Skip to content

Pytorch

zenml.integrations.pytorch

Initialization of the PyTorch integration.

Attributes

PYTORCH = 'pytorch' module-attribute

Classes

Integration

Base class for integration in ZenML.

Functions
activate() -> None classmethod

Abstract method to activate the integration.

Source code in src/zenml/integrations/integration.py
175
176
177
@classmethod
def activate(cls) -> None:
    """Abstract method to activate the integration."""
check_installation() -> bool classmethod

Method to check whether the required packages are installed.

Returns:

Type Description
bool

True if all required packages are installed, False otherwise.

Source code in src/zenml/integrations/integration.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
@classmethod
def check_installation(cls) -> bool:
    """Method to check whether the required packages are installed.

    Returns:
        True if all required packages are installed, False otherwise.
    """
    for r in cls.get_requirements():
        try:
            # First check if the base package is installed
            dist = pkg_resources.get_distribution(r)

            # Next, check if the dependencies (including extras) are
            # installed
            deps: List[Requirement] = []

            _, extras = parse_requirement(r)
            if extras:
                extra_list = extras[1:-1].split(",")
                for extra in extra_list:
                    try:
                        requirements = dist.requires(extras=[extra])  # type: ignore[arg-type]
                    except pkg_resources.UnknownExtra as e:
                        logger.debug(f"Unknown extra: {str(e)}")
                        return False
                    deps.extend(requirements)
            else:
                deps = dist.requires()

            for ri in deps:
                try:
                    # Remove the "extra == ..." part from the requirement string
                    cleaned_req = re.sub(
                        r"; extra == \"\w+\"", "", str(ri)
                    )
                    pkg_resources.get_distribution(cleaned_req)
                except pkg_resources.DistributionNotFound as e:
                    logger.debug(
                        f"Unable to find required dependency "
                        f"'{e.req}' for requirement '{r}' "
                        f"necessary for integration '{cls.NAME}'."
                    )
                    return False
                except pkg_resources.VersionConflict as e:
                    logger.debug(
                        f"Package version '{e.dist}' does not match "
                        f"version '{e.req}' required by '{r}' "
                        f"necessary for integration '{cls.NAME}'."
                    )
                    return False

        except pkg_resources.DistributionNotFound as e:
            logger.debug(
                f"Unable to find required package '{e.req}' for "
                f"integration {cls.NAME}."
            )
            return False
        except pkg_resources.VersionConflict as e:
            logger.debug(
                f"Package version '{e.dist}' does not match version "
                f"'{e.req}' necessary for integration {cls.NAME}."
            )
            return False

    logger.debug(
        f"Integration {cls.NAME} is installed correctly with "
        f"requirements {cls.get_requirements()}."
    )
    return True
flavors() -> List[Type[Flavor]] classmethod

Abstract method to declare new stack component flavors.

Returns:

Type Description
List[Type[Flavor]]

A list of new stack component flavors.

Source code in src/zenml/integrations/integration.py
179
180
181
182
183
184
185
186
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Abstract method to declare new stack component flavors.

    Returns:
        A list of new stack component flavors.
    """
    return []
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str] classmethod

Method to get the requirements for the integration.

Parameters:

Name Type Description Default
target_os Optional[str]

The target operating system to get the requirements for.

None
python_version Optional[str]

The Python version to use for the requirements.

None

Returns:

Type Description
List[str]

A list of requirements.

Source code in src/zenml/integrations/integration.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
@classmethod
def get_requirements(
    cls,
    target_os: Optional[str] = None,
    python_version: Optional[str] = None,
) -> List[str]:
    """Method to get the requirements for the integration.

    Args:
        target_os: The target operating system to get the requirements for.
        python_version: The Python version to use for the requirements.

    Returns:
        A list of requirements.
    """
    return cls.REQUIREMENTS
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str] classmethod

Method to get the uninstall requirements for the integration.

Parameters:

Name Type Description Default
target_os Optional[str]

The target operating system to get the requirements for.

None

Returns:

Type Description
List[str]

A list of requirements.

Source code in src/zenml/integrations/integration.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
@classmethod
def get_uninstall_requirements(
    cls, target_os: Optional[str] = None
) -> List[str]:
    """Method to get the uninstall requirements for the integration.

    Args:
        target_os: The target operating system to get the requirements for.

    Returns:
        A list of requirements.
    """
    ret = []
    for each in cls.get_requirements(target_os=target_os):
        is_ignored = False
        for ignored in cls.REQUIREMENTS_IGNORED_ON_UNINSTALL:
            if each.startswith(ignored):
                is_ignored = True
                break
        if not is_ignored:
            ret.append(each)
    return ret
plugin_flavors() -> List[Type[BasePluginFlavor]] classmethod

Abstract method to declare new plugin flavors.

Returns:

Type Description
List[Type[BasePluginFlavor]]

A list of new plugin flavors.

Source code in src/zenml/integrations/integration.py
188
189
190
191
192
193
194
195
@classmethod
def plugin_flavors(cls) -> List[Type["BasePluginFlavor"]]:
    """Abstract method to declare new plugin flavors.

    Returns:
        A list of new plugin flavors.
    """
    return []

PytorchIntegration

Bases: Integration

Definition of PyTorch integration for ZenML.

Functions
activate() -> None classmethod

Activates the integration.

Source code in src/zenml/integrations/pytorch/__init__.py
28
29
30
31
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.pytorch import materializers  # noqa

Modules

materializers

Initialization of the PyTorch Materializer.

Classes
Modules
base_pytorch_materializer

Implementation of the PyTorch DataLoader materializer.

Classes
BasePyTorchMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)

Bases: BaseMaterializer

Base class for PyTorch materializers.

Source code in src/zenml/materializers/base_materializer.py
125
126
127
128
129
130
131
132
133
134
135
def __init__(
    self, uri: str, artifact_store: Optional[BaseArtifactStore] = None
):
    """Initializes a materializer with the given URI.

    Args:
        uri: The URI where the artifact data will be stored.
        artifact_store: The artifact store used to store this artifact.
    """
    self.uri = uri
    self._artifact_store = artifact_store
Functions
load(data_type: Type[Any]) -> Any

Uses torch.load to load a PyTorch object.

Parameters:

Name Type Description Default
data_type Type[Any]

The type of the object to load.

required

Returns:

Type Description
Any

The loaded PyTorch object.

Source code in src/zenml/integrations/pytorch/materializers/base_pytorch_materializer.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def load(self, data_type: Type[Any]) -> Any:
    """Uses `torch.load` to load a PyTorch object.

    Args:
        data_type: The type of the object to load.

    Returns:
        The loaded PyTorch object.
    """
    with fileio.open(os.path.join(self.uri, self.FILENAME), "rb") as f:
        # NOTE (security): The `torch.load` function uses `pickle` as
        # the default unpickler, which is NOT secure. This materializer
        # is intended for use with trusted data sources.
        return torch.load(f, weights_only=False)  # nosec
save(obj: Any) -> None

Uses torch.save to save a PyTorch object.

Parameters:

Name Type Description Default
obj Any

The PyTorch object to save.

required
Source code in src/zenml/integrations/pytorch/materializers/base_pytorch_materializer.py
49
50
51
52
53
54
55
56
57
58
59
def save(self, obj: Any) -> None:
    """Uses `torch.save` to save a PyTorch object.

    Args:
        obj: The PyTorch object to save.
    """
    with fileio.open(os.path.join(self.uri, self.FILENAME), "wb") as f:
        # NOTE (security): The `torch.save` function uses `cloudpickle` as
        # the default unpickler, which is NOT secure. This materializer
        # is intended for use with trusted data sources.
        torch.save(obj, f, pickle_module=cloudpickle)  # nosec
Modules
pytorch_dataloader_materializer

Implementation of the PyTorch DataLoader materializer.

Classes
PyTorchDataLoaderMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)

Bases: BasePyTorchMaterializer

Materializer to read/write PyTorch dataloaders and datasets.

Source code in src/zenml/materializers/base_materializer.py
125
126
127
128
129
130
131
132
133
134
135
def __init__(
    self, uri: str, artifact_store: Optional[BaseArtifactStore] = None
):
    """Initializes a materializer with the given URI.

    Args:
        uri: The URI where the artifact data will be stored.
        artifact_store: The artifact store used to store this artifact.
    """
    self.uri = uri
    self._artifact_store = artifact_store
Functions
extract_metadata(dataloader: Any) -> Dict[str, MetadataType]

Extract metadata from the given dataloader or dataset.

Parameters:

Name Type Description Default
dataloader Any

The dataloader or dataset to extract metadata from.

required

Returns:

Type Description
Dict[str, MetadataType]

The extracted metadata as a dictionary.

Source code in src/zenml/integrations/pytorch/materializers/pytorch_dataloader_materializer.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def extract_metadata(self, dataloader: Any) -> Dict[str, "MetadataType"]:
    """Extract metadata from the given dataloader or dataset.

    Args:
        dataloader: The dataloader or dataset to extract metadata from.

    Returns:
        The extracted metadata as a dictionary.
    """
    metadata: Dict[str, "MetadataType"] = {}
    if isinstance(dataloader, DataLoader):
        if hasattr(dataloader.dataset, "__len__"):
            metadata["num_samples"] = len(dataloader.dataset)
        if dataloader.batch_size:
            metadata["batch_size"] = dataloader.batch_size
        metadata["num_batches"] = len(dataloader)
    elif isinstance(dataloader, Dataset):
        if hasattr(dataloader, "__len__"):
            metadata["num_samples"] = len(dataloader)
    return metadata
pytorch_module_materializer

Implementation of the PyTorch Module materializer.

Classes
PyTorchModuleMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)

Bases: BasePyTorchMaterializer

Materializer to read/write Pytorch models.

Inspired by the guide: https://pytorch.org/tutorials/beginner/saving_loading_models.html

Source code in src/zenml/materializers/base_materializer.py
125
126
127
128
129
130
131
132
133
134
135
def __init__(
    self, uri: str, artifact_store: Optional[BaseArtifactStore] = None
):
    """Initializes a materializer with the given URI.

    Args:
        uri: The URI where the artifact data will be stored.
        artifact_store: The artifact store used to store this artifact.
    """
    self.uri = uri
    self._artifact_store = artifact_store
Functions
extract_metadata(model: Module) -> Dict[str, MetadataType]

Extract metadata from the given Model object.

Parameters:

Name Type Description Default
model Module

The Model object to extract metadata from.

required

Returns:

Type Description
Dict[str, MetadataType]

The extracted metadata as a dictionary.

Source code in src/zenml/integrations/pytorch/materializers/pytorch_module_materializer.py
69
70
71
72
73
74
75
76
77
78
def extract_metadata(self, model: Module) -> Dict[str, "MetadataType"]:
    """Extract metadata from the given `Model` object.

    Args:
        model: The `Model` object to extract metadata from.

    Returns:
        The extracted metadata as a dictionary.
    """
    return {**count_module_params(model)}
save(model: Module) -> None

Writes a PyTorch model, as a model and a checkpoint.

Parameters:

Name Type Description Default
model Module

A torch.nn.Module or a dict to pass into model.save

required
Source code in src/zenml/integrations/pytorch/materializers/pytorch_module_materializer.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def save(self, model: Module) -> None:
    """Writes a PyTorch model, as a model and a checkpoint.

    Args:
        model: A torch.nn.Module or a dict to pass into model.save
    """
    # Save entire model to artifact directory, This is the default behavior
    # for loading model in development phase (training, evaluation)
    super().save(model)

    # Also save model checkpoint to artifact directory,
    # This is the default behavior for loading model in production phase (inference)
    if isinstance(model, Module):
        with fileio.open(
            os.path.join(self.uri, CHECKPOINT_FILENAME), "wb"
        ) as f:
            # NOTE (security): The `torch.save` function uses `cloudpickle` as
            # the default unpickler, which is NOT secure. This materializer
            # is intended for use with trusted data sources.
            torch.save(model.state_dict(), f, pickle_module=cloudpickle)  # nosec
Functions Modules

utils

PyTorch utils.

Functions
count_module_params(module: torch.nn.Module) -> Dict[str, int]

Get the total and trainable parameters of a module.

Parameters:

Name Type Description Default
module Module

The module to get the parameters of.

required

Returns:

Type Description
Dict[str, int]

A dictionary with the total and trainable parameters.

Source code in src/zenml/integrations/pytorch/utils.py
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def count_module_params(module: torch.nn.Module) -> Dict[str, int]:
    """Get the total and trainable parameters of a module.

    Args:
        module: The module to get the parameters of.

    Returns:
        A dictionary with the total and trainable parameters.
    """
    total_params = sum([param.numel() for param in module.parameters()])
    trainable_params = sum(
        [param.numel() for param in module.parameters() if param.requires_grad]
    )
    return {
        "num_params": total_params,
        "num_trainable_params": trainable_params,
    }