Config
zenml.config
The config
module contains classes and functions that manage user-specific configuration.
ZenML's configuration is stored in a file called
config.yaml
, located on the user's directory for configuration files.
(The exact location differs from operating system to operating system.)
The GlobalConfiguration
class is the main class in this module. It provides
a Pydantic configuration object that is used to store and retrieve
configuration. This GlobalConfiguration
object handles the serialization and
deserialization of the configuration options that are stored in the file in
order to persist the configuration across sessions.
Attributes
__all__ = ['DockerSettings', 'ResourceSettings', 'StepRetryConfig']
module-attribute
Classes
DockerSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Settings for building Docker images to run ZenML pipelines.
Build process:
- No
dockerfile
specified: If any of the options regarding requirements, environment variables or copying files require us to build an image, ZenML will build this image. Otherwise, theparent_image
will be used to run the pipeline. dockerfile
specified: ZenML will first build an image based on the specified Dockerfile. If any of the options regarding requirements, environment variables or copying files require an additional image built on top of that, ZenML will build a second image. If not, the image build from the specified Dockerfile will be used to run the pipeline.
Requirements installation order:
Depending on the configuration of this object, requirements will be
installed in the following order (each step optional):
- The packages installed in your local python environment
- The packages required by the stack unless this is disabled by setting
install_stack_requirements=False
.
- The packages specified via the required_integrations
- The packages specified via the requirements
attribute
Attributes:
Name | Type | Description |
---|---|---|
parent_image |
Optional[str]
|
Full name of the Docker image that should be used as the parent for the image that will be built. Defaults to a ZenML image built for the active Python and ZenML version. Additional notes:
* If you specify a custom image here, you need to make sure it has
ZenML installed.
* If this is a non-local image, the environment which is running
the pipeline and building the Docker image needs to be able to pull
this image.
* If a custom |
dockerfile |
Optional[str]
|
Path to a custom Dockerfile that should be built. Depending on the other values you specify in this object, the resulting image will be used directly to run your pipeline or ZenML will use it as a parent image to build on top of. See the general docstring of this class for more information. Additional notes:
* If you specify this, the |
build_context_root |
Optional[str]
|
Build context root for the Docker build, only used
when the |
parent_image_build_config |
Optional[DockerBuildConfig]
|
Configuration for the parent image build. |
skip_build |
bool
|
If set to |
prevent_build_reuse |
bool
|
Prevent the reuse of an existing build. |
target_repository |
Optional[str]
|
Name of the Docker repository to which the image should be pushed. This repository will be appended to the registry URI of the container registry of your stack and should therefore not include any registry. If not specified, the default repository name configured in the container registry stack component settings will be used. |
python_package_installer |
PythonPackageInstaller
|
The package installer to use for python packages. |
python_package_installer_args |
Dict[str, Any]
|
Arguments to pass to the python package installer. |
replicate_local_python_environment |
Optional[Union[List[str], PythonEnvironmentExportMethod]]
|
If not |
requirements |
Union[None, str, List[str]]
|
Path to a requirements file or a list of required pip
packages. During the image build, these requirements will be
installed using pip. If you need to use a different tool to
resolve and/or install your packages, please use a custom parent
image or specify a custom |
required_integrations |
List[str]
|
List of ZenML integrations that should be installed. All requirements for the specified integrations will be installed inside the Docker image. |
required_hub_plugins |
List[str]
|
DEPRECATED/UNUSED. |
install_stack_requirements |
bool
|
If |
apt_packages |
List[str]
|
APT packages to install inside the Docker image. |
environment |
Dict[str, Any]
|
Dictionary of environment variables to set inside the Docker image. |
build_config |
Optional[DockerBuildConfig]
|
Configuration for the main image build. |
user |
Optional[str]
|
If not |
allow_including_files_in_images |
bool
|
If |
allow_download_from_code_repository |
bool
|
If |
allow_download_from_artifact_store |
bool
|
If |
build_options |
Dict[str, Any]
|
DEPRECATED, use parent_image_build_config.build_options instead. |
dockerignore |
Optional[str]
|
DEPRECATED, use build_config.dockerignore instead. |
copy_files |
bool
|
DEPRECATED/UNUSED. |
copy_global_config |
bool
|
DEPRECATED/UNUSED. |
source_files |
Optional[str]
|
DEPRECATED. Use allow_including_files_in_images, allow_download_from_code_repository and allow_download_from_artifact_store instead. |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
ResourceSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Hardware resource settings.
Attributes:
Name | Type | Description |
---|---|---|
cpu_count |
Optional[PositiveFloat]
|
The amount of CPU cores that should be configured. |
gpu_count |
Optional[NonNegativeInt]
|
The amount of GPUs that should be configured. |
memory |
Optional[str]
|
The amount of memory that should be configured. |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
Attributes
empty: bool
property
Returns if this object is "empty" (=no values configured) or not.
Returns:
Type | Description |
---|---|
bool
|
|
Functions
get_memory(unit: Union[str, ByteUnit] = ByteUnit.GB) -> Optional[float]
Gets the memory configuration in a specific unit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unit
|
Union[str, ByteUnit]
|
The unit to which the memory should be converted. |
GB
|
Raises:
Type | Description |
---|---|
ValueError
|
If the memory string is invalid. |
Returns:
Type | Description |
---|---|
Optional[float]
|
The memory configuration converted to the requested unit, or None |
Optional[float]
|
if no memory was configured. |
Source code in src/zenml/config/resource_settings.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
StepRetryConfig
Modules
base_settings
Base class for all ZenML settings.
Classes
BaseSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: SecretReferenceMixin
Base class for settings.
The LEVEL
class variable defines on which level the settings can be
specified. By default, subclasses can be defined on both pipelines and
steps.
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
ConfigurationLevel
Bases: IntFlag
Settings configuration level.
Bit flag that can be used to specify where a BaseSettings
subclass
can be specified.
build_configuration
Build configuration class.
Classes
BuildConfiguration
Bases: BaseModel
Configuration of Docker builds.
Attributes:
Name | Type | Description |
---|---|---|
key |
str
|
The key to store the build. |
settings |
DockerSettings
|
Settings for the build. |
step_name |
Optional[str]
|
Name of the step for which this image will be built. |
entrypoint |
Optional[str]
|
Optional entrypoint for the image. |
extra_files |
Dict[str, str]
|
Extra files to include in the Docker image. |
compute_settings_checksum(stack: Stack, code_repository: Optional[BaseCodeRepository] = None) -> str
Checksum for all build settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stack
|
Stack
|
The stack for which to compute the checksum. This is needed to gather the stack integration requirements in case the Docker settings specify to install them. |
required |
code_repository
|
Optional[BaseCodeRepository]
|
Optional code repository that will be used to download files inside the image. |
None
|
Returns:
Type | Description |
---|---|
str
|
The checksum. |
Source code in src/zenml/config/build_configuration.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
should_download_files(code_repository: Optional[BaseCodeRepository]) -> bool
Whether files should be downloaded in the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
code_repository
|
Optional[BaseCodeRepository]
|
Code repository that can be used to download files inside the image. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether files should be downloaded in the image. |
Source code in src/zenml/config/build_configuration.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
should_download_files_from_code_repository(code_repository: Optional[BaseCodeRepository]) -> bool
Whether files should be downloaded from the code repository.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
code_repository
|
Optional[BaseCodeRepository]
|
Code repository that can be used to download files inside the image. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether files should be downloaded from the code repository. |
Source code in src/zenml/config/build_configuration.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
should_include_files(code_repository: Optional[BaseCodeRepository]) -> bool
Whether files should be included in the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
code_repository
|
Optional[BaseCodeRepository]
|
Code repository that can be used to download files inside the image. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether files should be included in the image. |
Source code in src/zenml/config/build_configuration.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
Modules
compiler
Class for compiling ZenML pipelines into a serializable format.
Classes
Compiler
Compiles ZenML pipelines to serializable representations.
compile(pipeline: Pipeline, stack: Stack, run_configuration: PipelineRunConfiguration) -> PipelineDeploymentBase
Compiles a ZenML pipeline to a serializable representation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline
|
Pipeline
|
The pipeline to compile. |
required |
stack
|
Stack
|
The stack on which the pipeline will run. |
required |
run_configuration
|
PipelineRunConfiguration
|
The run configuration for this pipeline. |
required |
Returns:
Type | Description |
---|---|
PipelineDeploymentBase
|
The compiled pipeline deployment. |
Source code in src/zenml/config/compiler.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
compile_spec(pipeline: Pipeline) -> PipelineSpec
Compiles a ZenML pipeline to a pipeline spec.
This method can be used when a pipeline spec is needed but the full deployment including stack information is not required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline
|
Pipeline
|
The pipeline to compile. |
required |
Returns:
Type | Description |
---|---|
PipelineSpec
|
The compiled pipeline spec. |
Source code in src/zenml/config/compiler.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
Functions
convert_component_shortcut_settings_keys(settings: Dict[str, BaseSettings], stack: Stack) -> None
Convert component shortcut settings keys.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
Dict[str, BaseSettings]
|
Dictionary of settings. |
required |
stack
|
Stack
|
The stack that the pipeline will run on. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If stack component settings were defined both using the full and the shortcut key. |
Source code in src/zenml/config/compiler.py
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
|
get_zenml_versions() -> Tuple[str, str]
Returns the version of ZenML on the client and server side.
Returns:
Type | Description |
---|---|
Tuple[str, str]
|
the ZenML versions on the client and server side respectively. |
Source code in src/zenml/config/compiler.py
56 57 58 59 60 61 62 63 64 65 66 67 |
|
Modules
constants
ZenML settings constants.
docker_settings
Docker settings.
Classes
DockerBuildConfig
Bases: BaseModel
Configuration for a Docker build.
Attributes:
Name | Type | Description |
---|---|---|
build_options |
Dict[str, Any]
|
Additional options that will be passed unmodified to the Docker build call when building an image. You can use this to for example specify build args or a target stage. See https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.ImageCollection.build for a full list of available options. |
dockerignore |
Optional[str]
|
Path to a dockerignore file to use when building the Docker image. |
DockerSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Settings for building Docker images to run ZenML pipelines.
Build process:
- No
dockerfile
specified: If any of the options regarding requirements, environment variables or copying files require us to build an image, ZenML will build this image. Otherwise, theparent_image
will be used to run the pipeline. dockerfile
specified: ZenML will first build an image based on the specified Dockerfile. If any of the options regarding requirements, environment variables or copying files require an additional image built on top of that, ZenML will build a second image. If not, the image build from the specified Dockerfile will be used to run the pipeline.
Requirements installation order:
Depending on the configuration of this object, requirements will be
installed in the following order (each step optional):
- The packages installed in your local python environment
- The packages required by the stack unless this is disabled by setting
install_stack_requirements=False
.
- The packages specified via the required_integrations
- The packages specified via the requirements
attribute
Attributes:
Name | Type | Description |
---|---|---|
parent_image |
Optional[str]
|
Full name of the Docker image that should be used as the parent for the image that will be built. Defaults to a ZenML image built for the active Python and ZenML version. Additional notes:
* If you specify a custom image here, you need to make sure it has
ZenML installed.
* If this is a non-local image, the environment which is running
the pipeline and building the Docker image needs to be able to pull
this image.
* If a custom |
dockerfile |
Optional[str]
|
Path to a custom Dockerfile that should be built. Depending on the other values you specify in this object, the resulting image will be used directly to run your pipeline or ZenML will use it as a parent image to build on top of. See the general docstring of this class for more information. Additional notes:
* If you specify this, the |
build_context_root |
Optional[str]
|
Build context root for the Docker build, only used
when the |
parent_image_build_config |
Optional[DockerBuildConfig]
|
Configuration for the parent image build. |
skip_build |
bool
|
If set to |
prevent_build_reuse |
bool
|
Prevent the reuse of an existing build. |
target_repository |
Optional[str]
|
Name of the Docker repository to which the image should be pushed. This repository will be appended to the registry URI of the container registry of your stack and should therefore not include any registry. If not specified, the default repository name configured in the container registry stack component settings will be used. |
python_package_installer |
PythonPackageInstaller
|
The package installer to use for python packages. |
python_package_installer_args |
Dict[str, Any]
|
Arguments to pass to the python package installer. |
replicate_local_python_environment |
Optional[Union[List[str], PythonEnvironmentExportMethod]]
|
If not |
requirements |
Union[None, str, List[str]]
|
Path to a requirements file or a list of required pip
packages. During the image build, these requirements will be
installed using pip. If you need to use a different tool to
resolve and/or install your packages, please use a custom parent
image or specify a custom |
required_integrations |
List[str]
|
List of ZenML integrations that should be installed. All requirements for the specified integrations will be installed inside the Docker image. |
required_hub_plugins |
List[str]
|
DEPRECATED/UNUSED. |
install_stack_requirements |
bool
|
If |
apt_packages |
List[str]
|
APT packages to install inside the Docker image. |
environment |
Dict[str, Any]
|
Dictionary of environment variables to set inside the Docker image. |
build_config |
Optional[DockerBuildConfig]
|
Configuration for the main image build. |
user |
Optional[str]
|
If not |
allow_including_files_in_images |
bool
|
If |
allow_download_from_code_repository |
bool
|
If |
allow_download_from_artifact_store |
bool
|
If |
build_options |
Dict[str, Any]
|
DEPRECATED, use parent_image_build_config.build_options instead. |
dockerignore |
Optional[str]
|
DEPRECATED, use build_config.dockerignore instead. |
copy_files |
bool
|
DEPRECATED/UNUSED. |
copy_global_config |
bool
|
DEPRECATED/UNUSED. |
source_files |
Optional[str]
|
DEPRECATED. Use allow_including_files_in_images, allow_download_from_code_repository and allow_download_from_artifact_store instead. |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
PythonEnvironmentExportMethod
Bases: Enum
Different methods to export the local Python environment.
command: str
property
Shell command that outputs local python packages.
The output string must be something that can be interpreted as a requirements file for pip once it's written to a file.
Returns:
Type | Description |
---|---|
str
|
Shell command. |
PythonPackageInstaller
Bases: Enum
Different installers for python packages.
Functions
Modules
global_config
Functionality to support ZenML GlobalConfiguration.
Classes
GlobalConfigMetaClass(*args: Any, **kwargs: Any)
Bases: ModelMetaclass
Global configuration metaclass.
This metaclass is used to enforce a singleton instance of the GlobalConfiguration class with the following additional properties:
- the GlobalConfiguration is initialized automatically on import with the default configuration, if no config file exists yet.
- the GlobalConfiguration undergoes a schema migration if the version of the config file is older than the current version of the ZenML package.
- a default store is set if no store is configured yet.
Initialize a singleton class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Any
|
positional arguments |
()
|
**kwargs
|
Any
|
keyword arguments |
{}
|
Source code in src/zenml/config/global_config.py
72 73 74 75 76 77 78 79 80 |
|
GlobalConfiguration(**data: Any)
Bases: BaseModel
Stores global configuration options.
Configuration options are read from a config file, but can be overwritten
by environment variables. See GlobalConfiguration.__getattribute__
for
more details.
Attributes:
Name | Type | Description |
---|---|---|
user_id |
UUID
|
Unique user id. |
user_email |
Optional[str]
|
Email address associated with this client. |
user_email_opt_in |
Optional[bool]
|
Whether the user has opted in to email communication. |
analytics_opt_in |
bool
|
If a user agreed to sending analytics or not. |
version |
Optional[str]
|
Version of ZenML that was last used to create or update the global config. |
store |
Optional[SerializeAsAny[StoreConfiguration]]
|
Store configuration. |
active_stack_id |
Optional[UUID]
|
The ID of the active stack. |
active_project_id |
Optional[UUID]
|
The ID of the active project. |
Initializes a GlobalConfiguration using values from the config file.
GlobalConfiguration is a singleton class: only one instance can exist. Calling this constructor multiple times will always yield the same instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Any
|
Custom configuration options. |
{}
|
Source code in src/zenml/config/global_config.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
config_directory: str
property
Directory where the global configuration file is located.
Returns:
Type | Description |
---|---|
str
|
The directory where the global configuration file is located. |
is_initialized: bool
property
Check if the global configuration is initialized.
Returns:
Type | Description |
---|---|
bool
|
|
local_stores_path: str
property
Path where local stores information is stored.
Returns:
Type | Description |
---|---|
str
|
The path where local stores information is stored. |
store_configuration: StoreConfiguration
property
Get the current store configuration.
Returns:
Type | Description |
---|---|
StoreConfiguration
|
The store configuration. |
zen_store: BaseZenStore
property
Initialize and/or return the global zen store.
If the store hasn't been initialized yet, it is initialized when this property is first accessed according to the global store configuration.
Returns:
Type | Description |
---|---|
BaseZenStore
|
The current zen store. |
get_active_project() -> ProjectResponse
Get a model of the active project for the local client.
Returns:
Type | Description |
---|---|
ProjectResponse
|
The model of the active project. |
Source code in src/zenml/config/global_config.py
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
|
get_active_project_id() -> UUID
Get the ID of the active project.
Returns:
Type | Description |
---|---|
UUID
|
The ID of the active project. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the active project is not set. |
Source code in src/zenml/config/global_config.py
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
|
get_active_stack_id() -> UUID
Get the ID of the active stack.
If the active stack doesn't exist yet, the ZenStore is reinitialized.
Returns:
Type | Description |
---|---|
UUID
|
The active stack ID. |
Source code in src/zenml/config/global_config.py
784 785 786 787 788 789 790 791 792 793 794 795 796 |
|
get_config_environment_vars() -> Dict[str, str]
Convert the global configuration to environment variables.
Returns:
Type | Description |
---|---|
Dict[str, str]
|
Environment variables dictionary. |
Source code in src/zenml/config/global_config.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
get_default_store() -> StoreConfiguration
Get the default SQLite store configuration.
Returns:
Type | Description |
---|---|
StoreConfiguration
|
The default SQLite store configuration. |
Source code in src/zenml/config/global_config.py
639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
|
get_instance() -> Optional[GlobalConfiguration]
classmethod
Return the GlobalConfiguration singleton instance.
Returns:
Type | Description |
---|---|
Optional[GlobalConfiguration]
|
The GlobalConfiguration singleton instance or None, if the |
Optional[GlobalConfiguration]
|
GlobalConfiguration hasn't been initialized yet. |
Source code in src/zenml/config/global_config.py
150 151 152 153 154 155 156 157 158 |
|
set_active_project(project: ProjectResponse) -> ProjectResponse
Set the project for the local client.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
project
|
ProjectResponse
|
The project to set active. |
required |
Returns:
Type | Description |
---|---|
ProjectResponse
|
The project that was set active. |
Source code in src/zenml/config/global_config.py
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
set_active_stack(stack: StackResponse) -> None
Set the active stack for the local client.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stack
|
StackResponse
|
The model of the stack to set active. |
required |
Source code in src/zenml/config/global_config.py
739 740 741 742 743 744 745 746 |
|
set_default_store() -> None
Initializes and sets the default store configuration.
Call this method to initialize or revert the store configuration to the default store.
Source code in src/zenml/config/global_config.py
654 655 656 657 658 659 660 661 662 663 664 665 |
|
set_store(config: StoreConfiguration, skip_default_registrations: bool = False, **kwargs: Any) -> None
Update the active store configuration.
Call this method to validate and update the active store configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
StoreConfiguration
|
The new store configuration to use. |
required |
skip_default_registrations
|
bool
|
If |
False
|
**kwargs
|
Any
|
Additional keyword arguments to pass to the store constructor. |
{}
|
Source code in src/zenml/config/global_config.py
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
|
uses_default_store() -> bool
Check if the global configuration uses the default store.
Returns:
Type | Description |
---|---|
bool
|
|
Source code in src/zenml/config/global_config.py
667 668 669 670 671 672 673 |
|
Functions
Modules
pipeline_configurations
Pipeline configuration classes.
Classes
PipelineConfiguration
Bases: PipelineConfigurationUpdate
Pipeline configuration class.
docker_settings: DockerSettings
property
Docker settings of this pipeline.
Returns:
Type | Description |
---|---|
DockerSettings
|
The Docker settings of this pipeline. |
ensure_pipeline_name_allowed(name: str) -> str
classmethod
Ensures the pipeline name is allowed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the pipeline. |
required |
Returns:
Type | Description |
---|---|
str
|
The validated name of the pipeline. |
Raises:
Type | Description |
---|---|
ValueError
|
If the name is not allowed. |
Source code in src/zenml/config/pipeline_configurations.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
PipelineConfigurationUpdate
Functions
pipeline_run_configuration
Pipeline run configuration class.
Classes
PipelineRunConfiguration
Modules
pipeline_spec
Pipeline configuration classes.
Classes
PipelineSpec
Bases: StrictBaseModel
Specification of a pipeline.
json_with_string_sources: str
property
JSON representation with sources replaced by their import path.
Returns:
Type | Description |
---|---|
str
|
The JSON representation. |
resource_settings
Resource settings class used to specify resources for a step.
Classes
ByteUnit
Bases: Enum
Enum for byte units.
byte_value: int
property
Returns the amount of bytes that this unit represents.
Returns:
Type | Description |
---|---|
int
|
The byte value of this unit. |
ResourceSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Hardware resource settings.
Attributes:
Name | Type | Description |
---|---|---|
cpu_count |
Optional[PositiveFloat]
|
The amount of CPU cores that should be configured. |
gpu_count |
Optional[NonNegativeInt]
|
The amount of GPUs that should be configured. |
memory |
Optional[str]
|
The amount of memory that should be configured. |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
empty: bool
property
Returns if this object is "empty" (=no values configured) or not.
Returns:
Type | Description |
---|---|
bool
|
|
get_memory(unit: Union[str, ByteUnit] = ByteUnit.GB) -> Optional[float]
Gets the memory configuration in a specific unit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unit
|
Union[str, ByteUnit]
|
The unit to which the memory should be converted. |
GB
|
Raises:
Type | Description |
---|---|
ValueError
|
If the memory string is invalid. |
Returns:
Type | Description |
---|---|
Optional[float]
|
The memory configuration converted to the requested unit, or None |
Optional[float]
|
if no memory was configured. |
Source code in src/zenml/config/resource_settings.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
retry_config
Retry configuration for a step.
Classes
StepRetryConfig
schedule
Class for defining a pipeline schedule.
Classes
Schedule
Bases: BaseModel
Class for defining a pipeline schedule.
Attributes:
Name | Type | Description |
---|---|---|
name |
Optional[str]
|
Optional name to give to the schedule. If not set, a default name will be generated based on the pipeline name and the current date and time. |
cron_expression |
Optional[str]
|
Cron expression for the pipeline schedule. If a value for this is set it takes precedence over the start time + interval. |
start_time |
Optional[datetime]
|
When the schedule should start. If this is a datetime object without any timezone, it is treated as a datetime in the local timezone. |
end_time |
Optional[datetime]
|
When the schedule should end. If this is a datetime object without any timezone, it is treated as a datetime in the local timezone. |
interval_second |
Optional[timedelta]
|
datetime timedelta indicating the seconds between two recurring runs for a periodic schedule. |
catchup |
bool
|
Whether the recurring run should catch up if behind schedule. For example, if the recurring run is paused for a while and re-enabled afterward. If catchup=True, the scheduler will catch up on (backfill) each missed interval. Otherwise, it only schedules the latest interval if more than one interval is ready to be scheduled. Usually, if your pipeline handles backfill internally, you should turn catchup off to avoid duplicate backfill. |
run_once_start_time |
Optional[datetime]
|
When to run the pipeline once. If this is a datetime object without any timezone, it is treated as a datetime in the local timezone. |
Functions
secret_reference_mixin
Secret reference mixin implementation.
Classes
SecretReferenceMixin(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseModel
Mixin class for secret references in pydantic model attributes.
Ensures that secret references are only passed for valid fields.
This method ensures that secret references are not passed for fields that explicitly prevent them or require pydantic validation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
warn_about_plain_text_secrets
|
bool
|
If true, then warns about using plain-text secrets. |
False
|
**kwargs
|
Any
|
Arguments to initialize this object. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If an attribute that requires custom pydantic validation or an attribute which explicitly disallows secret references is passed as a secret reference. |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
required_secrets: Set[secret_utils.SecretReference]
property
All required secrets for this object.
Returns:
Type | Description |
---|---|
Set[SecretReference]
|
The required secrets of this object. |
Functions
Modules
secrets_store_config
Functionality to support ZenML secrets store configurations.
Classes
SecretsStoreConfiguration
Bases: BaseModel
Generic secrets store configuration.
The store configurations of concrete secrets store implementations must inherit from this class and validate any extra attributes that are configured in addition to those defined in this class.
Attributes:
Name | Type | Description |
---|---|---|
type |
SecretsStoreType
|
The type of store backend. |
class_path |
Optional[str]
|
The Python class path of the store backend. Should point to
a subclass of |
validate_custom() -> SecretsStoreConfiguration
Validate that class_path is set for custom secrets stores.
Returns:
Type | Description |
---|---|
SecretsStoreConfiguration
|
Validated settings. |
Raises:
Type | Description |
---|---|
ValueError
|
If class_path is not set when using a custom secrets store. |
Source code in src/zenml/config/secrets_store_config.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
Functions
server_config
Functionality to support ZenML Server Configuration.
Classes
ServerConfiguration
Bases: BaseModel
ZenML Server configuration attributes.
All these attributes can be set through the environment with the ZENML_SERVER_
-Prefix.
The value of the ZENML_SERVER_DEPLOYMENT_TYPE
environment variable will be extracted to deployment_type.
Attributes:
Name | Type | Description |
---|---|---|
deployment_type |
ServerDeploymentType
|
The type of ZenML server deployment that is running. |
server_url |
Optional[str]
|
The URL where the ZenML server API is reachable. Must be configured for features that involve triggering workloads from the ZenML dashboard (e.g., running pipelines). If not specified, the clients will use the same URL used to connect them to the ZenML server. |
dashboard_url |
Optional[str]
|
The URL where the ZenML dashboard is reachable.
If not specified, the |
root_url_path |
str
|
The root URL path for the ZenML API and dashboard. |
auth_scheme |
AuthScheme
|
The authentication scheme used by the ZenML server. |
jwt_token_algorithm |
str
|
The algorithm used to sign and verify JWT tokens. |
jwt_token_issuer |
Optional[str]
|
The issuer of the JWT tokens. If not specified, the issuer is set to the ZenML Server ID. |
jwt_token_audience |
Optional[str]
|
The audience of the JWT tokens. If not specified, the audience is set to the ZenML Server ID. |
jwt_token_leeway_seconds |
int
|
The leeway in seconds allowed when verifying the expiration time of JWT tokens. |
jwt_token_expire_minutes |
Optional[int]
|
The expiration time of JWT tokens in minutes. If not specified, generated JWT tokens will not be set to expire. |
jwt_secret_key |
str
|
The secret key used to sign and verify JWT tokens. If not specified, a random secret key is generated. |
auth_cookie_name |
Optional[str]
|
The name of the http-only cookie used to store the JWT token. If not specified, the cookie name is set to a value computed from the ZenML server ID. |
auth_cookie_domain |
Optional[str]
|
The domain of the http-only cookie used to store the JWT token. If not specified, the cookie will be valid for the domain where the ZenML server is running. |
cors_allow_origins |
Optional[List[str]]
|
The origins allowed to make cross-origin requests to the ZenML server. If not specified, all origins are allowed. |
max_failed_device_auth_attempts |
int
|
The maximum number of failed OAuth 2.0 device authentication attempts before the device is locked. |
device_auth_timeout |
int
|
The timeout in seconds after which a pending OAuth 2.0 device authorization request expires. |
device_auth_polling_interval |
int
|
The polling interval in seconds used to poll the OAuth 2.0 device authorization endpoint. |
device_expiration_minutes |
Optional[int]
|
The time in minutes that an OAuth 2.0 device is
allowed to be used to authenticate with the ZenML server. If not
set or if |
trusted_device_expiration_minutes |
Optional[int]
|
The time in minutes that a trusted OAuth 2.0
device is allowed to be used to authenticate with the ZenML server.
If not set or if |
generic_api_token_lifetime |
PositiveInt
|
The lifetime in seconds that generic short-lived API tokens issued for automation purposes are valid. |
external_login_url |
Optional[str]
|
The login URL of an external authenticator service
to use with the |
external_user_info_url |
Optional[str]
|
The user info URL of an external authenticator
service to use with the |
external_server_id |
Optional[UUID]
|
The ID of the ZenML server to use with the
|
metadata |
Dict[str, str]
|
Additional metadata to be associated with the ZenML server. |
rbac_implementation_source |
Optional[str]
|
Source pointing to a class implementing
the RBAC interface defined by
|
feature_gate_implementation_source |
Optional[str]
|
Source pointing to a class
implementing the feature gate interface defined by
|
workload_manager_implementation_source |
Optional[str]
|
Source pointing to a class implementing the workload management interface. |
pipeline_run_auth_window |
int
|
The default time window in minutes for which a pipeline run action is allowed to authenticate with the ZenML server. |
login_rate_limit_minute |
int
|
The number of login attempts allowed per minute. |
login_rate_limit_day |
int
|
The number of login attempts allowed per day. |
secure_headers_server |
Union[bool, str]
|
Custom value to be set in the |
secure_headers_hsts |
Union[bool, str]
|
The server header value to be set in the HTTP
header |
secure_headers_xfo |
Union[bool, str]
|
The server header value to be set in the HTTP
header |
secure_headers_xxp |
Union[bool, str]
|
The server header value to be set in the HTTP
header |
secure_headers_content |
Union[bool, str]
|
The server header value to be set in the HTTP
header |
secure_headers_csp |
Union[bool, str]
|
The server header value to be set in the HTTP
header |
secure_headers_referrer |
Union[bool, str]
|
The server header value to be set in the HTTP
header |
secure_headers_cache |
Union[bool, str]
|
The server header value to be set in the HTTP
header |
secure_headers_permissions |
Union[bool, str]
|
The server header value to be set in the
HTTP header |
server_name |
str
|
The name of the ZenML server. Used only during initial deployment. Can be changed later as a part of the server settings. |
display_announcements |
bool
|
Whether to display announcements about ZenML in the dashboard. Used only during initial deployment. Can be changed later as a part of the server settings. |
display_updates |
bool
|
Whether to display notifications about ZenML updates in the dashboard. Used only during initial deployment. Can be changed later as a part of the server settings. |
auto_activate |
bool
|
Whether to automatically activate the server and create a default admin user account with an empty password during the initial deployment. |
max_request_body_size_in_bytes |
int
|
The maximum size of the request body in bytes. If not specified, the default value of 256 Kb will be used. |
memcache_max_capacity |
int
|
The maximum number of entries that the memory cache can hold. If not specified, the default value of 1000 will be used. |
memcache_default_expiry |
int
|
The default expiry time in seconds for cache entries. If not specified, the default value of 30 seconds will be used. |
file_download_size_limit |
int
|
The maximum size of the file download in bytes. If not specified, the default value of 2GB will be used. |
deployment_id: UUID
property
Get the ZenML server deployment ID.
Returns:
Type | Description |
---|---|
UUID
|
The ZenML server deployment ID. |
feature_gate_enabled: bool
property
Whether feature gating is enabled on the server or not.
Returns:
Type | Description |
---|---|
bool
|
Whether feature gating is enabled on the server or not. |
rbac_enabled: bool
property
Whether RBAC is enabled on the server or not.
Returns:
Type | Description |
---|---|
bool
|
Whether RBAC is enabled on the server or not. |
workload_manager_enabled: bool
property
Whether workload management is enabled on the server or not.
Returns:
Type | Description |
---|---|
bool
|
Whether workload management is enabled on the server or not. |
get_auth_cookie_name() -> str
Get the authentication cookie name.
If not configured, the cookie name is set to a value computed from the ZenML server ID.
Returns:
Type | Description |
---|---|
str
|
The authentication cookie name. |
Source code in src/zenml/config/server_config.py
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
|
get_external_server_id() -> UUID
Get the external server ID.
If not configured, the regular ZenML server ID is used.
Returns:
Type | Description |
---|---|
UUID
|
The external server ID. |
Source code in src/zenml/config/server_config.py
553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
|
get_jwt_token_audience() -> str
Get the JWT token audience.
If not configured, the audience is set to the ZenML Server ID.
Returns:
Type | Description |
---|---|
str
|
The JWT token audience. |
Source code in src/zenml/config/server_config.py
522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
|
get_jwt_token_issuer() -> str
Get the JWT token issuer.
If not configured, the issuer is set to the ZenML Server ID.
Returns:
Type | Description |
---|---|
str
|
The JWT token issuer. |
Source code in src/zenml/config/server_config.py
507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
|
get_server_config() -> ServerConfiguration
classmethod
Get the server configuration.
Returns:
Type | Description |
---|---|
ServerConfiguration
|
The server configuration. |
Source code in src/zenml/config/server_config.py
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
|
ServerProConfiguration
Bases: BaseModel
ZenML Server Pro configuration attributes.
All these attributes can be set through the environment with the
ZENML_SERVER_PRO_
-Prefix. E.g. the value of the ZENML_SERVER_PRO_API_URL
environment variable will be extracted to api_url.
Attributes:
Name | Type | Description |
---|---|---|
api_url |
str
|
The ZenML Pro API URL. |
dashboard_url |
str
|
The ZenML Pro dashboard URL. |
oauth2_client_secret |
str
|
The ZenML Pro OAuth2 client secret used to authenticate the ZenML server with the ZenML Pro API. |
oauth2_audience |
str
|
The OAuth2 audience. |
organization_id |
UUID
|
The ZenML Pro organization ID. |
organization_name |
Optional[str]
|
The ZenML Pro organization name. |
workspace_id |
UUID
|
The ZenML Pro workspace ID. |
workspace_name |
Optional[str]
|
The ZenML Pro workspace name. |
get_server_config() -> ServerProConfiguration
classmethod
Get the server Pro configuration.
Returns:
Type | Description |
---|---|
ServerProConfiguration
|
The server Pro configuration. |
Source code in src/zenml/config/server_config.py
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
|
Functions
generate_jwt_secret_key() -> str
Generate a random JWT secret key.
This key is used to sign and verify generated JWT tokens.
Returns:
Type | Description |
---|---|
str
|
A random JWT secret key. |
Source code in src/zenml/config/server_config.py
66 67 68 69 70 71 72 73 74 |
|
settings_resolver
Class for resolving settings.
Classes
SettingsResolver(key: str, settings: BaseSettings)
Class for resolving settings.
This class converts a BaseSettings
instance to the correct subclass
depending on the key for which these settings were specified.
Checks if the settings key is valid.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
str
|
Settings key. |
required |
settings
|
BaseSettings
|
The settings. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If the settings key is invalid. |
Source code in src/zenml/config/settings_resolver.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
resolve(stack: Stack) -> BaseSettings
Resolves settings for the given stack.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stack
|
Stack
|
The stack for which to resolve the settings. |
required |
Returns:
Type | Description |
---|---|
BaseSettings
|
The resolved settings. |
Source code in src/zenml/config/settings_resolver.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
Modules
source
Source classes.
Classes
CodeRepositorySource
Bases: Source
Source representing an object from a code repository.
Attributes:
Name | Type | Description |
---|---|---|
repository_id |
UUID
|
The code repository ID. |
commit |
str
|
The commit. |
subdirectory |
str
|
The subdirectory of the source root inside the code repository. |
DistributionPackageSource
Bases: Source
Source representing an object from a distribution package.
Attributes:
Name | Type | Description |
---|---|---|
package_name |
str
|
Name of the package. |
version |
Optional[str]
|
The package version. |
NotebookSource
Bases: Source
Source representing an object defined in a notebook.
Attributes:
Name | Type | Description |
---|---|---|
replacement_module |
Optional[str]
|
Name of the module from which this source should be loaded in case the code is not running in a notebook. |
artifact_store_id |
Optional[UUID]
|
ID of the artifact store in which the replacement module code is stored. |
Source
Bases: BaseModel
Source specification.
A source specifies a module name as well as an optional attribute of that module. These values can be used to import the module and get the value of the attribute inside the module.
Example
The source Source(module="zenml.config.source", attribute="Source")
references the class that this docstring is describing. This class is
defined in the zenml.config.source
module and the name of the
attribute is the class name Source
.
Attributes:
Name | Type | Description |
---|---|---|
module |
str
|
The module name. |
attribute |
Optional[str]
|
Optional name of the attribute inside the module. |
type |
SourceType
|
The type of the source. |
import_path: str
property
The import path of the source.
Returns:
Type | Description |
---|---|
str
|
The import path of the source. |
is_internal: bool
property
If the source is internal (=from the zenml package).
Returns:
Type | Description |
---|---|
bool
|
True if the source is internal, False otherwise |
is_module_source: bool
property
If the source is a module source.
Returns:
Type | Description |
---|---|
bool
|
If the source is a module source. |
from_import_path(import_path: str, is_module_path: bool = False) -> Source
classmethod
Creates a source from an import path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
import_path
|
str
|
The import path. |
required |
is_module_path
|
bool
|
If the import path points to a module or not. |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If the import path is empty. |
Returns:
Type | Description |
---|---|
Source
|
The source. |
Source code in src/zenml/config/source.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|
model_dump(**kwargs: Any) -> Dict[str, Any]
Dump the source as a dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The source as a dictionary. |
Source code in src/zenml/config/source.py
143 144 145 146 147 148 149 150 151 152 |
|
model_dump_json(**kwargs: Any) -> str
Dump the source as a JSON string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
str
|
The source as a JSON string. |
Source code in src/zenml/config/source.py
154 155 156 157 158 159 160 161 162 163 |
|
SourceType
Bases: Enum
Enum representing different types of sources.
Functions
convert_source(source: Any) -> Any
Converts an old source string to a source object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source
|
Any
|
Source string or object. |
required |
Returns:
Type | Description |
---|---|
Any
|
The converted source. |
Source code in src/zenml/config/source.py
286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
step_configurations
Pipeline configuration classes.
Classes
ArtifactConfiguration
Bases: PartialArtifactConfiguration
Class representing a complete input/output artifact configuration.
InputSpec
PartialArtifactConfiguration
PartialStepConfiguration
Step
StepConfiguration
Bases: PartialStepConfiguration
Step configuration class.
docker_settings: DockerSettings
property
Docker settings of this step configuration.
Returns:
Type | Description |
---|---|
DockerSettings
|
The Docker settings of this step configuration. |
resource_settings: ResourceSettings
property
Resource settings of this step configuration.
Returns:
Type | Description |
---|---|
ResourceSettings
|
The resource settings of this step configuration. |
StepConfigurationUpdate
StepSpec
Functions
Modules
step_run_info
Step run info.
Classes
StepRunInfo
Bases: StrictBaseModel
All information necessary to run a step.
get_image(key: str) -> str
Gets the Docker image for the given key.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
str
|
The key for which to get the image. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the run does not have an associated build. |
Returns:
Type | Description |
---|---|
str
|
The image name or digest. |
Source code in src/zenml/config/step_run_info.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
store_config
Functionality to support ZenML store configurations.
Classes
StoreConfiguration
Bases: BaseModel
Generic store configuration.
The store configurations of concrete store implementations must inherit from this class and validate any extra attributes that are configured in addition to those defined in this class.
Attributes:
Name | Type | Description |
---|---|---|
type |
StoreType
|
The type of store backend. |
url |
str
|
The URL of the store backend. |
secrets_store |
Optional[SerializeAsAny[SecretsStoreConfiguration]]
|
The configuration of the secrets store to use to store secrets. If not set, secrets management is disabled. |
backup_secrets_store |
Optional[SerializeAsAny[SecretsStoreConfiguration]]
|
The configuration of the secrets store to use to store backups of secrets. If not set, backup and restore of secrets are disabled. |
supports_url_scheme(url: str) -> bool
classmethod
Check if a URL scheme is supported by this store.
Concrete store configuration classes should override this method to check if a URL scheme is supported by the store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url
|
str
|
The URL to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
True if the URL scheme is supported, False otherwise. |
Source code in src/zenml/config/store_config.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
validate_store_config(data: Dict[str, Any]) -> Dict[str, Any]
classmethod
Validate the secrets store configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Dict[str, Any]
|
The values of the store configuration. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The values of the store configuration. |
Source code in src/zenml/config/store_config.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
Functions
strict_base_model
Strict immutable pydantic model.
Classes
StrictBaseModel
Bases: BaseModel
Immutable pydantic model which prevents extra attributes.