Skip to content

Feast

zenml.integrations.feast

Initialization for Feast integration.

The Feast integration offers a way to connect to a Feast Feature Store. ZenML implements a dedicated stack component that you can access as part of your ZenML steps in the usual ways.

Attributes

FEAST = 'feast' module-attribute

FEAST_FEATURE_STORE_FLAVOR = 'feast' module-attribute

Classes

FeastIntegration

Bases: Integration

Definition of Feast integration for ZenML.

Functions
flavors() -> List[Type[Flavor]] classmethod

Declare the stack component flavors for the Feast integration.

Returns:

Type Description
List[Type[Flavor]]

List of stack component flavors for this integration.

Source code in src/zenml/integrations/feast/__init__.py
37
38
39
40
41
42
43
44
45
46
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Declare the stack component flavors for the Feast integration.

    Returns:
        List of stack component flavors for this integration.
    """
    from zenml.integrations.feast.flavors import FeastFeatureStoreFlavor

    return [FeastFeatureStoreFlavor]
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str] classmethod

Method to get the requirements for the integration.

Parameters:

Name Type Description Default
target_os Optional[str]

The target operating system to get the requirements for.

None
python_version Optional[str]

The Python version to use for the requirements.

None

Returns:

Type Description
List[str]

A list of requirements.

Source code in src/zenml/integrations/feast/__init__.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@classmethod
def get_requirements(cls, target_os: Optional[str] = None, python_version: Optional[str] = None
) -> List[str]:
    """Method to get the requirements for the integration.

    Args:
        target_os: The target operating system to get the requirements for.
        python_version: The Python version to use for the requirements.

    Returns:
        A list of requirements.
    """
    from zenml.integrations.pandas import PandasIntegration

    return cls.REQUIREMENTS + \
        PandasIntegration.get_requirements(target_os=target_os, python_version=python_version)

Flavor

Class for ZenML Flavors.

Attributes
config_class: Type[StackComponentConfig] abstractmethod property

Returns StackComponentConfig config class.

Returns:

Type Description
Type[StackComponentConfig]

The config class.

config_schema: Dict[str, Any] property

The config schema for a flavor.

Returns:

Type Description
Dict[str, Any]

The config schema.

docs_url: Optional[str] property

A url to point at docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor docs url.

implementation_class: Type[StackComponent] abstractmethod property

Implementation class for this flavor.

Returns:

Type Description
Type[StackComponent]

The implementation class for this flavor.

logo_url: Optional[str] property

A url to represent the flavor in the dashboard.

Returns:

Type Description
Optional[str]

The flavor logo.

name: str abstractmethod property

The flavor name.

Returns:

Type Description
str

The flavor name.

sdk_docs_url: Optional[str] property

A url to point at SDK docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor SDK docs url.

service_connector_requirements: Optional[ServiceConnectorRequirements] property

Service connector resource requirements for service connectors.

Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.

Returns:

Type Description
Optional[ServiceConnectorRequirements]

Requirements for compatible service connectors, if a service

Optional[ServiceConnectorRequirements]

connector is required for this flavor.

type: StackComponentType abstractmethod property

The stack component type.

Returns:

Type Description
StackComponentType

The stack component type.

Functions
from_model(flavor_model: FlavorResponse) -> Flavor classmethod

Loads a flavor from a model.

Parameters:

Name Type Description Default
flavor_model FlavorResponse

The model to load from.

required

Raises:

Type Description
CustomFlavorImportError

If the custom flavor can't be imported.

ImportError

If the flavor can't be imported.

Returns:

Type Description
Flavor

The loaded flavor.

Source code in src/zenml/stack/flavor.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
@classmethod
def from_model(cls, flavor_model: FlavorResponse) -> "Flavor":
    """Loads a flavor from a model.

    Args:
        flavor_model: The model to load from.

    Raises:
        CustomFlavorImportError: If the custom flavor can't be imported.
        ImportError: If the flavor can't be imported.

    Returns:
        The loaded flavor.
    """
    try:
        flavor = source_utils.load(flavor_model.source)()
    except (ModuleNotFoundError, ImportError, NotImplementedError) as err:
        if flavor_model.is_custom:
            flavor_module, _ = flavor_model.source.rsplit(".", maxsplit=1)
            expected_file_path = os.path.join(
                source_utils.get_source_root(),
                flavor_module.replace(".", os.path.sep),
            )
            raise CustomFlavorImportError(
                f"Couldn't import custom flavor {flavor_model.name}: "
                f"{err}. Make sure the custom flavor class "
                f"`{flavor_model.source}` is importable. If it is part of "
                "a library, make sure it is installed. If "
                "it is a local code file, make sure it exists at "
                f"`{expected_file_path}.py`."
            )
        else:
            raise ImportError(
                f"Couldn't import flavor {flavor_model.name}: {err}"
            )
    return cast(Flavor, flavor)
generate_default_docs_url() -> str

Generate the doc urls for all inbuilt and integration flavors.

Note that this method is not going to be useful for custom flavors, which do not have any docs in the main zenml docs.

Returns:

Type Description
str

The complete url to the zenml documentation

Source code in src/zenml/stack/flavor.py
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def generate_default_docs_url(self) -> str:
    """Generate the doc urls for all inbuilt and integration flavors.

    Note that this method is not going to be useful for custom flavors,
    which do not have any docs in the main zenml docs.

    Returns:
        The complete url to the zenml documentation
    """
    from zenml import __version__

    component_type = self.type.plural.replace("_", "-")
    name = self.name.replace("_", "-")

    try:
        is_latest = is_latest_zenml_version()
    except RuntimeError:
        # We assume in error cases that we are on the latest version
        is_latest = True

    if is_latest:
        base = "https://docs.zenml.io"
    else:
        base = f"https://zenml-io.gitbook.io/zenml-legacy-documentation/v/{__version__}"
    return f"{base}/stack-components/{component_type}/{name}"
generate_default_sdk_docs_url() -> str

Generate SDK docs url for a flavor.

Returns:

Type Description
str

The complete url to the zenml SDK docs

Source code in src/zenml/stack/flavor.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def generate_default_sdk_docs_url(self) -> str:
    """Generate SDK docs url for a flavor.

    Returns:
        The complete url to the zenml SDK docs
    """
    from zenml import __version__

    base = f"https://sdkdocs.zenml.io/{__version__}"

    component_type = self.type.plural

    if "zenml.integrations" in self.__module__:
        # Get integration name out of module path which will look something
        #  like this "zenml.integrations.<integration>....
        integration = self.__module__.split(
            "zenml.integrations.", maxsplit=1
        )[1].split(".")[0]

        return (
            f"{base}/integration_code_docs"
            f"/integrations-{integration}/#{self.__module__}"
        )

    else:
        return (
            f"{base}/core_code_docs/core-{component_type}/"
            f"#{self.__module__}"
        )
to_model(integration: Optional[str] = None, is_custom: bool = True) -> FlavorRequest

Converts a flavor to a model.

Parameters:

Name Type Description Default
integration Optional[str]

The integration to use for the model.

None
is_custom bool

Whether the flavor is a custom flavor.

True

Returns:

Type Description
FlavorRequest

The model.

Source code in src/zenml/stack/flavor.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
def to_model(
    self,
    integration: Optional[str] = None,
    is_custom: bool = True,
) -> FlavorRequest:
    """Converts a flavor to a model.

    Args:
        integration: The integration to use for the model.
        is_custom: Whether the flavor is a custom flavor.

    Returns:
        The model.
    """
    connector_requirements = self.service_connector_requirements
    connector_type = (
        connector_requirements.connector_type
        if connector_requirements
        else None
    )
    resource_type = (
        connector_requirements.resource_type
        if connector_requirements
        else None
    )
    resource_id_attr = (
        connector_requirements.resource_id_attr
        if connector_requirements
        else None
    )

    model = FlavorRequest(
        name=self.name,
        type=self.type,
        source=source_utils.resolve(self.__class__).import_path,
        config_schema=self.config_schema,
        connector_type=connector_type,
        connector_resource_type=resource_type,
        connector_resource_id_attr=resource_id_attr,
        integration=integration,
        logo_url=self.logo_url,
        docs_url=self.docs_url,
        sdk_docs_url=self.sdk_docs_url,
        is_custom=is_custom,
    )
    return model

Integration

Base class for integration in ZenML.

Functions
activate() -> None classmethod

Abstract method to activate the integration.

Source code in src/zenml/integrations/integration.py
175
176
177
@classmethod
def activate(cls) -> None:
    """Abstract method to activate the integration."""
check_installation() -> bool classmethod

Method to check whether the required packages are installed.

Returns:

Type Description
bool

True if all required packages are installed, False otherwise.

Source code in src/zenml/integrations/integration.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
@classmethod
def check_installation(cls) -> bool:
    """Method to check whether the required packages are installed.

    Returns:
        True if all required packages are installed, False otherwise.
    """
    for r in cls.get_requirements():
        try:
            # First check if the base package is installed
            dist = pkg_resources.get_distribution(r)

            # Next, check if the dependencies (including extras) are
            # installed
            deps: List[Requirement] = []

            _, extras = parse_requirement(r)
            if extras:
                extra_list = extras[1:-1].split(",")
                for extra in extra_list:
                    try:
                        requirements = dist.requires(extras=[extra])  # type: ignore[arg-type]
                    except pkg_resources.UnknownExtra as e:
                        logger.debug(f"Unknown extra: {str(e)}")
                        return False
                    deps.extend(requirements)
            else:
                deps = dist.requires()

            for ri in deps:
                try:
                    # Remove the "extra == ..." part from the requirement string
                    cleaned_req = re.sub(
                        r"; extra == \"\w+\"", "", str(ri)
                    )
                    pkg_resources.get_distribution(cleaned_req)
                except pkg_resources.DistributionNotFound as e:
                    logger.debug(
                        f"Unable to find required dependency "
                        f"'{e.req}' for requirement '{r}' "
                        f"necessary for integration '{cls.NAME}'."
                    )
                    return False
                except pkg_resources.VersionConflict as e:
                    logger.debug(
                        f"Package version '{e.dist}' does not match "
                        f"version '{e.req}' required by '{r}' "
                        f"necessary for integration '{cls.NAME}'."
                    )
                    return False

        except pkg_resources.DistributionNotFound as e:
            logger.debug(
                f"Unable to find required package '{e.req}' for "
                f"integration {cls.NAME}."
            )
            return False
        except pkg_resources.VersionConflict as e:
            logger.debug(
                f"Package version '{e.dist}' does not match version "
                f"'{e.req}' necessary for integration {cls.NAME}."
            )
            return False

    logger.debug(
        f"Integration {cls.NAME} is installed correctly with "
        f"requirements {cls.get_requirements()}."
    )
    return True
flavors() -> List[Type[Flavor]] classmethod

Abstract method to declare new stack component flavors.

Returns:

Type Description
List[Type[Flavor]]

A list of new stack component flavors.

Source code in src/zenml/integrations/integration.py
179
180
181
182
183
184
185
186
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Abstract method to declare new stack component flavors.

    Returns:
        A list of new stack component flavors.
    """
    return []
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str] classmethod

Method to get the requirements for the integration.

Parameters:

Name Type Description Default
target_os Optional[str]

The target operating system to get the requirements for.

None
python_version Optional[str]

The Python version to use for the requirements.

None

Returns:

Type Description
List[str]

A list of requirements.

Source code in src/zenml/integrations/integration.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
@classmethod
def get_requirements(
    cls,
    target_os: Optional[str] = None,
    python_version: Optional[str] = None,
) -> List[str]:
    """Method to get the requirements for the integration.

    Args:
        target_os: The target operating system to get the requirements for.
        python_version: The Python version to use for the requirements.

    Returns:
        A list of requirements.
    """
    return cls.REQUIREMENTS
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str] classmethod

Method to get the uninstall requirements for the integration.

Parameters:

Name Type Description Default
target_os Optional[str]

The target operating system to get the requirements for.

None

Returns:

Type Description
List[str]

A list of requirements.

Source code in src/zenml/integrations/integration.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
@classmethod
def get_uninstall_requirements(
    cls, target_os: Optional[str] = None
) -> List[str]:
    """Method to get the uninstall requirements for the integration.

    Args:
        target_os: The target operating system to get the requirements for.

    Returns:
        A list of requirements.
    """
    ret = []
    for each in cls.get_requirements(target_os=target_os):
        is_ignored = False
        for ignored in cls.REQUIREMENTS_IGNORED_ON_UNINSTALL:
            if each.startswith(ignored):
                is_ignored = True
                break
        if not is_ignored:
            ret.append(each)
    return ret
plugin_flavors() -> List[Type[BasePluginFlavor]] classmethod

Abstract method to declare new plugin flavors.

Returns:

Type Description
List[Type[BasePluginFlavor]]

A list of new plugin flavors.

Source code in src/zenml/integrations/integration.py
188
189
190
191
192
193
194
195
@classmethod
def plugin_flavors(cls) -> List[Type["BasePluginFlavor"]]:
    """Abstract method to declare new plugin flavors.

    Returns:
        A list of new plugin flavors.
    """
    return []

Modules

feature_stores

Feast Feature Store integration for ZenML.

Feature stores allow data teams to serve data via an offline store and an online low-latency store where data is kept in sync between the two. It also offers a centralized registry where features (and feature schemas) are stored for use within a team or wider organization. Feature stores are a relatively recent addition to commonly-used machine learning stacks. Feast is a leading open-source feature store, first developed by Gojek in collaboration with Google.

Classes
FeastFeatureStore(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)

Bases: BaseFeatureStore

Class to interact with the Feast feature store.

Source code in src/zenml/stack/stack_component.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def __init__(
    self,
    name: str,
    id: UUID,
    config: StackComponentConfig,
    flavor: str,
    type: StackComponentType,
    user: Optional[UUID],
    created: datetime,
    updated: datetime,
    labels: Optional[Dict[str, Any]] = None,
    connector_requirements: Optional[ServiceConnectorRequirements] = None,
    connector: Optional[UUID] = None,
    connector_resource_id: Optional[str] = None,
    *args: Any,
    **kwargs: Any,
):
    """Initializes a StackComponent.

    Args:
        name: The name of the component.
        id: The unique ID of the component.
        config: The config of the component.
        flavor: The flavor of the component.
        type: The type of the component.
        user: The ID of the user who created the component.
        created: The creation time of the component.
        updated: The last update time of the component.
        labels: The labels of the component.
        connector_requirements: The requirements for the connector.
        connector: The ID of a connector linked to the component.
        connector_resource_id: The custom resource ID to access through
            the connector.
        *args: Additional positional arguments.
        **kwargs: Additional keyword arguments.

    Raises:
        ValueError: If a secret reference is passed as name.
    """
    if secret_utils.is_secret_reference(name):
        raise ValueError(
            "Passing the `name` attribute of a stack component as a "
            "secret reference is not allowed."
        )

    self.id = id
    self.name = name
    self._config = config
    self.flavor = flavor
    self.type = type
    self.user = user
    self.created = created
    self.updated = updated
    self.labels = labels
    self.connector_requirements = connector_requirements
    self.connector = connector
    self.connector_resource_id = connector_resource_id
    self._connector_instance: Optional[ServiceConnector] = None
Attributes
config: FeastFeatureStoreConfig property

Returns the FeastFeatureStoreConfig config.

Returns:

Type Description
FeastFeatureStoreConfig

The configuration.

Functions
get_data_sources() -> List[str]

Returns the data sources' names.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The data sources' names.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
 97
 98
 99
100
101
102
103
104
105
106
107
def get_data_sources(self) -> List[str]:
    """Returns the data sources' names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The data sources' names.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return [ds.name for ds in fs.list_data_sources()]
get_entities() -> List[str]

Returns the entity names.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The entity names.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
109
110
111
112
113
114
115
116
117
118
119
def get_entities(self) -> List[str]:
    """Returns the entity names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The entity names.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return [ds.name for ds in fs.list_entities()]
get_feast_version() -> str

Returns the version of Feast used.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
str

The version of Feast currently being used.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
173
174
175
176
177
178
179
180
181
182
183
def get_feast_version(self) -> str:
    """Returns the version of Feast used.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The version of Feast currently being used.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return str(fs.version())
get_feature_services() -> List[FeatureService]

Returns the feature services.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[FeatureService]

The feature services.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def get_feature_services(self) -> List[FeatureService]:
    """Returns the feature services.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The feature services.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    feature_services: List[FeatureService] = list(
        fs.list_feature_services()
    )

    return feature_services
get_feature_views() -> List[str]

Returns the feature view names.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The feature view names.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
137
138
139
140
141
142
143
144
145
146
147
def get_feature_views(self) -> List[str]:
    """Returns the feature view names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The feature view names.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return [ds.name for ds in fs.list_feature_views()]
get_historical_features(entity_df: Union[pd.DataFrame, str], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> pd.DataFrame

Returns the historical features for training or batch scoring.

Parameters:

Name Type Description Default
entity_df Union[DataFrame, str]

The entity DataFrame or entity name.

required
features Union[List[str], FeatureService]

The features to retrieve or a FeatureService.

required
full_feature_names bool

Whether to return the full feature names.

False
Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
DataFrame

The historical features as a Pandas DataFrame.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def get_historical_features(
    self,
    entity_df: Union[pd.DataFrame, str],
    features: Union[List[str], FeatureService],
    full_feature_names: bool = False,
) -> pd.DataFrame:
    """Returns the historical features for training or batch scoring.

    Args:
        entity_df: The entity DataFrame or entity name.
        features: The features to retrieve or a FeatureService.
        full_feature_names: Whether to return the full feature names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The historical features as a Pandas DataFrame.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)

    return fs.get_historical_features(
        entity_df=entity_df,
        features=features,
        full_feature_names=full_feature_names,
    ).to_df()
get_online_features(entity_rows: List[Dict[str, Any]], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> Dict[str, Any]

Returns the latest online feature data.

Parameters:

Name Type Description Default
entity_rows List[Dict[str, Any]]

The entity rows to retrieve.

required
features Union[List[str], FeatureService]

The features to retrieve or a FeatureService.

required
full_feature_names bool

Whether to return the full feature names.

False
Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
Dict[str, Any]

The latest online feature data as a dictionary.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def get_online_features(
    self,
    entity_rows: List[Dict[str, Any]],
    features: Union[List[str], FeatureService],
    full_feature_names: bool = False,
) -> Dict[str, Any]:
    """Returns the latest online feature data.

    Args:
        entity_rows: The entity rows to retrieve.
        features: The features to retrieve or a FeatureService.
        full_feature_names: Whether to return the full feature names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The latest online feature data as a dictionary.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)

    return fs.get_online_features(  # type: ignore[no-any-return]
        entity_rows=entity_rows,
        features=features,
        full_feature_names=full_feature_names,
    ).to_dict()
get_project() -> str

Returns the project name.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
str

The project name.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
149
150
151
152
153
154
155
156
157
158
159
def get_project(self) -> str:
    """Returns the project name.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The project name.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return str(fs.project)
get_registry() -> BaseRegistry

Returns the feature store registry.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
BaseRegistry

The registry.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
161
162
163
164
165
166
167
168
169
170
171
def get_registry(self) -> BaseRegistry:
    """Returns the feature store registry.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The registry.
    """
    fs: FeatureStore = FeatureStore(repo_path=self.config.feast_repo)
    return fs.registry
Modules
feast_feature_store

Implementation of the Feast Feature Store for ZenML.

Classes
FeastFeatureStore(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)

Bases: BaseFeatureStore

Class to interact with the Feast feature store.

Source code in src/zenml/stack/stack_component.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def __init__(
    self,
    name: str,
    id: UUID,
    config: StackComponentConfig,
    flavor: str,
    type: StackComponentType,
    user: Optional[UUID],
    created: datetime,
    updated: datetime,
    labels: Optional[Dict[str, Any]] = None,
    connector_requirements: Optional[ServiceConnectorRequirements] = None,
    connector: Optional[UUID] = None,
    connector_resource_id: Optional[str] = None,
    *args: Any,
    **kwargs: Any,
):
    """Initializes a StackComponent.

    Args:
        name: The name of the component.
        id: The unique ID of the component.
        config: The config of the component.
        flavor: The flavor of the component.
        type: The type of the component.
        user: The ID of the user who created the component.
        created: The creation time of the component.
        updated: The last update time of the component.
        labels: The labels of the component.
        connector_requirements: The requirements for the connector.
        connector: The ID of a connector linked to the component.
        connector_resource_id: The custom resource ID to access through
            the connector.
        *args: Additional positional arguments.
        **kwargs: Additional keyword arguments.

    Raises:
        ValueError: If a secret reference is passed as name.
    """
    if secret_utils.is_secret_reference(name):
        raise ValueError(
            "Passing the `name` attribute of a stack component as a "
            "secret reference is not allowed."
        )

    self.id = id
    self.name = name
    self._config = config
    self.flavor = flavor
    self.type = type
    self.user = user
    self.created = created
    self.updated = updated
    self.labels = labels
    self.connector_requirements = connector_requirements
    self.connector = connector
    self.connector_resource_id = connector_resource_id
    self._connector_instance: Optional[ServiceConnector] = None
Attributes
config: FeastFeatureStoreConfig property

Returns the FeastFeatureStoreConfig config.

Returns:

Type Description
FeastFeatureStoreConfig

The configuration.

Functions
get_data_sources() -> List[str]

Returns the data sources' names.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The data sources' names.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
 97
 98
 99
100
101
102
103
104
105
106
107
def get_data_sources(self) -> List[str]:
    """Returns the data sources' names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The data sources' names.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return [ds.name for ds in fs.list_data_sources()]
get_entities() -> List[str]

Returns the entity names.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The entity names.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
109
110
111
112
113
114
115
116
117
118
119
def get_entities(self) -> List[str]:
    """Returns the entity names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The entity names.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return [ds.name for ds in fs.list_entities()]
get_feast_version() -> str

Returns the version of Feast used.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
str

The version of Feast currently being used.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
173
174
175
176
177
178
179
180
181
182
183
def get_feast_version(self) -> str:
    """Returns the version of Feast used.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The version of Feast currently being used.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return str(fs.version())
get_feature_services() -> List[FeatureService]

Returns the feature services.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[FeatureService]

The feature services.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def get_feature_services(self) -> List[FeatureService]:
    """Returns the feature services.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The feature services.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    feature_services: List[FeatureService] = list(
        fs.list_feature_services()
    )

    return feature_services
get_feature_views() -> List[str]

Returns the feature view names.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The feature view names.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
137
138
139
140
141
142
143
144
145
146
147
def get_feature_views(self) -> List[str]:
    """Returns the feature view names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The feature view names.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return [ds.name for ds in fs.list_feature_views()]
get_historical_features(entity_df: Union[pd.DataFrame, str], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> pd.DataFrame

Returns the historical features for training or batch scoring.

Parameters:

Name Type Description Default
entity_df Union[DataFrame, str]

The entity DataFrame or entity name.

required
features Union[List[str], FeatureService]

The features to retrieve or a FeatureService.

required
full_feature_names bool

Whether to return the full feature names.

False
Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
DataFrame

The historical features as a Pandas DataFrame.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def get_historical_features(
    self,
    entity_df: Union[pd.DataFrame, str],
    features: Union[List[str], FeatureService],
    full_feature_names: bool = False,
) -> pd.DataFrame:
    """Returns the historical features for training or batch scoring.

    Args:
        entity_df: The entity DataFrame or entity name.
        features: The features to retrieve or a FeatureService.
        full_feature_names: Whether to return the full feature names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The historical features as a Pandas DataFrame.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)

    return fs.get_historical_features(
        entity_df=entity_df,
        features=features,
        full_feature_names=full_feature_names,
    ).to_df()
get_online_features(entity_rows: List[Dict[str, Any]], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> Dict[str, Any]

Returns the latest online feature data.

Parameters:

Name Type Description Default
entity_rows List[Dict[str, Any]]

The entity rows to retrieve.

required
features Union[List[str], FeatureService]

The features to retrieve or a FeatureService.

required
full_feature_names bool

Whether to return the full feature names.

False
Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
Dict[str, Any]

The latest online feature data as a dictionary.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def get_online_features(
    self,
    entity_rows: List[Dict[str, Any]],
    features: Union[List[str], FeatureService],
    full_feature_names: bool = False,
) -> Dict[str, Any]:
    """Returns the latest online feature data.

    Args:
        entity_rows: The entity rows to retrieve.
        features: The features to retrieve or a FeatureService.
        full_feature_names: Whether to return the full feature names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The latest online feature data as a dictionary.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)

    return fs.get_online_features(  # type: ignore[no-any-return]
        entity_rows=entity_rows,
        features=features,
        full_feature_names=full_feature_names,
    ).to_dict()
get_project() -> str

Returns the project name.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
str

The project name.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
149
150
151
152
153
154
155
156
157
158
159
def get_project(self) -> str:
    """Returns the project name.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The project name.
    """
    fs = FeatureStore(repo_path=self.config.feast_repo)
    return str(fs.project)
get_registry() -> BaseRegistry

Returns the feature store registry.

Raise

ConnectionError: If the online component (Redis) is not available.

Returns:

Type Description
BaseRegistry

The registry.

Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
161
162
163
164
165
166
167
168
169
170
171
def get_registry(self) -> BaseRegistry:
    """Returns the feature store registry.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The registry.
    """
    fs: FeatureStore = FeatureStore(repo_path=self.config.feast_repo)
    return fs.registry
Functions

flavors

Feast integration flavors.

Classes
FeastFeatureStoreConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)

Bases: BaseFeatureStoreConfig

Config for Feast feature store.

Source code in src/zenml/stack/stack_component.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def __init__(
    self, warn_about_plain_text_secrets: bool = False, **kwargs: Any
) -> None:
    """Ensures that secret references don't clash with pydantic validation.

    StackComponents allow the specification of all their string attributes
    using secret references of the form `{{secret_name.key}}`. This however
    is only possible when the stack component does not perform any explicit
    validation of this attribute using pydantic validators. If this were
    the case, the validation would run on the secret reference and would
    fail or in the worst case, modify the secret reference and lead to
    unexpected behavior. This method ensures that no attributes that require
    custom pydantic validation are set as secret references.

    Args:
        warn_about_plain_text_secrets: If true, then warns about using
            plain-text secrets.
        **kwargs: Arguments to initialize this stack component.

    Raises:
        ValueError: If an attribute that requires custom pydantic validation
            is passed as a secret reference, or if the `name` attribute
            was passed as a secret reference.
    """
    for key, value in kwargs.items():
        try:
            field = self.__class__.model_fields[key]
        except KeyError:
            # Value for a private attribute or non-existing field, this
            # will fail during the upcoming pydantic validation
            continue

        if value is None:
            continue

        if not secret_utils.is_secret_reference(value):
            if (
                secret_utils.is_secret_field(field)
                and warn_about_plain_text_secrets
            ):
                logger.warning(
                    "You specified a plain-text value for the sensitive "
                    f"attribute `{key}` for a `{self.__class__.__name__}` "
                    "stack component. This is currently only a warning, "
                    "but future versions of ZenML will require you to pass "
                    "in sensitive information as secrets. Check out the "
                    "documentation on how to configure your stack "
                    "components with secrets here: "
                    "https://docs.zenml.io/getting-started/deploying-zenml/secret-management"
                )
            continue

        if pydantic_utils.has_validators(
            pydantic_class=self.__class__, field_name=key
        ):
            raise ValueError(
                f"Passing the stack component attribute `{key}` as a "
                "secret reference is not allowed as additional validation "
                "is required for this attribute."
            )

    super().__init__(**kwargs)
Attributes
is_local: bool property

Checks if this stack component is running locally.

Returns:

Type Description
bool

True if this config is for a local component, False otherwise.

FeastFeatureStoreFlavor

Bases: BaseFeatureStoreFlavor

Feast Feature store flavor.

Attributes
config_class: Type[FeastFeatureStoreConfig] property

Returns FeastFeatureStoreConfig config class.

Returns:

Type Description
Type[FeastFeatureStoreConfig]

The config class.

docs_url: Optional[str] property

A url to point at docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor docs url.

implementation_class: Type[FeastFeatureStore] property

Implementation class for this flavor.

Returns:

Type Description
Type[FeastFeatureStore]

The implementation class.

logo_url: str property

A url to represent the flavor in the dashboard.

Returns:

Type Description
str

The flavor logo.

name: str property

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

sdk_docs_url: Optional[str] property

A url to point at SDK docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor SDK docs url.

Modules
feast_feature_store_flavor

Feast feature store flavor.

Classes
FeastFeatureStoreConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)

Bases: BaseFeatureStoreConfig

Config for Feast feature store.

Source code in src/zenml/stack/stack_component.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def __init__(
    self, warn_about_plain_text_secrets: bool = False, **kwargs: Any
) -> None:
    """Ensures that secret references don't clash with pydantic validation.

    StackComponents allow the specification of all their string attributes
    using secret references of the form `{{secret_name.key}}`. This however
    is only possible when the stack component does not perform any explicit
    validation of this attribute using pydantic validators. If this were
    the case, the validation would run on the secret reference and would
    fail or in the worst case, modify the secret reference and lead to
    unexpected behavior. This method ensures that no attributes that require
    custom pydantic validation are set as secret references.

    Args:
        warn_about_plain_text_secrets: If true, then warns about using
            plain-text secrets.
        **kwargs: Arguments to initialize this stack component.

    Raises:
        ValueError: If an attribute that requires custom pydantic validation
            is passed as a secret reference, or if the `name` attribute
            was passed as a secret reference.
    """
    for key, value in kwargs.items():
        try:
            field = self.__class__.model_fields[key]
        except KeyError:
            # Value for a private attribute or non-existing field, this
            # will fail during the upcoming pydantic validation
            continue

        if value is None:
            continue

        if not secret_utils.is_secret_reference(value):
            if (
                secret_utils.is_secret_field(field)
                and warn_about_plain_text_secrets
            ):
                logger.warning(
                    "You specified a plain-text value for the sensitive "
                    f"attribute `{key}` for a `{self.__class__.__name__}` "
                    "stack component. This is currently only a warning, "
                    "but future versions of ZenML will require you to pass "
                    "in sensitive information as secrets. Check out the "
                    "documentation on how to configure your stack "
                    "components with secrets here: "
                    "https://docs.zenml.io/getting-started/deploying-zenml/secret-management"
                )
            continue

        if pydantic_utils.has_validators(
            pydantic_class=self.__class__, field_name=key
        ):
            raise ValueError(
                f"Passing the stack component attribute `{key}` as a "
                "secret reference is not allowed as additional validation "
                "is required for this attribute."
            )

    super().__init__(**kwargs)
Attributes
is_local: bool property

Checks if this stack component is running locally.

Returns:

Type Description
bool

True if this config is for a local component, False otherwise.

FeastFeatureStoreFlavor

Bases: BaseFeatureStoreFlavor

Feast Feature store flavor.

Attributes
config_class: Type[FeastFeatureStoreConfig] property

Returns FeastFeatureStoreConfig config class.

Returns:

Type Description
Type[FeastFeatureStoreConfig]

The config class.

docs_url: Optional[str] property

A url to point at docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor docs url.

implementation_class: Type[FeastFeatureStore] property

Implementation class for this flavor.

Returns:

Type Description
Type[FeastFeatureStore]

The implementation class.

logo_url: str property

A url to represent the flavor in the dashboard.

Returns:

Type Description
str

The flavor logo.

name: str property

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

sdk_docs_url: Optional[str] property

A url to point at SDK docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor SDK docs url.