Pipelines
zenml.pipelines
Attributes
__all__ = ['pipeline', 'Schedule', 'PipelineContext', 'get_pipeline_context']
module-attribute
Classes
PipelineContext(pipeline_configuration: PipelineConfiguration)
Provides pipeline configuration context.
Usage example:
from zenml import get_pipeline_context
...
@pipeline(
extra={
"complex_parameter": [
("sklearn.tree", "DecisionTreeClassifier"),
("sklearn.ensemble", "RandomForestClassifier"),
]
}
)
def my_pipeline():
context = get_pipeline_context()
after = []
search_steps_prefix = "hp_tuning_search_"
for i, model_search_configuration in enumerate(
context.extra["complex_parameter"]
):
step_name = f"{search_steps_prefix}{i}"
cross_validation(
model_package=model_search_configuration[0],
model_class=model_search_configuration[1],
id=step_name
)
after.append(step_name)
select_best_model(
search_steps_prefix=search_steps_prefix,
after=after,
)
Initialize the context of the current pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline_configuration
|
PipelineConfiguration
|
The configuration of the pipeline derived from Pipeline class. |
required |
Source code in src/zenml/pipelines/pipeline_context.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
Functions
Schedule
Bases: BaseModel
Class for defining a pipeline schedule.
Attributes:
Name | Type | Description |
---|---|---|
name |
Optional[str]
|
Optional name to give to the schedule. If not set, a default name will be generated based on the pipeline name and the current date and time. |
cron_expression |
Optional[str]
|
Cron expression for the pipeline schedule. If a value for this is set it takes precedence over the start time + interval. |
start_time |
Optional[datetime]
|
When the schedule should start. If this is a datetime object without any timezone, it is treated as a datetime in the local timezone. |
end_time |
Optional[datetime]
|
When the schedule should end. If this is a datetime object without any timezone, it is treated as a datetime in the local timezone. |
interval_second |
Optional[timedelta]
|
datetime timedelta indicating the seconds between two recurring runs for a periodic schedule. |
catchup |
bool
|
Whether the recurring run should catch up if behind schedule. For example, if the recurring run is paused for a while and re-enabled afterward. If catchup=True, the scheduler will catch up on (backfill) each missed interval. Otherwise, it only schedules the latest interval if more than one interval is ready to be scheduled. Usually, if your pipeline handles backfill internally, you should turn catchup off to avoid duplicate backfill. |
run_once_start_time |
Optional[datetime]
|
When to run the pipeline once. If this is a datetime object without any timezone, it is treated as a datetime in the local timezone. |
Functions
get_pipeline_context() -> PipelineContext
Get the context of the current pipeline.
Returns:
Type | Description |
---|---|
PipelineContext
|
The context of the current pipeline. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If no active pipeline is found. |
RuntimeError
|
If inside a running step. |
Source code in src/zenml/pipelines/pipeline_context.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
pipeline(_func: Optional[F] = None, *, name: Optional[str] = None, enable_cache: Optional[bool] = None, enable_artifact_metadata: Optional[bool] = None, enable_step_logs: Optional[bool] = None, enable_pipeline_logs: Optional[bool] = None, settings: Optional[Dict[str, SettingsOrDict]] = None, tags: Optional[List[Union[str, Tag]]] = None, extra: Optional[Dict[str, Any]] = None, on_failure: Optional[HookSpecification] = None, on_success: Optional[HookSpecification] = None, model: Optional[Model] = None, substitutions: Optional[Dict[str, str]] = None) -> Union[Pipeline, Callable[[F], Pipeline]]
pipeline(_func: F) -> Pipeline
pipeline(
*,
name: Optional[str] = None,
enable_cache: Optional[bool] = None,
enable_artifact_metadata: Optional[bool] = None,
enable_step_logs: Optional[bool] = None,
enable_pipeline_logs: Optional[bool] = None,
settings: Optional[Dict[str, SettingsOrDict]] = None,
tags: Optional[List[Union[str, Tag]]] = None,
extra: Optional[Dict[str, Any]] = None,
on_failure: Optional[HookSpecification] = None,
on_success: Optional[HookSpecification] = None,
model: Optional[Model] = None,
substitutions: Optional[Dict[str, str]] = None,
) -> Callable[[F], Pipeline]
Decorator to create a pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_func
|
Optional[F]
|
The decorated function. |
None
|
name
|
Optional[str]
|
The name of the pipeline. If left empty, the name of the decorated function will be used as a fallback. |
None
|
enable_cache
|
Optional[bool]
|
Whether to use caching or not. |
None
|
enable_artifact_metadata
|
Optional[bool]
|
Whether to enable artifact metadata or not. |
None
|
enable_step_logs
|
Optional[bool]
|
If step logs should be enabled for this pipeline. |
None
|
enable_pipeline_logs
|
Optional[bool]
|
If pipeline logs should be enabled for this pipeline. |
None
|
settings
|
Optional[Dict[str, SettingsOrDict]]
|
Settings for this pipeline. |
None
|
tags
|
Optional[List[Union[str, Tag]]]
|
Tags to apply to runs of the pipeline. |
None
|
extra
|
Optional[Dict[str, Any]]
|
Extra configurations for this pipeline. |
None
|
on_failure
|
Optional[HookSpecification]
|
Callback function in event of failure of the step. Can be a
function with a single argument of type |
None
|
on_success
|
Optional[HookSpecification]
|
Callback function in event of success of the step. Can be a
function with no arguments, or a source path to such a function
(e.g. |
None
|
model
|
Optional[Model]
|
configuration of the model in the Model Control Plane. |
None
|
substitutions
|
Optional[Dict[str, str]]
|
Extra placeholders to use in the name templates. |
None
|
Returns:
Source code in src/zenml/pipelines/pipeline_decorator.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
Modules
build_utils
Pipeline build utilities.
Classes
Functions
allows_download_from_code_repository(deployment: PipelineDeploymentBase) -> bool
Checks whether a code repository can be used to download code.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether a code repository can be used to download code. |
Source code in src/zenml/pipelines/build_utils.py
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
build_required(deployment: PipelineDeploymentBase) -> bool
Checks whether a build is required for the deployment and active stack.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment for which to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
If a build is required. |
Source code in src/zenml/pipelines/build_utils.py
53 54 55 56 57 58 59 60 61 62 63 |
|
code_download_possible(deployment: PipelineDeploymentBase, code_repository: Optional[BaseCodeRepository] = None) -> bool
Checks whether code download is possible for the deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment. |
required |
code_repository
|
Optional[BaseCodeRepository]
|
If provided, this code repository can be used to download the code inside the container images. |
None
|
Returns:
Type | Description |
---|---|
bool
|
Whether code download is possible for the deployment. |
Source code in src/zenml/pipelines/build_utils.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
compute_build_checksum(items: List[BuildConfiguration], stack: Stack, code_repository: Optional[BaseCodeRepository] = None) -> str
Compute an overall checksum for a pipeline build.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
items
|
List[BuildConfiguration]
|
Items of the build. |
required |
stack
|
Stack
|
The stack associated with the build. Will be used to gather its requirements. |
required |
code_repository
|
Optional[BaseCodeRepository]
|
The code repository that will be used to download files inside the build. Will be used for its dependency specification. |
None
|
Returns:
Type | Description |
---|---|
str
|
The build checksum. |
Source code in src/zenml/pipelines/build_utils.py
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
|
compute_stack_checksum(stack: StackResponse) -> str
Compute a stack checksum.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stack
|
StackResponse
|
The stack for which to compute the checksum. |
required |
Returns:
Type | Description |
---|---|
str
|
The checksum. |
Source code in src/zenml/pipelines/build_utils.py
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
|
create_pipeline_build(deployment: PipelineDeploymentBase, pipeline_id: Optional[UUID] = None, code_repository: Optional[BaseCodeRepository] = None) -> Optional[PipelineBuildResponse]
Builds images and registers the output in the server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The pipeline deployment. |
required |
pipeline_id
|
Optional[UUID]
|
The ID of the pipeline. |
None
|
code_repository
|
Optional[BaseCodeRepository]
|
If provided, this code repository will be used to download inside the build images. |
None
|
Returns:
Type | Description |
---|---|
Optional[PipelineBuildResponse]
|
The build output. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If multiple builds with the same key but different settings were specified. |
Source code in src/zenml/pipelines/build_utils.py
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
find_existing_build(deployment: PipelineDeploymentBase, code_repository: Optional[BaseCodeRepository] = None) -> Optional[PipelineBuildResponse]
Find an existing build for a deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment for which to find an existing build. |
required |
code_repository
|
Optional[BaseCodeRepository]
|
The code repository that will be used to download files in the images. |
None
|
Returns:
Type | Description |
---|---|
Optional[PipelineBuildResponse]
|
The existing build to reuse if found. |
Source code in src/zenml/pipelines/build_utils.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
log_code_repository_usage(deployment: PipelineDeploymentBase, local_repo_context: LocalRepositoryContext) -> None
Log what the code repository can (not) be used for given a deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment. |
required |
local_repo_context
|
LocalRepositoryContext
|
The local repository context. |
required |
Source code in src/zenml/pipelines/build_utils.py
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
|
requires_download_from_code_repository(deployment: PipelineDeploymentBase) -> bool
Checks whether the deployment needs to download code from a repository.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment. |
required |
Returns:
Type | Description |
---|---|
bool
|
If the deployment needs to download code from a code repository. |
Source code in src/zenml/pipelines/build_utils.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
requires_included_code(deployment: PipelineDeploymentBase, code_repository: Optional[BaseCodeRepository] = None) -> bool
Checks whether the deployment requires included code.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment. |
required |
code_repository
|
Optional[BaseCodeRepository]
|
If provided, this code repository can be used to download the code inside the container images. |
None
|
Returns:
Type | Description |
---|---|
bool
|
If the deployment requires code included in the container images. |
Source code in src/zenml/pipelines/build_utils.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
reuse_or_create_pipeline_build(deployment: PipelineDeploymentBase, allow_build_reuse: bool, pipeline_id: Optional[UUID] = None, build: Union[UUID, PipelineBuildBase, None] = None, code_repository: Optional[BaseCodeRepository] = None) -> Optional[PipelineBuildResponse]
Loads or creates a pipeline build.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The pipeline deployment for which to load or create the build. |
required |
allow_build_reuse
|
bool
|
If True, the build is allowed to reuse an existing build. |
required |
pipeline_id
|
Optional[UUID]
|
Optional ID of the pipeline to reference in the build. |
None
|
build
|
Union[UUID, PipelineBuildBase, None]
|
Optional existing build. If given, the build will be fetched (or registered) in the database. If not given, a new build will be created. |
None
|
code_repository
|
Optional[BaseCodeRepository]
|
If provided, this code repository can be used to download code inside the container images. |
None
|
Returns:
Type | Description |
---|---|
Optional[PipelineBuildResponse]
|
The build response. |
Source code in src/zenml/pipelines/build_utils.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
should_upload_code(deployment: PipelineDeploymentBase, build: Optional[PipelineBuildResponse], can_download_from_code_repository: bool) -> bool
Checks whether the current code should be uploaded for the deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment. |
required |
build
|
Optional[PipelineBuildResponse]
|
The build for the deployment. |
required |
can_download_from_code_repository
|
bool
|
Whether the code can be downloaded from a code repository. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether the current code should be uploaded for the deployment. |
Source code in src/zenml/pipelines/build_utils.py
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
|
verify_custom_build(build: PipelineBuildResponse, deployment: PipelineDeploymentBase, code_repository: Optional[BaseCodeRepository] = None) -> None
Verify a custom build for a pipeline deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
build
|
PipelineBuildResponse
|
The build to verify. |
required |
deployment
|
PipelineDeploymentBase
|
The deployment for which to verify the build. |
required |
code_repository
|
Optional[BaseCodeRepository]
|
Code repository that will be used to download files for the deployment. |
None
|
Raises:
Type | Description |
---|---|
RuntimeError
|
If the build can't be used for the deployment. |
Source code in src/zenml/pipelines/build_utils.py
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
|
verify_local_repository_context(deployment: PipelineDeploymentBase, local_repo_context: Optional[LocalRepositoryContext]) -> Optional[BaseCodeRepository]
Verifies the local repository.
If the local repository exists and has no local changes, code download inside the images is possible.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The pipeline deployment. |
required |
local_repo_context
|
Optional[LocalRepositoryContext]
|
The local repository active at the source root. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the deployment requires code download but code download is not possible. |
Returns:
Type | Description |
---|---|
Optional[BaseCodeRepository]
|
The code repository from which to download files for the runs of the |
Optional[BaseCodeRepository]
|
deployment, or None if code download is not possible. |
Source code in src/zenml/pipelines/build_utils.py
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
|
Modules
pipeline_context
Pipeline context class.
Classes
PipelineContext(pipeline_configuration: PipelineConfiguration)
Provides pipeline configuration context.
Usage example:
from zenml import get_pipeline_context
...
@pipeline(
extra={
"complex_parameter": [
("sklearn.tree", "DecisionTreeClassifier"),
("sklearn.ensemble", "RandomForestClassifier"),
]
}
)
def my_pipeline():
context = get_pipeline_context()
after = []
search_steps_prefix = "hp_tuning_search_"
for i, model_search_configuration in enumerate(
context.extra["complex_parameter"]
):
step_name = f"{search_steps_prefix}{i}"
cross_validation(
model_package=model_search_configuration[0],
model_class=model_search_configuration[1],
id=step_name
)
after.append(step_name)
select_best_model(
search_steps_prefix=search_steps_prefix,
after=after,
)
Initialize the context of the current pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline_configuration
|
PipelineConfiguration
|
The configuration of the pipeline derived from Pipeline class. |
required |
Source code in src/zenml/pipelines/pipeline_context.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
Functions
get_pipeline_context() -> PipelineContext
Get the context of the current pipeline.
Returns:
Type | Description |
---|---|
PipelineContext
|
The context of the current pipeline. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If no active pipeline is found. |
RuntimeError
|
If inside a running step. |
Source code in src/zenml/pipelines/pipeline_context.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
pipeline_decorator
ZenML pipeline decorator definition.
Classes
Functions
pipeline(_func: Optional[F] = None, *, name: Optional[str] = None, enable_cache: Optional[bool] = None, enable_artifact_metadata: Optional[bool] = None, enable_step_logs: Optional[bool] = None, enable_pipeline_logs: Optional[bool] = None, settings: Optional[Dict[str, SettingsOrDict]] = None, tags: Optional[List[Union[str, Tag]]] = None, extra: Optional[Dict[str, Any]] = None, on_failure: Optional[HookSpecification] = None, on_success: Optional[HookSpecification] = None, model: Optional[Model] = None, substitutions: Optional[Dict[str, str]] = None) -> Union[Pipeline, Callable[[F], Pipeline]]
pipeline(_func: F) -> Pipeline
pipeline(
*,
name: Optional[str] = None,
enable_cache: Optional[bool] = None,
enable_artifact_metadata: Optional[bool] = None,
enable_step_logs: Optional[bool] = None,
enable_pipeline_logs: Optional[bool] = None,
settings: Optional[Dict[str, SettingsOrDict]] = None,
tags: Optional[List[Union[str, Tag]]] = None,
extra: Optional[Dict[str, Any]] = None,
on_failure: Optional[HookSpecification] = None,
on_success: Optional[HookSpecification] = None,
model: Optional[Model] = None,
substitutions: Optional[Dict[str, str]] = None,
) -> Callable[[F], Pipeline]
Decorator to create a pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_func
|
Optional[F]
|
The decorated function. |
None
|
name
|
Optional[str]
|
The name of the pipeline. If left empty, the name of the decorated function will be used as a fallback. |
None
|
enable_cache
|
Optional[bool]
|
Whether to use caching or not. |
None
|
enable_artifact_metadata
|
Optional[bool]
|
Whether to enable artifact metadata or not. |
None
|
enable_step_logs
|
Optional[bool]
|
If step logs should be enabled for this pipeline. |
None
|
enable_pipeline_logs
|
Optional[bool]
|
If pipeline logs should be enabled for this pipeline. |
None
|
settings
|
Optional[Dict[str, SettingsOrDict]]
|
Settings for this pipeline. |
None
|
tags
|
Optional[List[Union[str, Tag]]]
|
Tags to apply to runs of the pipeline. |
None
|
extra
|
Optional[Dict[str, Any]]
|
Extra configurations for this pipeline. |
None
|
on_failure
|
Optional[HookSpecification]
|
Callback function in event of failure of the step. Can be a
function with a single argument of type |
None
|
on_success
|
Optional[HookSpecification]
|
Callback function in event of success of the step. Can be a
function with no arguments, or a source path to such a function
(e.g. |
None
|
model
|
Optional[Model]
|
configuration of the model in the Model Control Plane. |
None
|
substitutions
|
Optional[Dict[str, str]]
|
Extra placeholders to use in the name templates. |
None
|
Returns:
Source code in src/zenml/pipelines/pipeline_decorator.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
pipeline_definition
Definition of a ZenML pipeline.
Classes
Pipeline(name: str, entrypoint: F, enable_cache: Optional[bool] = None, enable_artifact_metadata: Optional[bool] = None, enable_artifact_visualization: Optional[bool] = None, enable_step_logs: Optional[bool] = None, enable_pipeline_logs: Optional[bool] = None, settings: Optional[Mapping[str, SettingsOrDict]] = None, tags: Optional[List[Union[str, Tag]]] = None, extra: Optional[Dict[str, Any]] = None, on_failure: Optional[HookSpecification] = None, on_success: Optional[HookSpecification] = None, model: Optional[Model] = None, substitutions: Optional[Dict[str, str]] = None)
ZenML pipeline class.
Initializes a pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the pipeline. |
required |
entrypoint
|
F
|
The entrypoint function of the pipeline. |
required |
enable_cache
|
Optional[bool]
|
If caching should be enabled for this pipeline. |
None
|
enable_artifact_metadata
|
Optional[bool]
|
If artifact metadata should be enabled for this pipeline. |
None
|
enable_artifact_visualization
|
Optional[bool]
|
If artifact visualization should be enabled for this pipeline. |
None
|
enable_step_logs
|
Optional[bool]
|
If step logs should be enabled for this pipeline. |
None
|
enable_pipeline_logs
|
Optional[bool]
|
If pipeline logs should be enabled for this pipeline. |
None
|
settings
|
Optional[Mapping[str, SettingsOrDict]]
|
Settings for this pipeline. |
None
|
tags
|
Optional[List[Union[str, Tag]]]
|
Tags to apply to runs of this pipeline. |
None
|
extra
|
Optional[Dict[str, Any]]
|
Extra configurations for this pipeline. |
None
|
on_failure
|
Optional[HookSpecification]
|
Callback function in event of failure of the step. Can
be a function with a single argument of type |
None
|
on_success
|
Optional[HookSpecification]
|
Callback function in event of success of the step. Can
be a function with no arguments, or a source path to such a
function (e.g. |
None
|
model
|
Optional[Model]
|
configuration of the model in the Model Control Plane. |
None
|
substitutions
|
Optional[Dict[str, str]]
|
Extra placeholders to use in the name templates. |
None
|
Source code in src/zenml/pipelines/pipeline_definition.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
configuration: PipelineConfiguration
property
The configuration of the pipeline.
Returns:
Type | Description |
---|---|
PipelineConfiguration
|
The configuration of the pipeline. |
enable_cache: Optional[bool]
property
If caching is enabled for the pipeline.
Returns:
Type | Description |
---|---|
Optional[bool]
|
If caching is enabled for the pipeline. |
invocations: Dict[str, StepInvocation]
property
Returns the step invocations of this pipeline.
This dictionary will only be populated once the pipeline has been called.
Returns:
Type | Description |
---|---|
Dict[str, StepInvocation]
|
The step invocations. |
is_prepared: bool
property
If the pipeline is prepared.
Prepared means that the pipeline entrypoint has been called and the pipeline is fully defined.
Returns:
Type | Description |
---|---|
bool
|
If the pipeline is prepared. |
missing_parameters: List[str]
property
List of missing parameters for the pipeline entrypoint.
Returns:
Type | Description |
---|---|
List[str]
|
List of missing parameters for the pipeline entrypoint. |
model: PipelineResponse
property
Gets the registered pipeline model for this instance.
Returns:
Type | Description |
---|---|
PipelineResponse
|
The registered pipeline model. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the pipeline has not been registered yet. |
name: str
property
The name of the pipeline.
Returns:
Type | Description |
---|---|
str
|
The name of the pipeline. |
required_parameters: List[str]
property
List of required parameters for the pipeline entrypoint.
Returns:
Type | Description |
---|---|
List[str]
|
List of required parameters for the pipeline entrypoint. |
source_code: str
property
The source code of this pipeline.
Returns:
Type | Description |
---|---|
str
|
The source code of this pipeline. |
source_object: Any
property
The source object of this pipeline.
Returns:
Type | Description |
---|---|
Any
|
The source object of this pipeline. |
add_step_invocation(step: BaseStep, input_artifacts: Dict[str, StepArtifact], external_artifacts: Dict[str, Union[ExternalArtifact, ArtifactVersionResponse]], model_artifacts_or_metadata: Dict[str, ModelVersionDataLazyLoader], client_lazy_loaders: Dict[str, ClientLazyLoader], parameters: Dict[str, Any], default_parameters: Dict[str, Any], upstream_steps: Set[str], custom_id: Optional[str] = None, allow_id_suffix: bool = True) -> str
Adds a step invocation to the pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
step
|
BaseStep
|
The step for which to add an invocation. |
required |
input_artifacts
|
Dict[str, StepArtifact]
|
The input artifacts for the invocation. |
required |
external_artifacts
|
Dict[str, Union[ExternalArtifact, ArtifactVersionResponse]]
|
The external artifacts for the invocation. |
required |
model_artifacts_or_metadata
|
Dict[str, ModelVersionDataLazyLoader]
|
The model artifacts or metadata for the invocation. |
required |
client_lazy_loaders
|
Dict[str, ClientLazyLoader]
|
The client lazy loaders for the invocation. |
required |
parameters
|
Dict[str, Any]
|
The parameters for the invocation. |
required |
default_parameters
|
Dict[str, Any]
|
The default parameters for the invocation. |
required |
upstream_steps
|
Set[str]
|
The upstream steps for the invocation. |
required |
custom_id
|
Optional[str]
|
Custom ID to use for the invocation. |
None
|
allow_id_suffix
|
bool
|
Whether a suffix can be appended to the invocation ID. |
True
|
Raises:
Type | Description |
---|---|
RuntimeError
|
If the method is called on an inactive pipeline. |
RuntimeError
|
If the invocation was called with an artifact from a different pipeline. |
Returns:
Type | Description |
---|---|
str
|
The step invocation ID. |
Source code in src/zenml/pipelines/pipeline_definition.py
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 |
|
build(settings: Optional[Mapping[str, SettingsOrDict]] = None, step_configurations: Optional[Mapping[str, StepConfigurationUpdateOrDict]] = None, config_path: Optional[str] = None) -> Optional[PipelineBuildResponse]
Builds Docker images for the pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
settings
|
Optional[Mapping[str, SettingsOrDict]]
|
Settings for the pipeline. |
None
|
step_configurations
|
Optional[Mapping[str, StepConfigurationUpdateOrDict]]
|
Configurations for steps of the pipeline. |
None
|
config_path
|
Optional[str]
|
Path to a yaml configuration file. This file will
be parsed as a
|
None
|
Returns:
Type | Description |
---|---|
Optional[PipelineBuildResponse]
|
The build output. |
Source code in src/zenml/pipelines/pipeline_definition.py
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
|
configure(enable_cache: Optional[bool] = None, enable_artifact_metadata: Optional[bool] = None, enable_artifact_visualization: Optional[bool] = None, enable_step_logs: Optional[bool] = None, enable_pipeline_logs: Optional[bool] = None, settings: Optional[Mapping[str, SettingsOrDict]] = None, tags: Optional[List[Union[str, Tag]]] = None, extra: Optional[Dict[str, Any]] = None, on_failure: Optional[HookSpecification] = None, on_success: Optional[HookSpecification] = None, model: Optional[Model] = None, parameters: Optional[Dict[str, Any]] = None, merge: bool = True, substitutions: Optional[Dict[str, str]] = None) -> Self
Configures the pipeline.
Configuration merging example:
* merge==True
:
pipeline.configure(extra={"key1": 1})
pipeline.configure(extra={"key2": 2}, merge=True)
pipeline.configuration.extra # {"key1": 1, "key2": 2}
* merge==False
:
pipeline.configure(extra={"key1": 1})
pipeline.configure(extra={"key2": 2}, merge=False)
pipeline.configuration.extra # {"key2": 2}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
enable_cache
|
Optional[bool]
|
If caching should be enabled for this pipeline. |
None
|
enable_artifact_metadata
|
Optional[bool]
|
If artifact metadata should be enabled for this pipeline. |
None
|
enable_artifact_visualization
|
Optional[bool]
|
If artifact visualization should be enabled for this pipeline. |
None
|
enable_step_logs
|
Optional[bool]
|
If step logs should be enabled for this pipeline. |
None
|
enable_pipeline_logs
|
Optional[bool]
|
If pipeline logs should be enabled for this pipeline. |
None
|
settings
|
Optional[Mapping[str, SettingsOrDict]]
|
settings for this pipeline. |
None
|
tags
|
Optional[List[Union[str, Tag]]]
|
Tags to apply to runs of this pipeline. |
None
|
extra
|
Optional[Dict[str, Any]]
|
Extra configurations for this pipeline. |
None
|
on_failure
|
Optional[HookSpecification]
|
Callback function in event of failure of the step. Can
be a function with a single argument of type |
None
|
on_success
|
Optional[HookSpecification]
|
Callback function in event of success of the step. Can
be a function with no arguments, or a source path to such a
function (e.g. |
None
|
merge
|
bool
|
If |
True
|
model
|
Optional[Model]
|
configuration of the model version in the Model Control Plane. |
None
|
parameters
|
Optional[Dict[str, Any]]
|
input parameters for the pipeline. |
None
|
substitutions
|
Optional[Dict[str, str]]
|
Extra placeholders to use in the name templates. |
None
|
Returns:
Type | Description |
---|---|
Self
|
The pipeline instance that this method was called on. |
Source code in src/zenml/pipelines/pipeline_definition.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
copy() -> Pipeline
Copies the pipeline.
Returns:
Type | Description |
---|---|
Pipeline
|
The pipeline copy. |
Source code in src/zenml/pipelines/pipeline_definition.py
1433 1434 1435 1436 1437 1438 1439 |
|
create_run_template(name: str, **kwargs: Any) -> RunTemplateResponse
Create a run template for the pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the run template. |
required |
**kwargs
|
Any
|
Keyword arguments for the client method to create a run template. |
{}
|
Returns:
Type | Description |
---|---|
RunTemplateResponse
|
The created run template. |
Source code in src/zenml/pipelines/pipeline_definition.py
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 |
|
log_pipeline_deployment_metadata(deployment_model: PipelineDeploymentResponse) -> None
staticmethod
Displays logs based on the deployment model upon running a pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment_model
|
PipelineDeploymentResponse
|
The model for the pipeline deployment |
required |
Source code in src/zenml/pipelines/pipeline_definition.py
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
|
prepare(*args: Any, **kwargs: Any) -> None
Prepares the pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Any
|
Pipeline entrypoint input arguments. |
()
|
**kwargs
|
Any
|
Pipeline entrypoint input keyword arguments. |
{}
|
Raises:
Type | Description |
---|---|
RuntimeError
|
If the pipeline has parameters configured differently in configuration file and code. |
Source code in src/zenml/pipelines/pipeline_definition.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
|
register() -> PipelineResponse
Register the pipeline in the server.
Returns:
Type | Description |
---|---|
PipelineResponse
|
The registered pipeline model. |
Source code in src/zenml/pipelines/pipeline_definition.py
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
|
resolve() -> Source
Resolves the pipeline.
Returns:
Type | Description |
---|---|
Source
|
The pipeline source. |
Source code in src/zenml/pipelines/pipeline_definition.py
237 238 239 240 241 242 243 |
|
with_options(run_name: Optional[str] = None, schedule: Optional[Schedule] = None, build: Union[str, UUID, PipelineBuildBase, None] = None, step_configurations: Optional[Mapping[str, StepConfigurationUpdateOrDict]] = None, steps: Optional[Mapping[str, StepConfigurationUpdateOrDict]] = None, config_path: Optional[str] = None, unlisted: bool = False, prevent_build_reuse: bool = False, **kwargs: Any) -> Pipeline
Copies the pipeline and applies the given configurations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_name
|
Optional[str]
|
Name of the pipeline run. |
None
|
schedule
|
Optional[Schedule]
|
Optional schedule to use for the run. |
None
|
build
|
Union[str, UUID, PipelineBuildBase, None]
|
Optional build to use for the run. |
None
|
step_configurations
|
Optional[Mapping[str, StepConfigurationUpdateOrDict]]
|
Configurations for steps of the pipeline. |
None
|
steps
|
Optional[Mapping[str, StepConfigurationUpdateOrDict]]
|
Configurations for steps of the pipeline. This is equivalent
to |
None
|
config_path
|
Optional[str]
|
Path to a yaml configuration file. This file will
be parsed as a
|
None
|
unlisted
|
bool
|
Whether the pipeline run should be unlisted (not assigned to any pipeline). |
False
|
prevent_build_reuse
|
bool
|
DEPRECATED: Use
|
False
|
**kwargs
|
Any
|
Pipeline configuration options. These will be passed
to the |
{}
|
Returns:
Type | Description |
---|---|
Pipeline
|
The copied pipeline instance. |
Source code in src/zenml/pipelines/pipeline_definition.py
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 |
|
write_run_configuration_template(path: str, stack: Optional[Stack] = None) -> None
Writes a run configuration yaml template.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
The path where the template will be written. |
required |
stack
|
Optional[Stack]
|
The stack for which the template should be generated. If not given, the active stack will be used. |
None
|
Source code in src/zenml/pipelines/pipeline_definition.py
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
|
Functions
Modules
run_utils
Utility functions for running pipelines.
Classes
Functions
create_placeholder_run(deployment: PipelineDeploymentResponse, logs: Optional[LogsRequest] = None) -> Optional[PipelineRunResponse]
Create a placeholder run for the deployment.
If the deployment contains a schedule, no placeholder run will be created.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The deployment for which to create the placeholder run. |
required |
logs
|
Optional[LogsRequest]
|
The logs for the run. |
None
|
Returns:
Type | Description |
---|---|
Optional[PipelineRunResponse]
|
The placeholder run or |
Source code in src/zenml/pipelines/run_utils.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
deploy_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, placeholder_run: Optional[PipelineRunResponse] = None) -> None
Run a deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The deployment to run. |
required |
stack
|
Stack
|
The stack on which to run the deployment. |
required |
placeholder_run
|
Optional[PipelineRunResponse]
|
An optional placeholder run for the deployment. |
None
|
Raises:
Type | Description |
---|---|
Exception
|
Any exception that happened while deploying or running (in case it happens synchronously) the pipeline. |
Source code in src/zenml/pipelines/run_utils.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
get_all_sources_from_value(value: Any) -> List[Source]
Get all source objects from a value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
Any
|
The value from which to get all the source objects. |
required |
Returns:
Type | Description |
---|---|
List[Source]
|
List of source objects for the given value. |
Source code in src/zenml/pipelines/run_utils.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
get_default_run_name(pipeline_name: str) -> str
Gets the default name for a pipeline run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline_name
|
str
|
Name of the pipeline which will be run. |
required |
Returns:
Type | Description |
---|---|
str
|
Run name. |
Source code in src/zenml/pipelines/run_utils.py
39 40 41 42 43 44 45 46 47 48 |
|
get_placeholder_run(deployment_id: UUID) -> Optional[PipelineRunResponse]
Get the placeholder run for a deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment_id
|
UUID
|
ID of the deployment for which to get the placeholder run. |
required |
Returns:
Type | Description |
---|---|
Optional[PipelineRunResponse]
|
The placeholder run or |
Optional[PipelineRunResponse]
|
deployment. |
Source code in src/zenml/pipelines/run_utils.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
upload_notebook_cell_code_if_necessary(deployment: PipelineDeploymentBase, stack: Stack) -> None
Upload notebook cell code if necessary.
This function checks if any of the steps of the pipeline that will be executed in a different process are defined in a notebook. If that is the case, it will extract that notebook cell code into python files and upload an archive of all the necessary files to the artifact store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentBase
|
The deployment. |
required |
stack
|
Stack
|
The stack on which the deployment will happen. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the code for one of the steps that will run out of process cannot be extracted into a python file. |
Source code in src/zenml/pipelines/run_utils.py
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
|
validate_run_config_is_runnable_from_server(run_configuration: PipelineRunConfiguration) -> None
Validates that the run configuration can be used to run from the server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_configuration
|
PipelineRunConfiguration
|
The run configuration to validate. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If there are values in the run configuration that are not allowed when running a pipeline from the server. |
Source code in src/zenml/pipelines/run_utils.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
validate_stack_is_runnable_from_server(zen_store: BaseZenStore, stack: StackResponse) -> None
Validate if a stack model is runnable from the server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
zen_store
|
BaseZenStore
|
ZenStore to use for listing flavors. |
required |
stack
|
StackResponse
|
The stack to validate. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If the stack has components of a custom flavor or local components. |
Source code in src/zenml/pipelines/run_utils.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
|
wait_for_pipeline_run_to_finish(run_id: UUID) -> PipelineRunResponse
Waits until a pipeline run is finished.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
UUID
|
ID of the run for which to wait. |
required |
Returns:
Type | Description |
---|---|
PipelineRunResponse
|
Model of the finished run. |
Source code in src/zenml/pipelines/run_utils.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|