Tensorflow
zenml.integrations.tensorflow
Initialization for TensorFlow integration.
Attributes
TENSORFLOW = 'tensorflow'
module-attribute
logger = get_logger(__name__)
module-attribute
Classes
Integration
Base class for integration in ZenML.
Functions
activate() -> None
classmethod
Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
175 176 177 |
|
check_installation() -> bool
classmethod
Method to check whether the required packages are installed.
Returns:
Type | Description |
---|---|
bool
|
True if all required packages are installed, False otherwise. |
Source code in src/zenml/integrations/integration.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
flavors() -> List[Type[Flavor]]
classmethod
Abstract method to declare new stack component flavors.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
A list of new stack component flavors. |
Source code in src/zenml/integrations/integration.py
179 180 181 182 183 184 185 186 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
classmethod
Method to get the uninstall requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
plugin_flavors() -> List[Type[BasePluginFlavor]]
classmethod
Abstract method to declare new plugin flavors.
Returns:
Type | Description |
---|---|
List[Type[BasePluginFlavor]]
|
A list of new plugin flavors. |
Source code in src/zenml/integrations/integration.py
188 189 190 191 192 193 194 195 |
|
TensorflowIntegration
Bases: Integration
Definition of Tensorflow integration for ZenML.
Functions
activate() -> None
classmethod
Activates the integration.
Source code in src/zenml/integrations/tensorflow/__init__.py
33 34 35 36 37 38 39 40 41 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Defines platform specific requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/tensorflow/__init__.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
Functions
get_logger(logger_name: str) -> logging.Logger
Main function to get logger name,.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logger_name
|
str
|
Name of logger to initialize. |
required |
Returns:
Type | Description |
---|---|
Logger
|
A logger object. |
Source code in src/zenml/logger.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
Modules
materializers
Initialization for the TensorFlow materializers.
Classes
Modules
keras_materializer
Implementation of the TensorFlow Keras materializer.
KerasMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
Bases: BaseMaterializer
Materializer to read/write Keras models.
Source code in src/zenml/materializers/base_materializer.py
125 126 127 128 129 130 131 132 133 134 135 |
|
extract_metadata(model: tf_keras.Model) -> Dict[str, MetadataType]
Extract metadata from the given Model
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
The extracted metadata as a dictionary. |
Source code in src/zenml/integrations/tensorflow/materializers/keras_materializer.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
load(data_type: Type[Any]) -> tf_keras.Model
Reads and returns a Keras model after copying it to temporary path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type
|
Type[Any]
|
The type of the data to read. |
required |
Returns:
Type | Description |
---|---|
Model
|
A keras.Model model. |
Source code in src/zenml/integrations/tensorflow/materializers/keras_materializer.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
save(model: tf_keras.Model) -> None
Writes a keras model to the artifact store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
A keras.Model model. |
required |
Source code in src/zenml/integrations/tensorflow/materializers/keras_materializer.py
60 61 62 63 64 65 66 67 68 69 |
|
tf_dataset_materializer
Implementation of the TensorFlow dataset materializer.
TensorflowDatasetMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
Bases: BaseMaterializer
Materializer to read data to and from tf.data.Dataset.
Source code in src/zenml/materializers/base_materializer.py
125 126 127 128 129 130 131 132 133 134 135 |
|
extract_metadata(dataset: tf.data.Dataset) -> Dict[str, MetadataType]
Extract metadata from the given Dataset
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
The extracted metadata as a dictionary. |
Source code in src/zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
65 66 67 68 69 70 71 72 73 74 75 76 |
|
load(data_type: Type[Any]) -> Any
Reads data into tf.data.Dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type
|
Type[Any]
|
The type of the data to read. |
required |
Returns:
Type | Description |
---|---|
Any
|
A tf.data.Dataset object. |
Source code in src/zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
save(dataset: tf.data.Dataset) -> None
Persists a tf.data.Dataset object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The dataset to persist. |
required |
Source code in src/zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
52 53 54 55 56 57 58 59 60 61 62 63 |
|