator Optional[BaseDataValidator]

Data validator component of the stack.

None
image_builder Optional[BaseImageBuilder]

Image builder component of the stack.

None
model_registry Optional[BaseModelRegistry]

Model registry component of the stack.

None
Source code in src/zenml/stack/stack.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def __init__(
    self,
    id: UUID,
    name: str,
    *,
    orchestrator: "BaseOrchestrator",
    artifact_store: "BaseArtifactStore",
    container_registry: Optional["BaseContainerRegistry"] = None,
    step_operator: Optional["BaseStepOperator"] = None,
    feature_store: Optional["BaseFeatureStore"] = None,
    model_deployer: Optional["BaseModelDeployer"] = None,
    experiment_tracker: Optional["BaseExperimentTracker"] = None,
    alerter: Optional["BaseAlerter"] = None,
    annotator: Optional["BaseAnnotator"] = None,
    data_validator: Optional["BaseDataValidator"] = None,
    image_builder: Optional["BaseImageBuilder"] = None,
    model_registry: Optional["BaseModelRegistry"] = None,
):
    """Initializes and validates a stack instance.

    Args:
        id: Unique ID of the stack.
        name: Name of the stack.
        orchestrator: Orchestrator component of the stack.
        artifact_store: Artifact store component of the stack.
        container_registry: Container registry component of the stack.
        step_operator: Step operator component of the stack.
        feature_store: Feature store component of the stack.
        model_deployer: Model deployer component of the stack.
        experiment_tracker: Experiment tracker component of the stack.
        alerter: Alerter component of the stack.
        annotator: Annotator component of the stack.
        data_validator: Data validator component of the stack.
        image_builder: Image builder component of the stack.
        model_registry: Model registry component of the stack.
    """
    self._id = id
    self._name = name
    self._orchestrator = orchestrator
    self._artifact_store = artifact_store
    self._container_registry = container_registry
    self._step_operator = step_operator
    self._feature_store = feature_store
    self._model_deployer = model_deployer
    self._experiment_tracker = experiment_tracker
    self._alerter = alerter
    self._annotator = annotator
    self._data_validator = data_validator
    self._model_registry = model_registry
    self._image_builder = image_builder
Attributes
alerter: Optional[BaseAlerter] property

The alerter of the stack.

Returns:

Type Description
Optional[BaseAlerter]

The alerter of the stack.

annotator: Optional[BaseAnnotator] property

The annotator of the stack.

Returns:

Type Description
Optional[BaseAnnotator]

The annotator of the stack.

apt_packages: List[str] property

List of APT package requirements for the stack.

Returns:

Type Description
List[str]

A list of APT package requirements for the stack.

artifact_store: BaseArtifactStore property

The artifact store of the stack.

Returns:

Type Description
BaseArtifactStore

The artifact store of the stack.

components: Dict[StackComponentType, StackComponent] property

All components of the stack.

Returns:

Type Description
Dict[StackComponentType, StackComponent]

A dictionary of all components of the stack.

container_registry: Optional[BaseContainerRegistry] property

The container registry of the stack.

Returns:

Type Description
Optional[BaseContainerRegistry]

The container registry of the stack or None if the stack does not

Optional[BaseContainerRegistry]

have a container registry.

data_validator: Optional[BaseDataValidator] property

The data validator of the stack.

Returns:

Type Description
Optional[BaseDataValidator]

The data validator of the stack.

experiment_tracker: Optional[BaseExperimentTracker] property

The experiment tracker of the stack.

Returns:

Type Description
Optional[BaseExperimentTracker]

The experiment tracker of the stack.

feature_store: Optional[BaseFeatureStore] property

The feature store of the stack.

Returns:

Type Description
Optional[BaseFeatureStore]

The feature store of the stack.

id: UUID property

The ID of the stack.

Returns:

Type Description
UUID

The ID of the stack.

image_builder: Optional[BaseImageBuilder] property

The image builder of the stack.

Returns:

Type Description
Optional[BaseImageBuilder]

The image builder of the stack.

model_deployer: Optional[BaseModelDeployer] property

The model deployer of the stack.

Returns:

Type Description
Optional[BaseModelDeployer]

The model deployer of the stack.

model_registry: Optional[BaseModelRegistry] property

The model registry of the stack.

Returns:

Type Description
Optional[BaseModelRegistry]

The model registry of the stack.

name: str property

The name of the stack.

Returns:

Name Type Description
str str

The name of the stack.

orchestrator: BaseOrchestrator property

The orchestrator of the stack.

Returns:

Type Description
BaseOrchestrator

The orchestrator of the stack.

required_secrets: Set[secret_utils.SecretReference] property

All required secrets for this stack.

Returns:

Type Description
Set[SecretReference]

The required secrets of this stack.

requires_remote_server: bool property

If the stack requires a remote ZenServer to run.

This is the case if any code is getting executed remotely. This is the case for both remote orchestrators as well as remote step operators.

Returns:

Type Description
bool

If the stack requires a remote ZenServer to run.

setting_classes: Dict[str, Type[BaseSettings]] property

Setting classes of all components of this stack.

Returns:

Type Description
Dict[str, Type[BaseSettings]]

All setting classes and their respective keys.

step_operator: Optional[BaseStepOperator] property

The step operator of the stack.

Returns:

Type Description
Optional[BaseStepOperator]

The step operator of the stack.

Functions
check_local_paths() -> bool

Checks if the stack has local paths.

Returns:

Type Description
bool

True if the stack has local paths, False otherwise.

Raises:

Type Description
ValueError

If the stack has local paths that do not conform to the convention that all local path must be relative to the local stores directory.

Source code in src/zenml/stack/stack.py
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
def check_local_paths(self) -> bool:
    """Checks if the stack has local paths.

    Returns:
        True if the stack has local paths, False otherwise.

    Raises:
        ValueError: If the stack has local paths that do not conform to
            the convention that all local path must be relative to the
            local stores directory.
    """
    from zenml.config.global_config import GlobalConfiguration

    local_stores_path = GlobalConfiguration().local_stores_path

    # go through all stack components and identify those that advertise
    # a local path where they persist information that they need to be
    # available when running pipelines.
    has_local_paths = False
    for stack_comp in self.components.values():
        local_path = stack_comp.local_path
        if not local_path:
            continue
        # double-check this convention, just in case it wasn't respected
        # as documented in `StackComponent.local_path`
        if not local_path.startswith(local_stores_path):
            raise ValueError(
                f"Local path {local_path} for component "
                f"{stack_comp.name} is not in the local stores "
                f"directory ({local_stores_path})."
            )
        has_local_paths = True

    return has_local_paths
cleanup_step_run(info: StepRunInfo, step_failed: bool) -> None

Cleans up resources after the step run is finished.

Parameters:

Name Type Description Default
info StepRunInfo

Info about the step that was executed.

required
step_failed bool

Whether the step failed.

required
Source code in src/zenml/stack/stack.py
928
929
930
931
932
933
934
935
936
937
938
def cleanup_step_run(self, info: "StepRunInfo", step_failed: bool) -> None:
    """Cleans up resources after the step run is finished.

    Args:
        info: Info about the step that was executed.
        step_failed: Whether the step failed.
    """
    for component in self._get_active_components_for_step(
        info.config
    ).values():
        component.cleanup_step_run(info=info, step_failed=step_failed)
deploy_pipeline(deployment: PipelineDeploymentResponse, placeholder_run: Optional[PipelineRunResponse] = None) -> None

Deploys a pipeline on this stack.

Parameters:

Name Type Description Default
deployment PipelineDeploymentResponse

The pipeline deployment.

required
placeholder_run Optional[PipelineRunResponse]

An optional placeholder run for the deployment.

None
Source code in src/zenml/stack/stack.py
814
815
816
817
818
819
820
821
822
823
824
825
826
827
def deploy_pipeline(
    self,
    deployment: "PipelineDeploymentResponse",
    placeholder_run: Optional["PipelineRunResponse"] = None,
) -> None:
    """Deploys a pipeline on this stack.

    Args:
        deployment: The pipeline deployment.
        placeholder_run: An optional placeholder run for the deployment.
    """
    self.orchestrator.run(
        deployment=deployment, stack=self, placeholder_run=placeholder_run
    )
dict() -> Dict[str, str]

Converts the stack into a dictionary.

Returns:

Type Description
Dict[str, str]

A dictionary containing the stack components.

Source code in src/zenml/stack/stack.py
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def dict(self) -> Dict[str, str]:
    """Converts the stack into a dictionary.

    Returns:
        A dictionary containing the stack components.
    """
    component_dict = {
        component_type.value: json.dumps(
            component.config.model_dump(mode="json"), sort_keys=True
        )
        for component_type, component in self.components.items()
    }
    component_dict.update({"name": self.name})
    return component_dict
from_components(id: UUID, name: str, components: Dict[StackComponentType, StackComponent]) -> Stack classmethod

Creates a stack instance from a dict of stack components.

noqa: DAR402

Parameters:

Name Type Description Default
id UUID

Unique ID of the stack.

required
name str

The name of the stack.

required
components Dict[StackComponentType, StackComponent]

The components of the stack.

required

Returns:

Type Description
Stack

A stack instance consisting of the given components.

Raises:

Type Description
TypeError

If a required component is missing or a component doesn't inherit from the expected base class.

Source code in src/zenml/stack/stack.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
@classmethod
def from_components(
    cls,
    id: UUID,
    name: str,
    components: Dict[StackComponentType, "StackComponent"],
) -> "Stack":
    """Creates a stack instance from a dict of stack components.

    # noqa: DAR402

    Args:
        id: Unique ID of the stack.
        name: The name of the stack.
        components: The components of the stack.

    Returns:
        A stack instance consisting of the given components.

    Raises:
        TypeError: If a required component is missing or a component
            doesn't inherit from the expected base class.
    """
    from zenml.alerter import BaseAlerter
    from zenml.annotators import BaseAnnotator
    from zenml.artifact_stores import BaseArtifactStore
    from zenml.container_registries import BaseContainerRegistry
    from zenml.data_validators import BaseDataValidator
    from zenml.experiment_trackers import BaseExperimentTracker
    from zenml.feature_stores import BaseFeatureStore
    from zenml.image_builders import BaseImageBuilder
    from zenml.model_deployers import BaseModelDeployer
    from zenml.model_registries import BaseModelRegistry
    from zenml.orchestrators import BaseOrchestrator
    from zenml.step_operators import BaseStepOperator

    def _raise_type_error(
        component: Optional["StackComponent"], expected_class: Type[Any]
    ) -> NoReturn:
        """Raises a TypeError that the component has an unexpected type.

        Args:
            component: The component that has an unexpected type.
            expected_class: The expected type of the component.

        Raises:
            TypeError: If the component has an unexpected type.
        """
        raise TypeError(
            f"Unable to create stack: Wrong stack component type "
            f"`{component.__class__.__name__}` (expected: subclass "
            f"of `{expected_class.__name__}`)"
        )

    orchestrator = components.get(StackComponentType.ORCHESTRATOR)
    if not isinstance(orchestrator, BaseOrchestrator):
        _raise_type_error(orchestrator, BaseOrchestrator)

    artifact_store = components.get(StackComponentType.ARTIFACT_STORE)
    if not isinstance(artifact_store, BaseArtifactStore):
        _raise_type_error(artifact_store, BaseArtifactStore)

    container_registry = components.get(
        StackComponentType.CONTAINER_REGISTRY
    )
    if container_registry is not None and not isinstance(
        container_registry, BaseContainerRegistry
    ):
        _raise_type_error(container_registry, BaseContainerRegistry)

    step_operator = components.get(StackComponentType.STEP_OPERATOR)
    if step_operator is not None and not isinstance(
        step_operator, BaseStepOperator
    ):
        _raise_type_error(step_operator, BaseStepOperator)

    feature_store = components.get(StackComponentType.FEATURE_STORE)
    if feature_store is not None and not isinstance(
        feature_store, BaseFeatureStore
    ):
        _raise_type_error(feature_store, BaseFeatureStore)

    model_deployer = components.get(StackComponentType.MODEL_DEPLOYER)
    if model_deployer is not None and not isinstance(
        model_deployer, BaseModelDeployer
    ):
        _raise_type_error(model_deployer, BaseModelDeployer)

    experiment_tracker = components.get(
        StackComponentType.EXPERIMENT_TRACKER
    )
    if experiment_tracker is not None and not isinstance(
        experiment_tracker, BaseExperimentTracker
    ):
        _raise_type_error(experiment_tracker, BaseExperimentTracker)

    alerter = components.get(StackComponentType.ALERTER)
    if alerter is not None and not isinstance(alerter, BaseAlerter):
        _raise_type_error(alerter, BaseAlerter)

    annotator = components.get(StackComponentType.ANNOTATOR)
    if annotator is not None and not isinstance(annotator, BaseAnnotator):
        _raise_type_error(annotator, BaseAnnotator)

    data_validator = components.get(StackComponentType.DATA_VALIDATOR)
    if data_validator is not None and not isinstance(
        data_validator, BaseDataValidator
    ):
        _raise_type_error(data_validator, BaseDataValidator)

    image_builder = components.get(StackComponentType.IMAGE_BUILDER)
    if image_builder is not None and not isinstance(
        image_builder, BaseImageBuilder
    ):
        _raise_type_error(image_builder, BaseImageBuilder)

    model_registry = components.get(StackComponentType.MODEL_REGISTRY)
    if model_registry is not None and not isinstance(
        model_registry, BaseModelRegistry
    ):
        _raise_type_error(model_registry, BaseModelRegistry)

    return Stack(
        id=id,
        name=name,
        orchestrator=orchestrator,
        artifact_store=artifact_store,
        container_registry=container_registry,
        step_operator=step_operator,
        feature_store=feature_store,
        model_deployer=model_deployer,
        experiment_tracker=experiment_tracker,
        alerter=alerter,
        annotator=annotator,
        data_validator=data_validator,
        image_builder=image_builder,
        model_registry=model_registry,
    )
from_model(stack_model: StackResponse) -> Stack classmethod

Creates a Stack instance from a StackModel.

Parameters:

Name Type Description Default
stack_model StackResponse

The StackModel to create the Stack from.

required

Returns:

Type Description
Stack

The created Stack instance.

Source code in src/zenml/stack/stack.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
@classmethod
def from_model(cls, stack_model: "StackResponse") -> "Stack":
    """Creates a Stack instance from a StackModel.

    Args:
        stack_model: The StackModel to create the Stack from.

    Returns:
        The created Stack instance.
    """
    global _STACK_CACHE
    key = (stack_model.id, stack_model.updated)
    if key in _STACK_CACHE:
        return _STACK_CACHE[key]

    from zenml.stack import StackComponent

    # Run a hydrated list call once to avoid one request per component
    component_models = pagination_utils.depaginate(
        Client().list_stack_components,
        stack_id=stack_model.id,
        hydrate=True,
    )

    stack_components = {
        model.type: StackComponent.from_model(model)
        for model in component_models
    }
    stack = Stack.from_components(
        id=stack_model.id,
        name=stack_model.name,
        components=stack_components,
    )
    _STACK_CACHE[key] = stack

    client = Client()
    if stack_model.id == client.active_stack_model.id:
        if stack_model.updated > client.active_stack_model.updated:
            if client._config:
                client._config.set_active_stack(stack_model)
            else:
                GlobalConfiguration().set_active_stack(stack_model)

    return stack
get_docker_builds(deployment: PipelineDeploymentBase) -> List[BuildConfiguration]

Gets the Docker builds required for the stack.

Parameters:

Name Type Description Default
deployment PipelineDeploymentBase

The pipeline deployment for which to get the builds.

required

Returns:

Type Description
List[BuildConfiguration]

The required Docker builds.

Source code in src/zenml/stack/stack.py
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
def get_docker_builds(
    self, deployment: "PipelineDeploymentBase"
) -> List["BuildConfiguration"]:
    """Gets the Docker builds required for the stack.

    Args:
        deployment: The pipeline deployment for which to get the builds.

    Returns:
        The required Docker builds.
    """
    return list(
        itertools.chain.from_iterable(
            component.get_docker_builds(deployment=deployment)
            for component in self.components.values()
        )
    )
get_pipeline_run_metadata(run_id: UUID) -> Dict[UUID, Dict[str, MetadataType]]

Get general component-specific metadata for a pipeline run.

Parameters:

Name Type Description Default
run_id UUID

ID of the pipeline run.

required

Returns:

Type Description
Dict[UUID, Dict[str, MetadataType]]

A dictionary mapping component IDs to the metadata they created.

Source code in src/zenml/stack/stack.py
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
def get_pipeline_run_metadata(
    self, run_id: UUID
) -> Dict[UUID, Dict[str, MetadataType]]:
    """Get general component-specific metadata for a pipeline run.

    Args:
        run_id: ID of the pipeline run.

    Returns:
        A dictionary mapping component IDs to the metadata they created.
    """
    pipeline_run_metadata: Dict[UUID, Dict[str, MetadataType]] = {}
    for component in self.components.values():
        try:
            component_metadata = component.get_pipeline_run_metadata(
                run_id=run_id
            )
            if component_metadata:
                pipeline_run_metadata[component.id] = component_metadata
        except Exception as e:
            logger.warning(
                f"Extracting pipeline run metadata failed for component "
                f"'{component.name}' of type '{component.type}': {e}"
            )
    return pipeline_run_metadata
get_step_run_metadata(info: StepRunInfo) -> Dict[UUID, Dict[str, MetadataType]]

Get component-specific metadata for a step run.

Parameters:

Name Type Description Default
info StepRunInfo

Info about the step that was executed.

required

Returns:

Type Description
Dict[UUID, Dict[str, MetadataType]]

A dictionary mapping component IDs to the metadata they created.

Source code in src/zenml/stack/stack.py
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
def get_step_run_metadata(
    self, info: "StepRunInfo"
) -> Dict[UUID, Dict[str, MetadataType]]:
    """Get component-specific metadata for a step run.

    Args:
        info: Info about the step that was executed.

    Returns:
        A dictionary mapping component IDs to the metadata they created.
    """
    step_run_metadata: Dict[UUID, Dict[str, MetadataType]] = {}
    for component in self._get_active_components_for_step(
        info.config
    ).values():
        try:
            component_metadata = component.get_step_run_metadata(info=info)
            if component_metadata:
                step_run_metadata[component.id] = component_metadata
        except Exception as e:
            logger.warning(
                f"Extracting step run metadata failed for component "
                f"'{component.name}' of type '{component.type}': {e}"
            )
    return step_run_metadata
prepare_pipeline_deployment(deployment: PipelineDeploymentResponse) -> None

Prepares the stack for a pipeline deployment.

This method is called before a pipeline is deployed.

Parameters:

Name Type Description Default
deployment PipelineDeploymentResponse

The pipeline deployment

required

Raises:

Type Description
RuntimeError

If trying to deploy a pipeline that requires a remote ZenML server with a local one.

Source code in src/zenml/stack/stack.py
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
def prepare_pipeline_deployment(
    self, deployment: "PipelineDeploymentResponse"
) -> None:
    """Prepares the stack for a pipeline deployment.

    This method is called before a pipeline is deployed.

    Args:
        deployment: The pipeline deployment

    Raises:
        RuntimeError: If trying to deploy a pipeline that requires a remote
            ZenML server with a local one.
    """
    self.validate(fail_if_secrets_missing=True)

    if self.requires_remote_server and Client().zen_store.is_local_store():
        raise RuntimeError(
            "Stacks with remote components such as remote orchestrators "
            "and step operators require a remote "
            "ZenML server. To run a pipeline with this stack you need to "
            "connect to a remote ZenML server first. Check out "
            "https://docs.zenml.io/getting-started/deploying-zenml "
            "for more information on how to deploy ZenML."
        )

    for component in self.components.values():
        component.prepare_pipeline_deployment(
            deployment=deployment, stack=self
        )
prepare_step_run(info: StepRunInfo) -> None

Prepares running a step.

Parameters:

Name Type Description Default
info StepRunInfo

Info about the step that will be executed.

required
Source code in src/zenml/stack/stack.py
865
866
867
868
869
870
871
872
873
874
def prepare_step_run(self, info: "StepRunInfo") -> None:
    """Prepares running a step.

    Args:
        info: Info about the step that will be executed.
    """
    for component in self._get_active_components_for_step(
        info.config
    ).values():
        component.prepare_step_run(info=info)
requirements(exclude_components: Optional[AbstractSet[StackComponentType]] = None) -> Set[str]

Set of PyPI requirements for the stack.

This method combines the requirements of all stack components (except the ones specified in exclude_components).

Parameters:

Name Type Description Default
exclude_components Optional[AbstractSet[StackComponentType]]

Set of component types for which the requirements should not be included in the output.

None

Returns:

Type Description
Set[str]

Set of PyPI requirements.

Source code in src/zenml/stack/stack.py
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
def requirements(
    self,
    exclude_components: Optional[AbstractSet[StackComponentType]] = None,
) -> Set[str]:
    """Set of PyPI requirements for the stack.

    This method combines the requirements of all stack components (except
    the ones specified in `exclude_components`).

    Args:
        exclude_components: Set of component types for which the
            requirements should not be included in the output.

    Returns:
        Set of PyPI requirements.
    """
    exclude_components = exclude_components or set()
    requirements = [
        component.requirements
        for component in self.components.values()
        if component.type not in exclude_components
    ]
    return set.union(*requirements) if requirements else set()
validate(fail_if_secrets_missing: bool = False) -> None

Checks whether the stack configuration is valid.

To check if a stack configuration is valid, the following criteria must be met: - the stack must have an image builder if other components require it - the StackValidator of each stack component has to validate the stack to make sure all the components are compatible with each other - the required secrets of all components need to exist

Parameters:

Name Type Description Default
fail_if_secrets_missing bool

If this is True, an error will be raised if a secret for a component is missing. Otherwise, only a warning will be logged.

False
Source code in src/zenml/stack/stack.py
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
def validate(
    self,
    fail_if_secrets_missing: bool = False,
) -> None:
    """Checks whether the stack configuration is valid.

    To check if a stack configuration is valid, the following criteria must
    be met:
    - the stack must have an image builder if other components require it
    - the `StackValidator` of each stack component has to validate the
        stack to make sure all the components are compatible with each other
    - the required secrets of all components need to exist

    Args:
        fail_if_secrets_missing: If this is `True`, an error will be raised
            if a secret for a component is missing. Otherwise, only a
            warning will be logged.
    """
    if handle_bool_env_var(ENV_ZENML_SKIP_STACK_VALIDATION, default=False):
        logger.debug("Skipping stack validation.")
        return

    self.validate_image_builder()
    for component in self.components.values():
        if component.validator:
            component.validator.validate(stack=self)

    self._validate_secrets(raise_exception=fail_if_secrets_missing)
validate_image_builder() -> None

Validates that the stack has an image builder if required.

If the stack requires an image builder, but none is specified, a local image builder will be created and assigned to the stack to ensure backwards compatibility.

Source code in src/zenml/stack/stack.py
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def validate_image_builder(self) -> None:
    """Validates that the stack has an image builder if required.

    If the stack requires an image builder, but none is specified, a
    local image builder will be created and assigned to the stack to
    ensure backwards compatibility.
    """
    requires_image_builder = (
        self.orchestrator.flavor != "local"
        or self.step_operator
        or (self.model_deployer and self.model_deployer.flavor != "mlflow")
    )
    skip_default_image_builder = handle_bool_env_var(
        ENV_ZENML_SKIP_IMAGE_BUILDER_DEFAULT, default=False
    )
    if (
        requires_image_builder
        and not skip_default_image_builder
        and not self.image_builder
    ):
        from uuid import uuid4

        from zenml.image_builders import (
            LocalImageBuilder,
            LocalImageBuilderConfig,
            LocalImageBuilderFlavor,
        )

        flavor = LocalImageBuilderFlavor()

        now = utc_now()
        image_builder = LocalImageBuilder(
            id=uuid4(),
            name="temporary_default",
            flavor=flavor.name,
            type=flavor.type,
            config=LocalImageBuilderConfig(),
            user=Client().active_user.id,
            created=now,
            updated=now,
        )

        self._image_builder = image_builder

StackComponentType

Bases: StrEnum

All possible types a StackComponent can have.

Attributes
plural: str property

Returns the plural of the enum value.

Returns:

Type Description
str

The plural of the enum value.

StackFilter

Bases: UserScopedFilter

Model to enable advanced stack filtering.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/stack.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from zenml.zen_stores.schemas import (
        StackComponentSchema,
        StackCompositionSchema,
        StackSchema,
    )

    if self.component_id:
        component_id_filter = and_(
            StackCompositionSchema.stack_id == StackSchema.id,
            StackCompositionSchema.component_id == self.component_id,
        )
        custom_filters.append(component_id_filter)

    if self.component:
        component_filter = and_(
            StackCompositionSchema.stack_id == StackSchema.id,
            StackCompositionSchema.component_id == StackComponentSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.component,
                table=StackComponentSchema,
            ),
        )
        custom_filters.append(component_filter)

    return custom_filters

StackRequest

Bases: UserScopedRequest

Request model for stack creation.

Attributes
is_valid: bool property

Check if the stack is valid.

Returns:

Type Description
bool

True if the stack is valid, False otherwise.

StackResponse

Bases: UserScopedResponse[StackResponseBody, StackResponseMetadata, StackResponseResources]

Response model for stacks.

Attributes
components: Dict[StackComponentType, List[ComponentResponse]] property

The components property.

Returns:

Type Description
Dict[StackComponentType, List[ComponentResponse]]

the value of the property.

description: Optional[str] property

The description property.

Returns:

Type Description
Optional[str]

the value of the property.

is_valid: bool property

Check if the stack is valid.

Returns:

Type Description
bool

True if the stack is valid, False otherwise.

labels: Optional[Dict[str, Any]] property

The labels property.

Returns:

Type Description
Optional[Dict[str, Any]]

the value of the property.

stack_spec_path: Optional[str] property

The stack_spec_path property.

Returns:

Type Description
Optional[str]

the value of the property.

Functions
get_analytics_metadata() -> Dict[str, Any]

Add the stack components to the stack analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in src/zenml/models/v2/core/stack.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Add the stack components to the stack analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata.update(
        {ct: c[0].flavor_name for ct, c in self.components.items()}
    )

    if self.labels is not None:
        metadata.update(
            {
                label[6:]: value
                for label, value in self.labels.items()
                if label.startswith("zenml:")
            }
        )
    return metadata
get_hydrated_version() -> StackResponse

Get the hydrated version of this stack.

Returns:

Type Description
StackResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/stack.py
213
214
215
216
217
218
219
220
221
def get_hydrated_version(self) -> "StackResponse":
    """Get the hydrated version of this stack.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_stack(self.id)
to_yaml() -> Dict[str, Any]

Create yaml representation of the Stack Model.

Returns:

Type Description
Dict[str, Any]

The yaml representation of the Stack Model.

Source code in src/zenml/models/v2/core/stack.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def to_yaml(self) -> Dict[str, Any]:
    """Create yaml representation of the Stack Model.

    Returns:
        The yaml representation of the Stack Model.
    """
    component_data = {}
    for component_type, components_list in self.components.items():
        component = components_list[0]
        component_dict = dict(
            name=component.name,
            type=str(component.type),
            flavor=component.flavor_name,
        )
        configuration = json.loads(
            component.get_metadata().model_dump_json(
                include={"configuration"}
            )
        )
        component_dict.update(configuration)

        component_data[component_type.value] = component_dict

    # write zenml version and stack dict to YAML
    yaml_data = {
        "stack_name": self.name,
        "components": component_data,
    }

    return yaml_data

StackUpdate

Bases: BaseUpdate

Update model for stacks.

StepRunFilter

Bases: ProjectScopedFilter, RunMetadataFilterMixin

Model to enable advanced filtering of step runs.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/step_run.py
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import and_

    from zenml.zen_stores.schemas import (
        ModelSchema,
        ModelVersionSchema,
        StepRunSchema,
    )

    if self.model:
        model_filter = and_(
            StepRunSchema.model_version_id == ModelVersionSchema.id,
            ModelVersionSchema.model_id == ModelSchema.id,
            self.generate_name_or_id_query_conditions(
                value=self.model, table=ModelSchema
            ),
        )
        custom_filters.append(model_filter)

    return custom_filters

StepRunResponse

Bases: ProjectScopedResponse[StepRunResponseBody, StepRunResponseMetadata, StepRunResponseResources]

Response model for step runs.

Attributes
cache_key: Optional[str] property

The cache_key property.

Returns:

Type Description
Optional[str]

the value of the property.

code_hash: Optional[str] property

The code_hash property.

Returns:

Type Description
Optional[str]

the value of the property.

config: StepConfiguration property

The config property.

Returns:

Type Description
StepConfiguration

the value of the property.

deployment_id: UUID property

The deployment_id property.

Returns:

Type Description
UUID

the value of the property.

docstring: Optional[str] property

The docstring property.

Returns:

Type Description
Optional[str]

the value of the property.

end_time: Optional[datetime] property

The end_time property.

Returns:

Type Description
Optional[datetime]

the value of the property.

input: ArtifactVersionResponse property

Returns the input artifact that was used to run this step.

Returns:

Type Description
ArtifactVersionResponse

The input artifact.

Raises:

Type Description
ValueError

If there were zero or multiple inputs to this step.

inputs: Dict[str, StepRunInputResponse] property

The inputs property.

Returns:

Type Description
Dict[str, StepRunInputResponse]

the value of the property.

logs: Optional[LogsResponse] property

The logs property.

Returns:

Type Description
Optional[LogsResponse]

the value of the property.

model_version: Optional[ModelVersionResponse] property

The model_version property.

Returns:

Type Description
Optional[ModelVersionResponse]

the value of the property.

model_version_id: Optional[UUID] property

The model_version_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

original_step_run_id: Optional[UUID] property

The original_step_run_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

output: ArtifactVersionResponse property

Returns the output artifact that was written by this step.

Returns:

Type Description
ArtifactVersionResponse

The output artifact.

Raises:

Type Description
ValueError

If there were zero or multiple step outputs.

outputs: Dict[str, List[ArtifactVersionResponse]] property

The outputs property.

Returns:

Type Description
Dict[str, List[ArtifactVersionResponse]]

the value of the property.

parent_step_ids: List[UUID] property

The parent_step_ids property.

Returns:

Type Description
List[UUID]

the value of the property.

pipeline_run_id: UUID property

The pipeline_run_id property.

Returns:

Type Description
UUID

the value of the property.

run_metadata: Dict[str, MetadataType] property

The run_metadata property.

Returns:

Type Description
Dict[str, MetadataType]

the value of the property.

source_code: Optional[str] property

The source_code property.

Returns:

Type Description
Optional[str]

the value of the property.

spec: StepSpec property

The spec property.

Returns:

Type Description
StepSpec

the value of the property.

start_time: Optional[datetime] property

The start_time property.

Returns:

Type Description
Optional[datetime]

the value of the property.

status: ExecutionStatus property

The status property.

Returns:

Type Description
ExecutionStatus

the value of the property.

Functions
get_hydrated_version() -> StepRunResponse

Get the hydrated version of this step run.

Returns:

Type Description
StepRunResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/step_run.py
279
280
281
282
283
284
285
286
287
def get_hydrated_version(self) -> "StepRunResponse":
    """Get the hydrated version of this step run.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_run_step(self.id)

StepRunUpdate

Bases: BaseUpdate

Update model for step runs.

StoreType

Bases: StrEnum

Zen Store Backend Types.

TagFilter

Bases: UserScopedFilter

Model to enable advanced filtering of all tags.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/tag.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    custom_filters = super().get_custom_filters(table)

    from sqlmodel import exists, select

    from zenml.zen_stores.schemas import (
        TagResourceSchema,
        TagSchema,
    )

    if self.resource_type:
        # Filter for tags that have at least one association with the specified resource type
        resource_type_filter = exists(
            select(TagResourceSchema).where(
                TagResourceSchema.tag_id == TagSchema.id,
                TagResourceSchema.resource_type
                == self.resource_type.value,
            )
        )
        custom_filters.append(resource_type_filter)

    return custom_filters

TagRequest

Bases: UserScopedRequest

Request model for tags.

Functions
validate_name_not_uuid(value: str) -> str classmethod

Validates that the tag name is not a UUID.

Parameters:

Name Type Description Default
value str

The tag name to validate.

required

Returns:

Type Description
str

The validated tag name.

Raises:

Type Description
ValueError

If the tag name can be converted to a UUID.

Source code in src/zenml/models/v2/core/tag.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
@field_validator("name")
@classmethod
def validate_name_not_uuid(cls, value: str) -> str:
    """Validates that the tag name is not a UUID.

    Args:
        value: The tag name to validate.

    Returns:
        The validated tag name.

    Raises:
        ValueError: If the tag name can be converted
            to a UUID.
    """
    if is_valid_uuid(value):
        raise ValueError(
            "Tag names cannot be UUIDs or strings that "
            "can be converted to UUIDs."
        )
    return value

TagResource

Bases: BaseModel

Utility class to help identify resources to tag.

TagResourceRequest

Bases: BaseRequest

Request model for links between tags and resources.

TagResponse

Bases: UserScopedResponse[TagResponseBody, TagResponseMetadata, TagResponseResources]

Response model for tags.

Attributes
color: ColorVariants property

The color property.

Returns:

Type Description
ColorVariants

the value of the property.

exclusive: bool property

The exclusive property.

Returns:

Type Description
bool

the value of the property.

tagged_count: int property

The tagged_count property.

Returns:

Type Description
int

the value of the property.

Functions
get_hydrated_version() -> TagResponse

Get the hydrated version of this tag.

Returns:

Type Description
TagResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/tag.py
153
154
155
156
157
158
159
160
161
def get_hydrated_version(self) -> "TagResponse":
    """Get the hydrated version of this tag.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_tag(self.id)

TagUpdate

Bases: BaseUpdate

Update model for tags.

Functions
validate_name_not_uuid(value: Optional[str]) -> Optional[str] classmethod

Validates that the tag name is not a UUID.

Parameters:

Name Type Description Default
value Optional[str]

The tag name to validate.

required

Returns:

Type Description
Optional[str]

The validated tag name.

Raises:

Type Description
ValueError

If the tag name can be converted to a UUID.

Source code in src/zenml/models/v2/core/tag.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
@field_validator("name")
@classmethod
def validate_name_not_uuid(cls, value: Optional[str]) -> Optional[str]:
    """Validates that the tag name is not a UUID.

    Args:
        value: The tag name to validate.

    Returns:
        The validated tag name.

    Raises:
        ValueError: If the tag name can be converted to a UUID.
    """
    if value is not None and is_valid_uuid(value):
        raise ValueError(
            "Tag names cannot be UUIDs or strings that "
            "can be converted to UUIDs."
        )
    return value

TaggableResourceTypes

Bases: StrEnum

All possible resource types for tagging.

TriggerExecutionFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all trigger executions.

TriggerExecutionResponse

Bases: BaseIdentifiedResponse[TriggerExecutionResponseBody, TriggerExecutionResponseMetadata, TriggerExecutionResponseResources]

Response model for trigger executions.

Attributes
event_metadata: Dict[str, Any] property

The event_metadata property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

trigger: TriggerResponse property

The trigger property.

Returns:

Type Description
TriggerResponse

the value of the property.

Functions
get_hydrated_version() -> TriggerExecutionResponse

Get the hydrated version of this trigger execution.

Returns:

Type Description
TriggerExecutionResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/trigger_execution.py
78
79
80
81
82
83
84
85
86
def get_hydrated_version(self) -> "TriggerExecutionResponse":
    """Get the hydrated version of this trigger execution.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_trigger_execution(self.id)

TriggerFilter

Bases: ProjectScopedFilter

Model to enable advanced filtering of all triggers.

Functions
get_custom_filters(table: Type[AnySchema]) -> List[ColumnElement[bool]]

Get custom filters.

Parameters:

Name Type Description Default
table Type[AnySchema]

The query table.

required

Returns:

Type Description
List[ColumnElement[bool]]

A list of custom filters.

Source code in src/zenml/models/v2/core/trigger.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def get_custom_filters(
    self, table: Type["AnySchema"]
) -> List["ColumnElement[bool]"]:
    """Get custom filters.

    Args:
        table: The query table.

    Returns:
        A list of custom filters.
    """
    from sqlmodel import and_

    from zenml.zen_stores.schemas import (
        ActionSchema,
        EventSourceSchema,
        TriggerSchema,
    )

    custom_filters = super().get_custom_filters(table)

    if self.event_source_flavor:
        event_source_flavor_filter = and_(
            EventSourceSchema.id == TriggerSchema.event_source_id,
            EventSourceSchema.flavor == self.event_source_flavor,
        )
        custom_filters.append(event_source_flavor_filter)

    if self.event_source_subtype:
        event_source_subtype_filter = and_(
            EventSourceSchema.id == TriggerSchema.event_source_id,
            EventSourceSchema.plugin_subtype == self.event_source_subtype,
        )
        custom_filters.append(event_source_subtype_filter)

    if self.action_flavor:
        action_flavor_filter = and_(
            ActionSchema.id == TriggerSchema.action_id,
            ActionSchema.flavor == self.action_flavor,
        )
        custom_filters.append(action_flavor_filter)

    if self.action_subtype:
        action_subtype_filter = and_(
            ActionSchema.id == TriggerSchema.action_id,
            ActionSchema.plugin_subtype == self.action_subtype,
        )
        custom_filters.append(action_subtype_filter)

    return custom_filters

TriggerRequest

Bases: ProjectScopedRequest

Model for creating a new trigger.

TriggerResponse

Bases: ProjectScopedResponse[TriggerResponseBody, TriggerResponseMetadata, TriggerResponseResources]

Response model for models.

Attributes
action: ActionResponse property

The action property.

Returns:

Type Description
ActionResponse

the value of the property.

action_flavor: str property

The action_flavor property.

Returns:

Type Description
str

the value of the property.

action_subtype: str property

The action_subtype property.

Returns:

Type Description
str

the value of the property.

description: str property

The description property.

Returns:

Type Description
str

the value of the property.

event_filter: Optional[Dict[str, Any]] property

The event_filter property.

Returns:

Type Description
Optional[Dict[str, Any]]

the value of the property.

event_source: Optional[EventSourceResponse] property

The event_source property.

Returns:

Type Description
Optional[EventSourceResponse]

the value of the property.

event_source_flavor: Optional[str] property

The event_source_flavor property.

Returns:

Type Description
Optional[str]

the value of the property.

event_source_subtype: Optional[str] property

The event_source_subtype property.

Returns:

Type Description
Optional[str]

the value of the property.

executions: Page[TriggerExecutionResponse] property

The event_source property.

Returns:

Type Description
Page[TriggerExecutionResponse]

the value of the property.

is_active: bool property

The is_active property.

Returns:

Type Description
bool

the value of the property.

Functions
get_hydrated_version() -> TriggerResponse

Get the hydrated version of this trigger.

Returns:

Type Description
TriggerResponse

An instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/trigger.py
223
224
225
226
227
228
229
230
231
def get_hydrated_version(self) -> "TriggerResponse":
    """Get the hydrated version of this trigger.

    Returns:
        An instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_trigger(self.id)

TriggerUpdate

Bases: BaseUpdate

Update model for triggers.

UserFilter

Bases: BaseFilter

Model to enable advanced filtering of all Users.

Functions
apply_filter(query: AnyQuery, table: Type[AnySchema]) -> AnyQuery

Override to filter out service accounts from the query.

Parameters:

Name Type Description Default
query AnyQuery

The query to which to apply the filter.

required
table Type[AnySchema]

The query table.

required

Returns:

Type Description
AnyQuery

The query with filter applied.

Source code in src/zenml/models/v2/core/user.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
def apply_filter(
    self,
    query: AnyQuery,
    table: Type["AnySchema"],
) -> AnyQuery:
    """Override to filter out service accounts from the query.

    Args:
        query: The query to which to apply the filter.
        table: The query table.

    Returns:
        The query with filter applied.
    """
    query = super().apply_filter(query=query, table=table)
    query = query.where(
        getattr(table, "is_service_account") != True  # noqa: E712
    )

    return query

UserRequest

Bases: UserBase, BaseRequest

Request model for users.

UserResponse

Bases: BaseIdentifiedResponse[UserResponseBody, UserResponseMetadata, UserResponseResources]

Response model for user and service accounts.

This returns the activation_token that is required for the user-invitation-flow of the frontend. The email is returned optionally as well for use by the analytics on the client-side.

Attributes
activation_token: Optional[str] property

The activation_token property.

Returns:

Type Description
Optional[str]

the value of the property.

active: bool property

The active property.

Returns:

Type Description
bool

the value of the property.

default_project_id: Optional[UUID] property

The default_project_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

email: Optional[str] property

The email property.

Returns:

Type Description
Optional[str]

the value of the property.

email_opted_in: Optional[bool] property

The email_opted_in property.

Returns:

Type Description
Optional[bool]

the value of the property.

external_user_id: Optional[UUID] property

The external_user_id property.

Returns:

Type Description
Optional[UUID]

the value of the property.

full_name: str property

The full_name property.

Returns:

Type Description
str

the value of the property.

is_admin: bool property

The is_admin property.

Returns:

Type Description
bool

Whether the user is an admin.

is_service_account: bool property

The is_service_account property.

Returns:

Type Description
bool

the value of the property.

user_metadata: Dict[str, Any] property

The user_metadata property.

Returns:

Type Description
Dict[str, Any]

the value of the property.

Functions
get_hydrated_version() -> UserResponse

Get the hydrated version of this user.

Returns:

Type Description
UserResponse

an instance of the same entity with the metadata field attached.

Source code in src/zenml/models/v2/core/user.py
341
342
343
344
345
346
347
348
349
def get_hydrated_version(self) -> "UserResponse":
    """Get the hydrated version of this user.

    Returns:
        an instance of the same entity with the metadata field attached.
    """
    from zenml.client import Client

    return Client().zen_store.get_user(self.id)

UserUpdate

Bases: UserBase, BaseUpdate

Update model for users.

Functions
create_copy(exclude: AbstractSet[str]) -> UserUpdate

Create a copy of the current instance.

Parameters:

Name Type Description Default
exclude AbstractSet[str]

Fields to exclude from the copy.

required

Returns:

Type Description
UserUpdate

A copy of the current instance.

Source code in src/zenml/models/v2/core/user.py
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def create_copy(self, exclude: AbstractSet[str]) -> "UserUpdate":
    """Create a copy of the current instance.

    Args:
        exclude: Fields to exclude from the copy.

    Returns:
        A copy of the current instance.
    """
    return UserUpdate(
        **self.model_dump(
            exclude=set(exclude),
            exclude_unset=True,
        )
    )
user_email_updates() -> UserUpdate

Validate that the UserUpdateModel conforms to the email-opt-in-flow.

Returns:

Type Description
UserUpdate

The validated values.

Raises:

Type Description
ValueError

If the email was not provided when the email_opted_in field was set to True.

Source code in src/zenml/models/v2/core/user.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
@model_validator(mode="after")
def user_email_updates(self) -> "UserUpdate":
    """Validate that the UserUpdateModel conforms to the email-opt-in-flow.

    Returns:
        The validated values.

    Raises:
        ValueError: If the email was not provided when the email_opted_in
            field was set to True.
    """
    # When someone sets the email, or updates the email and hasn't
    #  before explicitly opted out, they are opted in
    if self.email is not None:
        if self.email_opted_in is None:
            self.email_opted_in = True

    # It should not be possible to do opt in without an email
    if self.email_opted_in is True:
        if self.email is None:
            raise ValueError(
                "Please provide an email, when you are opting-in with "
                "your email."
            )
    return self

ValidationError(message: Optional[str] = None, url: Optional[str] = None)

Bases: ZenMLBaseException

Raised when the Model passed to the ZenStore.

Source code in src/zenml/exceptions.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def __init__(
    self,
    message: Optional[str] = None,
    url: Optional[str] = None,
):
    """The BaseException used to format messages displayed to the user.

    Args:
        message: Message with details of exception. This message
                 will be appended with another message directing user to
                 `url` for more information. If `None`, then default
                 Exception behavior is used.
        url: URL to point to in exception message. If `None`, then no url
             is appended.
    """
    if message and url:
        message += f" For more information, visit {url}."
    super().__init__(message)

ZenKeyError(message: str)

Bases: KeyError

Specialized key error which allows error messages with line breaks.

Initialization.

Parameters:

Name Type Description Default
message str

str, the error message

required
Source code in src/zenml/exceptions.py
226
227
228
229
230
231
232
def __init__(self, message: str) -> None:
    """Initialization.

    Args:
        message:str, the error message
    """
    self.message = message
Functions

Functions

_fail_for_sql_zen_store(method: F) -> F

Decorator for methods that are not allowed with a SQLZenStore.

Parameters:

Name Type Description Default
method F

The method to decorate.

required

Returns:

Type Description
F

The decorated method.

Source code in src/zenml/client.py
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def _fail_for_sql_zen_store(method: F) -> F:
    """Decorator for methods that are not allowed with a SQLZenStore.

    Args:
        method: The method to decorate.

    Returns:
        The decorated method.
    """

    @functools.wraps(method)
    def wrapper(self: "Client", *args: Any, **kwargs: Any) -> Any:
        # No isinstance check to avoid importing ZenStore implementations
        if self.zen_store.__class__.__name__ == "SqlZenStore":
            raise TypeError(
                "This method is not allowed when not connected "
                "to a ZenML Server through the API interface."
            )
        return method(self, *args, **kwargs)

    return cast(F, wrapper)

client_lazy_loader(method_name: str, *args: Any, **kwargs: Any) -> Optional[ClientLazyLoader]

Lazy loader for Client methods helper.

Usage:

def get_something(self, arg1: Any)->SomeResponse:
    if cll:=client_lazy_loader("get_something", arg1):
        return cll # type: ignore[return-value]
    return SomeResponse()

Parameters:

Name Type Description Default
method_name str

The name of the method to be called.

required
*args Any

The arguments to be passed to the method.

()
**kwargs Any

The keyword arguments to be passed to the method.

{}

Returns:

Type Description
Optional[ClientLazyLoader]

The result of the method call.

Source code in src/zenml/client_lazy_loader.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def client_lazy_loader(
    method_name: str, *args: Any, **kwargs: Any
) -> Optional[ClientLazyLoader]:
    """Lazy loader for Client methods helper.

    Usage:
    ```
    def get_something(self, arg1: Any)->SomeResponse:
        if cll:=client_lazy_loader("get_something", arg1):
            return cll # type: ignore[return-value]
        return SomeResponse()
    ```

    Args:
        method_name: The name of the method to be called.
        *args: The arguments to be passed to the method.
        **kwargs: The keyword arguments to be passed to the method.

    Returns:
        The result of the method call.
    """
    from zenml import get_pipeline_context

    try:
        get_pipeline_context()
        cll = ClientLazyLoader(
            method_name=method_name,
        )
        return cll(*args, **kwargs)
    except RuntimeError:
        return None

depaginate(list_method: Callable[..., Page[AnyResponse]], **kwargs: Any) -> List[AnyResponse]

Depaginate the results from a client or store method that returns pages.

Parameters:

Name Type Description Default
list_method Callable[..., Page[AnyResponse]]

The list method to depaginate.

required
**kwargs Any

Arguments for the list method.

{}

Returns:

Type Description
List[AnyResponse]

A list of the corresponding Response Models.

Source code in src/zenml/utils/pagination_utils.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
def depaginate(
    list_method: Callable[..., Page[AnyResponse]], **kwargs: Any
) -> List[AnyResponse]:
    """Depaginate the results from a client or store method that returns pages.

    Args:
        list_method: The list method to depaginate.
        **kwargs: Arguments for the list method.

    Returns:
        A list of the corresponding Response Models.
    """
    page = list_method(**kwargs)
    items = list(page.items)
    while page.index < page.total_pages:
        kwargs["page"] = page.index + 1
        page = list_method(**kwargs)
        items += list(page.items)

    return items

dict_to_bytes(dict_: Dict[str, Any]) -> bytes

Converts a dictionary to bytes.

Parameters:

Name Type Description Default
dict_ Dict[str, Any]

The dictionary to convert.

required

Returns:

Type Description
bytes

The dictionary as bytes.

Source code in src/zenml/utils/dict_utils.py
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def dict_to_bytes(dict_: Dict[str, Any]) -> bytes:
    """Converts a dictionary to bytes.

    Args:
        dict_: The dictionary to convert.

    Returns:
        The dictionary as bytes.
    """
    return base64.b64encode(
        json.dumps(
            dict_,
            sort_keys=False,
            default=pydantic_encoder,
        ).encode("utf-8")
    )

evaluate_all_lazy_load_args_in_client_methods(cls: Type[Client]) -> Type[Client]

Class wrapper to evaluate lazy loader arguments of all methods.

Parameters:

Name Type Description Default
cls Type[Client]

The class to wrap.

required

Returns:

Type Description
Type[Client]

Wrapped class.

Source code in src/zenml/client_lazy_loader.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def evaluate_all_lazy_load_args_in_client_methods(
    cls: Type["Client"],
) -> Type["Client"]:
    """Class wrapper to evaluate lazy loader arguments of all methods.

    Args:
        cls: The class to wrap.

    Returns:
        Wrapped class.
    """
    import inspect

    def _evaluate_args(
        func: Callable[..., Any], is_instance_method: bool
    ) -> Any:
        def _inner(*args: Any, **kwargs: Any) -> Any:
            args_ = list(args)
            if not is_instance_method:
                from zenml.client import Client

                if args and isinstance(args[0], Client):
                    args_ = list(args[1:])

            for i in range(len(args_)):
                if isinstance(args_[i], dict):
                    with contextlib.suppress(ValueError):
                        args_[i] = ClientLazyLoader(**args_[i]).evaluate()
                elif isinstance(args_[i], ClientLazyLoader):
                    args_[i] = args_[i].evaluate()

            for k, v in kwargs.items():
                if isinstance(v, dict):
                    with contextlib.suppress(ValueError):
                        kwargs[k] = ClientLazyLoader(**v).evaluate()

            return func(*args_, **kwargs)

        return _inner

    def _decorate() -> Type["Client"]:
        for name, fn in inspect.getmembers(cls, inspect.isfunction):
            setattr(
                cls,
                name,
                _evaluate_args(fn, "self" in inspect.getfullargspec(fn).args),
            )
        return cls

    return _decorate()

get_logger(logger_name: str) -> logging.Logger

Main function to get logger name,.

Parameters:

Name Type Description Default
logger_name str

Name of logger to initialize.

required

Returns:

Type Description
Logger

A logger object.

Source code in src/zenml/logger.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def get_logger(logger_name: str) -> logging.Logger:
    """Main function to get logger name,.

    Args:
        logger_name: Name of logger to initialize.

    Returns:
        A logger object.
    """
    logger = logging.getLogger(logger_name)
    logger.setLevel(get_logging_level().value)
    logger.addHandler(get_console_handler())

    logger.propagate = False
    return logger

handle_bool_env_var(var: str, default: bool = False) -> bool

Converts normal env var to boolean.

Parameters:

Name Type Description Default
var str

The environment variable to convert.

required
default bool

The default value to return if the env var is not set.

False

Returns:

Type Description
bool

The converted value.

Source code in src/zenml/constants.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def handle_bool_env_var(var: str, default: bool = False) -> bool:
    """Converts normal env var to boolean.

    Args:
        var: The environment variable to convert.
        default: The default value to return if the env var is not set.

    Returns:
        The converted value.
    """
    value = os.getenv(var)
    if is_true_string_value(value):
        return True
    elif is_false_string_value(value):
        return False
    return default

is_valid_uuid(value: Any, version: int = 4) -> bool

Checks if a string is a valid UUID.

Parameters:

Name Type Description Default
value Any

String to check.

required
version int

Version of UUID to check for.

4

Returns:

Type Description
bool

True if string is a valid UUID, False otherwise.

Source code in src/zenml/utils/uuid_utils.py
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def is_valid_uuid(value: Any, version: int = 4) -> bool:
    """Checks if a string is a valid UUID.

    Args:
        value: String to check.
        version: Version of UUID to check for.

    Returns:
        True if string is a valid UUID, False otherwise.
    """
    if isinstance(value, UUID):
        return True
    if isinstance(value, str):
        try:
            UUID(value, version=version)
            return True
        except ValueError:
            return False
    return False

Modules

fileio

Functionality for reading, writing and managing files.

Classes
Functions
convert_to_str(path: PathType) -> str

Converts a "PathType" to a str using UTF-8.

Parameters:

Name Type Description Default
path PathType

The path to convert.

required

Returns:

Type Description
str

The path as a string.

Source code in src/zenml/io/fileio.py
40
41
42
43
44
45
46
47
48
49
50
51
52
def convert_to_str(path: "PathType") -> str:
    """Converts a "PathType" to a str using UTF-8.

    Args:
        path: The path to convert.

    Returns:
        The path as a string.
    """
    if isinstance(path, str):
        return path
    else:
        return path.decode("utf-8")
copy(src: PathType, dst: PathType, overwrite: bool = False) -> None

Copy a file from the source to the destination.

Parameters:

Name Type Description Default
src PathType

The path of the file to copy.

required
dst PathType

The path to copy the source file to.

required
overwrite bool

Whether to overwrite the destination file if it exists.

False

Raises:

Type Description
FileExistsError

If a file already exists at the destination and overwrite is not set to True.

Source code in src/zenml/io/fileio.py
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def copy(src: "PathType", dst: "PathType", overwrite: bool = False) -> None:
    """Copy a file from the source to the destination.

    Args:
        src: The path of the file to copy.
        dst: The path to copy the source file to.
        overwrite: Whether to overwrite the destination file if it exists.

    Raises:
        FileExistsError: If a file already exists at the destination and
            `overwrite` is not set to `True`.
    """
    src_fs = _get_filesystem(src)
    dst_fs = _get_filesystem(dst)
    if src_fs is dst_fs:
        src_fs.copyfile(src, dst, overwrite=overwrite)
    else:
        if not overwrite and exists(dst):
            raise FileExistsError(
                f"Destination file '{convert_to_str(dst)}' already exists "
                f"and `overwrite` is false."
            )
        with open(src, mode="rb") as f:
            contents = f.read()

        with open(dst, mode="wb") as f:
            f.write(contents)
exists(path: PathType) -> bool

Check whether a given path exists.

Parameters:

Name Type Description Default
path PathType

The path to check.

required

Returns:

Type Description
bool

True if the given path exists, False otherwise.

Source code in src/zenml/io/fileio.py
 97
 98
 99
100
101
102
103
104
105
106
def exists(path: "PathType") -> bool:
    """Check whether a given path exists.

    Args:
        path: The path to check.

    Returns:
        `True` if the given path exists, `False` otherwise.
    """
    return _get_filesystem(path).exists(path)
glob(pattern: PathType) -> List[PathType]

Find all files matching the given pattern.

Parameters:

Name Type Description Default
pattern PathType

The pattern to match.

required

Returns:

Type Description
List[PathType]

A list of paths matching the pattern.

Source code in src/zenml/io/fileio.py
109
110
111
112
113
114
115
116
117
118
def glob(pattern: "PathType") -> List["PathType"]:
    """Find all files matching the given pattern.

    Args:
        pattern: The pattern to match.

    Returns:
        A list of paths matching the pattern.
    """
    return _get_filesystem(pattern).glob(pattern)
isdir(path: PathType) -> bool

Check whether the given path is a directory.

Parameters:

Name Type Description Default
path PathType

The path to check.

required

Returns:

Type Description
bool

True if the given path is a directory, False otherwise.

Source code in src/zenml/io/fileio.py
121
122
123
124
125
126
127
128
129
130
def isdir(path: "PathType") -> bool:
    """Check whether the given path is a directory.

    Args:
        path: The path to check.

    Returns:
        `True` if the given path is a directory, `False` otherwise.
    """
    return _get_filesystem(path).isdir(path)
listdir(path: str, only_file_names: bool = True) -> List[str]

Lists all files in a directory.

Parameters:

Name Type Description Default
path str

The path to the directory.

required
only_file_names bool

If True, only return the file names, not the full path.

True

Returns:

Type Description
List[str]

A list of files in the directory.

Source code in src/zenml/io/fileio.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def listdir(path: str, only_file_names: bool = True) -> List[str]:
    """Lists all files in a directory.

    Args:
        path: The path to the directory.
        only_file_names: If True, only return the file names, not the full path.

    Returns:
        A list of files in the directory.
    """
    try:
        return [
            os.path.join(path, convert_to_str(f))
            if not only_file_names
            else convert_to_str(f)
            for f in _get_filesystem(path).listdir(path)
        ]
    except IOError:
        logger.debug(f"Dir {path} not found.")
        return []
makedirs(path: PathType) -> None

Make a directory at the given path, recursively creating parents.

Parameters:

Name Type Description Default
path PathType

The path to the directory.

required
Source code in src/zenml/io/fileio.py
155
156
157
158
159
160
161
def makedirs(path: "PathType") -> None:
    """Make a directory at the given path, recursively creating parents.

    Args:
        path: The path to the directory.
    """
    _get_filesystem(path).makedirs(path)
mkdir(path: PathType) -> None

Make a directory at the given path; parent directory must exist.

Parameters:

Name Type Description Default
path PathType

The path to the directory.

required
Source code in src/zenml/io/fileio.py
164
165
166
167
168
169
170
def mkdir(path: "PathType") -> None:
    """Make a directory at the given path; parent directory must exist.

    Args:
        path: The path to the directory.
    """
    _get_filesystem(path).mkdir(path)
open(path: PathType, mode: str = 'r') -> Any

Opens a file.

Parameters:

Name Type Description Default
path PathType

The path to the file.

required
mode str

The mode to open the file in.

'r'

Returns:

Type Description
Any

The opened file.

Source code in src/zenml/io/fileio.py
55
56
57
58
59
60
61
62
63
64
65
def open(path: "PathType", mode: str = "r") -> Any:  # noqa
    """Opens a file.

    Args:
        path: The path to the file.
        mode: The mode to open the file in.

    Returns:
        The opened file.
    """
    return _get_filesystem(path).open(path, mode=mode)
remove(path: PathType) -> None

Remove the file at the given path. Dangerous operation.

Parameters:

Name Type Description Default
path PathType

The path to the file to remove.

required

Raises:

Type Description
FileNotFoundError

If the file does not exist.

Source code in src/zenml/io/fileio.py
173
174
175
176
177
178
179
180
181
182
183
184
def remove(path: "PathType") -> None:
    """Remove the file at the given path. Dangerous operation.

    Args:
        path: The path to the file to remove.

    Raises:
        FileNotFoundError: If the file does not exist.
    """
    if not exists(path):
        raise FileNotFoundError(f"{convert_to_str(path)} does not exist!")
    _get_filesystem(path).remove(path)
rename(src: PathType, dst: PathType, overwrite: bool = False) -> None

Rename a file.

Parameters:

Name Type Description Default
src PathType

The path of the file to rename.

required
dst PathType

The path to rename the source file to.

required
overwrite bool

If a file already exists at the destination, this method will overwrite it if overwrite=True and raise a FileExistsError otherwise.

False

Raises:

Type Description
NotImplementedError

If the source and destination file systems are not the same.

Source code in src/zenml/io/fileio.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def rename(src: "PathType", dst: "PathType", overwrite: bool = False) -> None:
    """Rename a file.

    Args:
        src: The path of the file to rename.
        dst: The path to rename the source file to.
        overwrite: If a file already exists at the destination, this
            method will overwrite it if overwrite=`True` and
            raise a FileExistsError otherwise.

    Raises:
        NotImplementedError: If the source and destination file systems are not
            the same.
    """
    src_fs = _get_filesystem(src)
    dst_fs = _get_filesystem(dst)
    if src_fs is dst_fs:
        src_fs.rename(src, dst, overwrite=overwrite)
    else:
        raise NotImplementedError(
            f"Renaming from {convert_to_str(src)} to {convert_to_str(dst)} "
            f"using different file systems plugins is currently not supported."
        )
rmtree(dir_path: str) -> None

Deletes a directory recursively. Dangerous operation.

Parameters:

Name Type Description Default
dir_path str

The path to the directory to delete.

required

Raises:

Type Description
TypeError

If the path is not pointing to a directory.

Source code in src/zenml/io/fileio.py
212
213
214
215
216
217
218
219
220
221
222
223
224
def rmtree(dir_path: str) -> None:
    """Deletes a directory recursively. Dangerous operation.

    Args:
        dir_path: The path to the directory to delete.

    Raises:
        TypeError: If the path is not pointing to a directory.
    """
    if not isdir(dir_path):
        raise TypeError(f"Path '{dir_path}' is not a directory.")

    _get_filesystem(dir_path).rmtree(dir_path)
size(path: PathType) -> Optional[int]

Get the size of a file or directory in bytes.

Parameters:

Name Type Description Default
path PathType

The path to the file.

required

Returns:

Type Description
Optional[int]

The size of the file or directory in bytes or None if the responsible

Optional[int]

file system does not implement the size method.

Source code in src/zenml/io/fileio.py
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
def size(path: "PathType") -> Optional[int]:
    """Get the size of a file or directory in bytes.

    Args:
        path: The path to the file.

    Returns:
        The size of the file or directory in bytes or `None` if the responsible
        file system does not implement the `size` method.
    """
    file_system = _get_filesystem(path)

    # If the file system does not implement the `size` method, return `None`.
    if file_system.size == BaseFilesystem.size:
        logger.warning(
            "Cannot get size of file or directory '%s' since the responsible "
            "file system `%s` does not implement the `size` method.",
            path,
            file_system.__name__,
        )
        return None

    # If the path does not exist, return 0.
    if not exists(path):
        return 0

    # If the path is a file, return its size.
    if not file_system.isdir(path):
        return file_system.size(path)

    # If the path is a directory, recursively sum the sizes of everything in it.
    files = file_system.listdir(path)
    file_sizes = [size(os.path.join(str(path), str(file))) for file in files]
    return sum(
        [file_size for file_size in file_sizes if file_size is not None]
    )
stat(path: PathType) -> Any

Get the stat descriptor for a given file path.

Parameters:

Name Type Description Default
path PathType

The path to the file.

required

Returns:

Type Description
Any

The stat descriptor.

Source code in src/zenml/io/fileio.py
227
228
229
230
231
232
233
234
235
236
def stat(path: "PathType") -> Any:
    """Get the stat descriptor for a given file path.

    Args:
        path: The path to the file.

    Returns:
        The stat descriptor.
    """
    return _get_filesystem(path).stat(path)
walk(top: PathType, topdown: bool = True, onerror: Optional[Callable[..., None]] = None) -> Iterable[Tuple[PathType, List[PathType], List[PathType]]]

Return an iterator that walks the contents of the given directory.

Parameters:

Name Type Description Default
top PathType

The path of directory to walk.

required
topdown bool

Whether to walk directories topdown or bottom-up.

True
onerror Optional[Callable[..., None]]

Callable that gets called if an error occurs.

None

Returns:

Type Description
Iterable[Tuple[PathType, List[PathType], List[PathType]]]

An Iterable of Tuples, each of which contain the path of the current

Iterable[Tuple[PathType, List[PathType], List[PathType]]]

directory path, a list of directories inside the current directory

Iterable[Tuple[PathType, List[PathType], List[PathType]]]

and a list of files inside the current directory.

Source code in src/zenml/io/fileio.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def walk(
    top: "PathType",
    topdown: bool = True,
    onerror: Optional[Callable[..., None]] = None,
) -> Iterable[Tuple["PathType", List["PathType"], List["PathType"]]]:
    """Return an iterator that walks the contents of the given directory.

    Args:
        top: The path of directory to walk.
        topdown: Whether to walk directories topdown or bottom-up.
        onerror: Callable that gets called if an error occurs.

    Returns:
        An Iterable of Tuples, each of which contain the path of the current
        directory path, a list of directories inside the current directory
        and a list of files inside the current directory.
    """
    return _get_filesystem(top).walk(top, topdown=topdown, onerror=onerror)
Modules

io_utils

Various utility functions for the io module.

Functions
copy_dir(source_dir: str, destination_dir: str, overwrite: bool = False) -> None

Copies dir from source to destination.

Parameters:

Name Type Description Default
source_dir str

Path to copy from.

required
destination_dir str

Path to copy to.

required
overwrite bool

Boolean. If false, function throws an error before overwrite.

False
Source code in src/zenml/utils/io_utils.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def copy_dir(
    source_dir: str, destination_dir: str, overwrite: bool = False
) -> None:
    """Copies dir from source to destination.

    Args:
        source_dir: Path to copy from.
        destination_dir: Path to copy to.
        overwrite: Boolean. If false, function throws an error before overwrite.
    """
    for source_file in listdir(source_dir):
        source_path = os.path.join(source_dir, convert_to_str(source_file))
        destination_path = os.path.join(
            destination_dir, convert_to_str(source_file)
        )
        if isdir(source_path):
            if source_path == destination_dir:
                # if the destination is a subdirectory of the source, we skip
                # copying it to avoid an infinite loop.
                continue
            copy_dir(source_path, destination_path, overwrite)
        else:
            create_dir_recursive_if_not_exists(
                os.path.dirname(destination_path)
            )
            copy(str(source_path), str(destination_path), overwrite)
create_dir_if_not_exists(dir_path: str) -> None

Creates directory if it does not exist.

Parameters:

Name Type Description Default
dir_path str

Local path in filesystem.

required
Source code in src/zenml/utils/io_utils.py
174
175
176
177
178
179
180
181
def create_dir_if_not_exists(dir_path: str) -> None:
    """Creates directory if it does not exist.

    Args:
        dir_path: Local path in filesystem.
    """
    if not isdir(dir_path):
        mkdir(dir_path)
create_dir_recursive_if_not_exists(dir_path: str) -> None

Creates directory recursively if it does not exist.

Parameters:

Name Type Description Default
dir_path str

Local path in filesystem.

required
Source code in src/zenml/utils/io_utils.py
184
185
186
187
188
189
190
191
def create_dir_recursive_if_not_exists(dir_path: str) -> None:
    """Creates directory recursively if it does not exist.

    Args:
        dir_path: Local path in filesystem.
    """
    if not isdir(dir_path):
        makedirs(dir_path)
create_file_if_not_exists(file_path: str, file_contents: str = '{}') -> None

Creates file if it does not exist.

Parameters:

Name Type Description Default
file_path str

Local path in filesystem.

required
file_contents str

Contents of file.

'{}'
Source code in src/zenml/utils/io_utils.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def create_file_if_not_exists(
    file_path: str, file_contents: str = "{}"
) -> None:
    """Creates file if it does not exist.

    Args:
        file_path: Local path in filesystem.
        file_contents: Contents of file.
    """
    full_path = Path(file_path)
    if not exists(file_path):
        create_dir_recursive_if_not_exists(str(full_path.parent))
        with open(str(full_path), "w") as f:
            f.write(file_contents)
find_files(dir_path: PathType, pattern: str) -> Iterable[str]

Find files in a directory that match pattern.

Parameters:

Name Type Description Default
dir_path PathType

The path to directory.

required
pattern str

pattern like *.png.

required

Yields:

Type Description
Iterable[str]

All matching filenames in the directory.

Source code in src/zenml/utils/io_utils.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def find_files(dir_path: "PathType", pattern: str) -> Iterable[str]:
    """Find files in a directory that match pattern.

    Args:
        dir_path: The path to directory.
        pattern: pattern like *.png.

    Yields:
        All matching filenames in the directory.
    """
    for root, _, files in walk(dir_path):
        for basename in files:
            if fnmatch.fnmatch(convert_to_str(basename), pattern):
                filename = os.path.join(
                    convert_to_str(root), convert_to_str(basename)
                )
                yield filename
get_global_config_directory() -> str

Gets the global config directory for ZenML.

Returns:

Type Description
str

The global config directory for ZenML.

Source code in src/zenml/utils/io_utils.py
53
54
55
56
57
58
59
60
61
62
def get_global_config_directory() -> str:
    """Gets the global config directory for ZenML.

    Returns:
        The global config directory for ZenML.
    """
    env_var_path = os.getenv(ENV_ZENML_CONFIG_PATH)
    if env_var_path:
        return str(Path(env_var_path).resolve())
    return click.get_app_dir(APP_NAME)
get_grandparent(dir_path: str) -> str

Get grandparent of dir.

Parameters:

Name Type Description Default
dir_path str

The path to directory.

required

Returns:

Type Description
str

The input paths parents parent.

Raises:

Type Description
ValueError

If dir_path does not exist.

Source code in src/zenml/utils/io_utils.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def get_grandparent(dir_path: str) -> str:
    """Get grandparent of dir.

    Args:
        dir_path: The path to directory.

    Returns:
        The input paths parents parent.

    Raises:
        ValueError: If dir_path does not exist.
    """
    if not os.path.exists(dir_path):
        raise ValueError(f"Path '{dir_path}' does not exist.")
    return Path(dir_path).parent.parent.stem
get_parent(dir_path: str) -> str

Get parent of dir.

Parameters:

Name Type Description Default
dir_path str

The path to directory.

required

Returns:

Type Description
str

Parent (stem) of the dir as a string.

Raises:

Type Description
ValueError

If dir_path does not exist.

Source code in src/zenml/utils/io_utils.py
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def get_parent(dir_path: str) -> str:
    """Get parent of dir.

    Args:
        dir_path: The path to directory.

    Returns:
        Parent (stem) of the dir as a string.

    Raises:
        ValueError: If dir_path does not exist.
    """
    if not os.path.exists(dir_path):
        raise ValueError(f"Path '{dir_path}' does not exist.")
    return Path(dir_path).parent.stem
is_path_within_directory(path: str, directory: str) -> bool

Checks if a path is contained within a given directory.

This utility function verifies that a path (absolute or relative) resolves to a location that is within the specified directory. This is useful for security checks such as preventing path traversal attacks when extracting archives (CVE-2007-4559) or whenever path containment needs to be verified.

Parameters:

Name Type Description Default
path str

The path to check (can be relative or absolute).

required
directory str

The directory that should contain the path.

required

Returns:

Type Description
bool

Boolean indicating whether the path is contained within the directory (True)

bool

or not (False).

Source code in src/zenml/utils/io_utils.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def is_path_within_directory(path: str, directory: str) -> bool:
    """Checks if a path is contained within a given directory.

    This utility function verifies that a path (absolute or relative) resolves
    to a location that is within the specified directory. This is useful for
    security checks such as preventing path traversal attacks when extracting
    archives (CVE-2007-4559) or whenever path containment needs to be verified.

    Args:
        path: The path to check (can be relative or absolute).
        directory: The directory that should contain the path.

    Returns:
        Boolean indicating whether the path is contained within the directory (True)
        or not (False).
    """
    # Convert to absolute path, ensuring it's normalized
    abs_path = os.path.abspath(os.path.join(directory, path))
    # Check if the path is within the target directory
    dir_abs = os.path.abspath(directory)
    return abs_path.startswith(dir_abs + os.sep) or abs_path == dir_abs
is_remote(path: str) -> bool

Returns True if path exists remotely.

Parameters:

Name Type Description Default
path str

Any path as a string.

required

Returns:

Type Description
bool

True if remote path, else False.

Source code in src/zenml/utils/io_utils.py
146
147
148
149
150
151
152
153
154
155
def is_remote(path: str) -> bool:
    """Returns True if path exists remotely.

    Args:
        path: Any path as a string.

    Returns:
        True if remote path, else False.
    """
    return any(path.startswith(prefix) for prefix in REMOTE_FS_PREFIX)
is_root(path: str) -> bool

Returns true if path has no parent in local filesystem.

Parameters:

Name Type Description Default
path str

Local path in filesystem.

required

Returns:

Type Description
bool

True if root, else False.

Source code in src/zenml/utils/io_utils.py
41
42
43
44
45
46
47
48
49
50
def is_root(path: str) -> bool:
    """Returns true if path has no parent in local filesystem.

    Args:
        path: Local path in filesystem.

    Returns:
        True if root, else False.
    """
    return Path(path).parent == Path(path)
move(source: str, destination: str, overwrite: bool = False) -> None

Moves dir or file from source to destination. Can be used to rename.

Parameters:

Name Type Description Default
source str

Local path to copy from.

required
destination str

Local path to copy to.

required
overwrite bool

boolean, if false, then throws an error before overwrite.

False
Source code in src/zenml/utils/io_utils.py
231
232
233
234
235
236
237
238
239
def move(source: str, destination: str, overwrite: bool = False) -> None:
    """Moves dir or file from source to destination. Can be used to rename.

    Args:
        source: Local path to copy from.
        destination: Local path to copy to.
        overwrite: boolean, if false, then throws an error before overwrite.
    """
    rename(source, destination, overwrite)
read_file_contents_as_string(file_path: str) -> str

Reads contents of file.

Parameters:

Name Type Description Default
file_path str

Path to file.

required

Returns:

Type Description
str

Contents of file.

Raises:

Type Description
FileNotFoundError

If file does not exist.

Source code in src/zenml/utils/io_utils.py
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def read_file_contents_as_string(file_path: str) -> str:
    """Reads contents of file.

    Args:
        file_path: Path to file.

    Returns:
        Contents of file.

    Raises:
        FileNotFoundError: If file does not exist.
    """
    if not exists(file_path):
        raise FileNotFoundError(f"{file_path} does not exist!")
    with open(file_path) as f:
        return f.read()  # type: ignore[no-any-return]
resolve_relative_path(path: str) -> str

Takes relative path and resolves it absolutely.

Parameters:

Name Type Description Default
path str

Local path in filesystem.

required

Returns:

Type Description
str

Resolved path.

Source code in src/zenml/utils/io_utils.py
194
195
196
197
198
199
200
201
202
203
204
205
def resolve_relative_path(path: str) -> str:
    """Takes relative path and resolves it absolutely.

    Args:
        path: Local path in filesystem.

    Returns:
        Resolved path.
    """
    if is_remote(path):
        return path
    return str(Path(path).resolve())
write_file_contents_as_string(file_path: str, content: str) -> None

Writes contents of file.

Parameters:

Name Type Description Default
file_path str

Path to file.

required
content str

Contents of file.

required

Raises:

Type Description
ValueError

If content is not of type str.

Source code in src/zenml/utils/io_utils.py
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def write_file_contents_as_string(file_path: str, content: str) -> None:
    """Writes contents of file.

    Args:
        file_path: Path to file.
        content: Contents of file.

    Raises:
        ValueError: If content is not of type str.
    """
    if not isinstance(content, str):
        raise ValueError(f"Content must be of type str, got {type(content)}")
    with open(file_path, "w") as f:
        f.write(content)

source_utils

Utilities for loading/resolving objects.

Classes
Functions
get_implicit_source_root() -> str

Get the implicit source root (the parent directory of the main module).

Raises:

Type Description
RuntimeError

If the main module file can't be found.

Returns:

Type Description
str

The implicit source root.

Source code in src/zenml/utils/source_utils.py
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def get_implicit_source_root() -> str:
    """Get the implicit source root (the parent directory of the main module).

    Raises:
        RuntimeError: If the main module file can't be found.

    Returns:
        The implicit source root.
    """
    main_module = sys.modules.get("__main__")
    if main_module is None:
        raise RuntimeError(
            "Unable to determine source root because the main module could not "
            "be found."
        )

    if not hasattr(main_module, "__file__") or not main_module.__file__:
        raise RuntimeError(
            "Unable to determine source root because the main module does not "
            "have an associated file. This could be because you're running in "
            "an interactive Python environment. If you are trying to run from "
            "within a Jupyter notebook, please run `zenml init` from the root "
            "where your notebook is located and restart your notebook server."
        )

    path = Path(main_module.__file__).resolve().parent
    return str(path)
get_resolved_notebook_sources() -> Dict[str, str]

Get all notebook sources that were resolved in this process.

Returns:

Type Description
Dict[str, str]

Dictionary mapping the import path of notebook sources to the code

Dict[str, str]

of their notebook cell.

Source code in src/zenml/utils/source_utils.py
806
807
808
809
810
811
812
813
def get_resolved_notebook_sources() -> Dict[str, str]:
    """Get all notebook sources that were resolved in this process.

    Returns:
        Dictionary mapping the import path of notebook sources to the code
        of their notebook cell.
    """
    return _resolved_notebook_sources.copy()
get_source_root() -> str

Get the source root.

The source root will be determined in the following order: - The manually specified custom source root if it was set. - The ZenML repository directory if one exists in the current working directory or any parent directories. - The parent directory of the main module file.

Returns:

Type Description
str

The source root.

Source code in src/zenml/utils/source_utils.py
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
def get_source_root() -> str:
    """Get the source root.

    The source root will be determined in the following order:
    - The manually specified custom source root if it was set.
    - The ZenML repository directory if one exists in the current working
      directory or any parent directories.
    - The parent directory of the main module file.

    Returns:
        The source root.
    """
    if _CUSTOM_SOURCE_ROOT:
        logger.debug("Using custom source root: %s", _CUSTOM_SOURCE_ROOT)
        return _CUSTOM_SOURCE_ROOT

    from zenml.client import Client

    repo_root = Client.find_repository()
    if repo_root:
        logger.debug("Using repository root as source root: %s", repo_root)
        return str(repo_root.resolve())

    implicit_source_root = get_implicit_source_root()
    logger.debug(
        "Using main module parent directory as source root: %s",
        implicit_source_root,
    )
    return implicit_source_root
get_source_type(module: ModuleType) -> SourceType

Get the type of a source.

Parameters:

Name Type Description Default
module ModuleType

The module for which to get the source type.

required

Returns:

Type Description
SourceType

The source type.

Source code in src/zenml/utils/source_utils.py
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
def get_source_type(module: ModuleType) -> SourceType:
    """Get the type of a source.

    Args:
        module: The module for which to get the source type.

    Returns:
        The source type.
    """
    if module.__name__ in _notebook_modules:
        return SourceType.NOTEBOOK

    try:
        file_path = inspect.getfile(module)
    except (TypeError, OSError):
        if module.__name__ == "__main__" and Environment.in_notebook():
            return SourceType.NOTEBOOK

        return SourceType.BUILTIN

    if is_internal_module(module_name=module.__name__):
        return SourceType.INTERNAL

    if is_distribution_package_file(
        file_path=file_path, module_name=module.__name__
    ):
        return SourceType.DISTRIBUTION_PACKAGE

    if is_standard_lib_file(file_path=file_path):
        return SourceType.BUILTIN

    # Make sure to check for distribution packages before this to catch the
    # case when a virtual environment is inside our source root
    if is_user_file(file_path=file_path):
        return SourceType.USER

    return SourceType.UNKNOWN
is_distribution_package_file(file_path: str, module_name: str) -> bool

Checks if a file/module belongs to a distribution package.

Parameters:

Name Type Description Default
file_path str

The file path to check.

required
module_name str

The module name.

required

Returns:

Type Description
bool

True if the file/module belongs to a distribution package, False

bool

otherwise.

Source code in src/zenml/utils/source_utils.py
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
def is_distribution_package_file(file_path: str, module_name: str) -> bool:
    """Checks if a file/module belongs to a distribution package.

    Args:
        file_path: The file path to check.
        module_name: The module name.

    Returns:
        True if the file/module belongs to a distribution package, False
        otherwise.
    """
    absolute_file_path = Path(file_path).resolve()

    for path in site.getsitepackages() + [site.getusersitepackages()]:
        if Path(path).resolve() in absolute_file_path.parents:
            return True

    # TODO: The previous check does not detect editable installs because
    # the site packages dir only contains a reference to the source files,
    # not the actual files. That means currently editable installs get a
    # source type UNKNOWN which might or might not lead to issues.

    return False
is_internal_module(module_name: str) -> bool

Checks if a module is internal (=part of the zenml package).

Parameters:

Name Type Description Default
module_name str

Name of the module to check.

required

Returns:

Type Description
bool

True if the module is internal, False otherwise.

Source code in src/zenml/utils/source_utils.py
352
353
354
355
356
357
358
359
360
361
def is_internal_module(module_name: str) -> bool:
    """Checks if a module is internal (=part of the zenml package).

    Args:
        module_name: Name of the module to check.

    Returns:
        True if the module is internal, False otherwise.
    """
    return module_name.split(".", maxsplit=1)[0] == "zenml"
is_standard_lib_file(file_path: str) -> bool

Checks if a file belongs to the Python standard library.

Parameters:

Name Type Description Default
file_path str

The file path to check.

required

Returns:

Type Description
bool

True if the file belongs to the Python standard library, False

bool

otherwise.

Source code in src/zenml/utils/source_utils.py
377
378
379
380
381
382
383
384
385
386
387
388
389
def is_standard_lib_file(file_path: str) -> bool:
    """Checks if a file belongs to the Python standard library.

    Args:
        file_path: The file path to check.

    Returns:
        True if the file belongs to the Python standard library, False
        otherwise.
    """
    stdlib_root = get_python_lib(standard_lib=True)
    logger.debug("Standard library root: %s", stdlib_root)
    return Path(stdlib_root).resolve() in Path(file_path).resolve().parents
is_user_file(file_path: str) -> bool

Checks if a file is a user file.

Parameters:

Name Type Description Default
file_path str

The file path to check.

required

Returns:

Type Description
bool

True if the file is a user file, False otherwise.

Source code in src/zenml/utils/source_utils.py
364
365
366
367
368
369
370
371
372
373
374
def is_user_file(file_path: str) -> bool:
    """Checks if a file is a user file.

    Args:
        file_path: The file path to check.

    Returns:
        True if the file is a user file, False otherwise.
    """
    source_root = get_source_root()
    return Path(source_root) in Path(file_path).resolve().parents
load(source: Union[Source, str]) -> Any

Load a source or import path.

Parameters:

Name Type Description Default
source Union[Source, str]

The source to load.

required

Returns:

Type Description
Any

The loaded object.

Source code in src/zenml/utils/source_utils.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def load(source: Union[Source, str]) -> Any:
    """Load a source or import path.

    Args:
        source: The source to load.

    Returns:
        The loaded object.
    """
    if isinstance(source, str):
        source = Source.from_import_path(source)

    # The types of some objects don't exist in the `builtin` module
    # so we need to manually handle it here
    if source.import_path == NoneTypeSource.import_path:
        return NoneType
    elif source.import_path == FunctionTypeSource.import_path:
        return FunctionType
    elif source.import_path == BuiltinFunctionTypeSource.import_path:
        return BuiltinFunctionType

    import_root = None
    if source.type == SourceType.CODE_REPOSITORY:
        source = CodeRepositorySource.model_validate(dict(source))
        _warn_about_potential_source_loading_issues(source=source)
        import_root = get_source_root()
    elif source.type == SourceType.DISTRIBUTION_PACKAGE:
        source = DistributionPackageSource.model_validate(dict(source))
        if source.version:
            current_package_version = _get_package_version(
                package_name=source.package_name
            )
            if current_package_version != source.version:
                logger.warning(
                    "The currently installed version `%s` of package `%s` "
                    "does not match the source version `%s`. This might lead "
                    "to unexpected behavior when using the source object `%s`.",
                    current_package_version,
                    source.package_name,
                    source.version,
                    source.import_path,
                )
    elif source.type == SourceType.NOTEBOOK:
        if Environment.in_notebook():
            # If we're in a notebook, we don't need to do anything as the
            # loading from the __main__ module should work just fine.
            pass
        else:
            notebook_source = NotebookSource.model_validate(dict(source))
            return _try_to_load_notebook_source(notebook_source)
    elif source.type in {SourceType.USER, SourceType.UNKNOWN}:
        # Unknown source might also refer to a user file, include source
        # root in python path just to be sure
        import_root = get_source_root()

    if _should_load_from_main_module(source):
        # This source points to the __main__ module of the current process.
        # If we were to load the module here, we would load the same python
        # file with a different module name, which would rerun all top-level
        # code. To avoid this, we instead load the source from the __main__
        # module which is already loaded.
        module = sys.modules["__main__"]
    else:
        module = _load_module(
            module_name=source.module, import_root=import_root
        )

    if source.attribute:
        obj = getattr(module, source.attribute)
    else:
        obj = module

    return obj
load_and_validate_class(source: Union[str, Source], expected_class: Type[Any]) -> Type[Any]

Loads a source class and validates its class.

Parameters:

Name Type Description Default
source Union[str, Source]

The source.

required
expected_class Type[Any]

The class that the source should resolve to.

required

Raises:

Type Description
TypeError

If the source does not resolve to the expected class.

Returns:

Type Description
Type[Any]

The resolved source class.

Source code in src/zenml/utils/source_utils.py
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
def load_and_validate_class(
    source: Union[str, Source], expected_class: Type[Any]
) -> Type[Any]:
    """Loads a source class and validates its class.

    Args:
        source: The source.
        expected_class: The class that the source should resolve to.

    Raises:
        TypeError: If the source does not resolve to the expected class.

    Returns:
        The resolved source class.
    """
    obj = load(source)

    if isinstance(obj, type) and issubclass(obj, expected_class):
        return obj
    else:
        raise TypeError(
            f"Error while loading `{source}`. Expected class "
            f"{expected_class.__name__}, got {obj} instead."
        )
prepend_python_path(path: str) -> Iterator[None]

Context manager to temporarily prepend a path to the python path.

Parameters:

Name Type Description Default
path str

Path that will be prepended to sys.path for the duration of the context manager.

required

Yields:

Type Description
None

None

Source code in src/zenml/utils/source_utils.py
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
@contextlib.contextmanager
def prepend_python_path(path: str) -> Iterator[None]:
    """Context manager to temporarily prepend a path to the python path.

    Args:
        path: Path that will be prepended to sys.path for the duration of
            the context manager.

    Yields:
        None
    """
    try:
        sys.path.insert(0, path)
        yield
    finally:
        sys.path.remove(path)
resolve(obj: Union[Type[Any], Callable[..., Any], ModuleType, FunctionType, BuiltinFunctionType, NoneType], skip_validation: bool = False) -> Source

Resolve an object.

Parameters:

Name Type Description Default
obj Union[Type[Any], Callable[..., Any], ModuleType, FunctionType, BuiltinFunctionType, NoneType]

The object to resolve.

required
skip_validation bool

If True, the validation that the object exist in the module is skipped.

False

Raises:

Type Description
RuntimeError

If the object can't be resolved.

Returns:

Type Description
Source

The source of the resolved object.

Source code in src/zenml/utils/source_utils.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def resolve(
    obj: Union[
        Type[Any],
        Callable[..., Any],
        ModuleType,
        FunctionType,
        BuiltinFunctionType,
        NoneType,
    ],
    skip_validation: bool = False,
) -> Source:
    """Resolve an object.

    Args:
        obj: The object to resolve.
        skip_validation: If True, the validation that the object exist in the
            module is skipped.

    Raises:
        RuntimeError: If the object can't be resolved.

    Returns:
        The source of the resolved object.
    """
    # The types of some objects don't exist in the `builtin` module
    # so we need to manually handle it here
    if obj is NoneType:
        return NoneTypeSource
    elif obj is FunctionType:
        return FunctionTypeSource
    elif obj is BuiltinFunctionType:
        return BuiltinFunctionTypeSource
    elif source := getattr(obj, ZENML_SOURCE_ATTRIBUTE_NAME, None):
        assert isinstance(source, Source)
        return source
    elif isinstance(obj, ModuleType):
        module = obj
        attribute_name = None
    else:
        module = sys.modules[obj.__module__]
        attribute_name = obj.__name__  # type: ignore[union-attr]

    if (
        not (skip_validation or getattr(obj, "_DOCS_BUILDING_MODE", False))
        and attribute_name
        and getattr(module, attribute_name, None) is not obj
    ):
        raise RuntimeError(
            f"Unable to resolve object `{obj}`. For the resolving to work, the "
            "class or function must be defined as top-level code (= it must "
            "get defined when importing the module) and not inside a function/"
            f"if-condition. Please make sure that your `{module.__name__}` "
            f"module has a top-level attribute `{attribute_name}` that "
            "holds the object you want to resolve."
        )

    module_name = module.__name__
    if module_name == "__main__":
        module_name = _resolve_module(module)

    source_type = get_source_type(module=module)

    if source_type == SourceType.USER:
        from zenml.utils import code_repository_utils

        local_repo_context = (
            code_repository_utils.find_active_code_repository()
        )

        if local_repo_context and not local_repo_context.has_local_changes:
            module_name = _resolve_module(module)

            source_root = get_source_root()
            subdir = PurePath(source_root).relative_to(local_repo_context.root)

            return CodeRepositorySource(
                repository_id=local_repo_context.code_repository.id,
                commit=local_repo_context.current_commit,
                subdirectory=subdir.as_posix(),
                module=module_name,
                attribute=attribute_name,
                type=SourceType.CODE_REPOSITORY,
            )

        module_name = _resolve_module(module)
    elif source_type == SourceType.DISTRIBUTION_PACKAGE:
        package_name = _get_package_for_module(module_name=module_name)
        if package_name:
            package_version = _get_package_version(package_name=package_name)
            return DistributionPackageSource(
                module=module_name,
                attribute=attribute_name,
                package_name=package_name,
                version=package_version,
                type=source_type,
            )
        else:
            # Fallback to an unknown source if we can't find the package
            source_type = SourceType.UNKNOWN
    elif source_type == SourceType.NOTEBOOK:
        source = NotebookSource(
            module="__main__",
            attribute=attribute_name,
            type=source_type,
        )

        if module_name in _notebook_modules:
            source.replacement_module = module_name
            source.artifact_store_id = _notebook_modules[module_name]
        elif cell_code := notebook_utils.load_notebook_cell_code(obj):
            replacement_module = (
                notebook_utils.compute_cell_replacement_module_name(
                    cell_code=cell_code
                )
            )
            source.replacement_module = replacement_module
            _resolved_notebook_sources[source.import_path] = cell_code

        return source

    return Source(
        module=module_name, attribute=attribute_name, type=source_type
    )
set_custom_source_root(source_root: Optional[str]) -> None

Sets a custom source root.

If set this has the highest priority and will always be used as the source root.

Parameters:

Name Type Description Default
source_root Optional[str]

The source root to use.

required
Source code in src/zenml/utils/source_utils.py
338
339
340
341
342
343
344
345
346
347
348
349
def set_custom_source_root(source_root: Optional[str]) -> None:
    """Sets a custom source root.

    If set this has the highest priority and will always be used as the source
    root.

    Args:
        source_root: The source root to use.
    """
    logger.debug("Setting custom source root: %s", source_root)
    global _CUSTOM_SOURCE_ROOT
    _CUSTOM_SOURCE_ROOT = source_root
validate_source_class(source: Union[Source, str], expected_class: Type[Any]) -> bool

Validates that a source resolves to a certain class.

Parameters:

Name Type Description Default
source Union[Source, str]

The source to validate.

required
expected_class Type[Any]

The class that the source should resolve to.

required

Returns:

Type Description
bool

True if the source resolves to the expected class, False otherwise.

Source code in src/zenml/utils/source_utils.py
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
def validate_source_class(
    source: Union[Source, str], expected_class: Type[Any]
) -> bool:
    """Validates that a source resolves to a certain class.

    Args:
        source: The source to validate.
        expected_class: The class that the source should resolve to.

    Returns:
        True if the source resolves to the expected class, False otherwise.
    """
    try:
        obj = load(source)
    except Exception:
        return False

    if isinstance(obj, type) and issubclass(obj, expected_class):
        return True
    else:
        return False
Modules