Airflow
zenml.integrations.airflow
Airflow integration for ZenML.
The Airflow integration powers an alternative orchestrator.
Attributes
AIRFLOW = 'airflow'
module-attribute
AIRFLOW_ORCHESTRATOR_FLAVOR = 'airflow'
module-attribute
Classes
AirflowIntegration
Bases: Integration
Definition of Airflow Integration for ZenML.
Functions
flavors() -> List[Type[Flavor]]
classmethod
Declare the stack component flavors for the Airflow integration.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
List of stack component flavors for this integration. |
Source code in src/zenml/integrations/airflow/__init__.py
33 34 35 36 37 38 39 40 41 42 43 44 |
|
Flavor
Class for ZenML Flavors.
Attributes
config_class: Type[StackComponentConfig]
abstractmethod
property
Returns StackComponentConfig
config class.
Returns:
Type | Description |
---|---|
Type[StackComponentConfig]
|
The config class. |
config_schema: Dict[str, Any]
property
The config schema for a flavor.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The config schema. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[StackComponent]
abstractmethod
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[StackComponent]
|
The implementation class for this flavor. |
logo_url: Optional[str]
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
Optional[str]
|
The flavor logo. |
name: str
abstractmethod
property
The flavor name.
Returns:
Type | Description |
---|---|
str
|
The flavor name. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
service_connector_requirements: Optional[ServiceConnectorRequirements]
property
Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
Type | Description |
---|---|
Optional[ServiceConnectorRequirements]
|
Requirements for compatible service connectors, if a service |
Optional[ServiceConnectorRequirements]
|
connector is required for this flavor. |
type: StackComponentType
abstractmethod
property
Functions
from_model(flavor_model: FlavorResponse) -> Flavor
classmethod
Loads a flavor from a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flavor_model
|
FlavorResponse
|
The model to load from. |
required |
Raises:
Type | Description |
---|---|
CustomFlavorImportError
|
If the custom flavor can't be imported. |
ImportError
|
If the flavor can't be imported. |
Returns:
Type | Description |
---|---|
Flavor
|
The loaded flavor. |
Source code in src/zenml/stack/flavor.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
generate_default_docs_url() -> str
Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors, which do not have any docs in the main zenml docs.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml documentation |
Source code in src/zenml/stack/flavor.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
generate_default_sdk_docs_url() -> str
Generate SDK docs url for a flavor.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml SDK docs |
Source code in src/zenml/stack/flavor.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
to_model(integration: Optional[str] = None, is_custom: bool = True) -> FlavorRequest
Converts a flavor to a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integration
|
Optional[str]
|
The integration to use for the model. |
None
|
is_custom
|
bool
|
Whether the flavor is a custom flavor. |
True
|
Returns:
Type | Description |
---|---|
FlavorRequest
|
The model. |
Source code in src/zenml/stack/flavor.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
Integration
Base class for integration in ZenML.
Functions
activate() -> None
classmethod
Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
175 176 177 |
|
check_installation() -> bool
classmethod
Method to check whether the required packages are installed.
Returns:
Type | Description |
---|---|
bool
|
True if all required packages are installed, False otherwise. |
Source code in src/zenml/integrations/integration.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
flavors() -> List[Type[Flavor]]
classmethod
Abstract method to declare new stack component flavors.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
A list of new stack component flavors. |
Source code in src/zenml/integrations/integration.py
179 180 181 182 183 184 185 186 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
classmethod
Method to get the uninstall requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
plugin_flavors() -> List[Type[BasePluginFlavor]]
classmethod
Abstract method to declare new plugin flavors.
Returns:
Type | Description |
---|---|
List[Type[BasePluginFlavor]]
|
A list of new plugin flavors. |
Source code in src/zenml/integrations/integration.py
188 189 190 191 192 193 194 195 |
|
Modules
flavors
Airflow integration flavors.
Classes
AirflowOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Flavor for the Airflow orchestrator.
config_class: Type[AirflowOrchestratorConfig]
property
Returns AirflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[AirflowOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[AirflowOrchestrator]
property
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
Modules
airflow_orchestrator_flavor
Airflow orchestrator flavor.
AirflowOrchestratorConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseOrchestratorConfig
, AirflowOrchestratorSettings
Configuration for the Airflow orchestrator.
Attributes:
Name | Type | Description |
---|---|---|
local |
bool
|
If the orchestrator is local or not. If this is True, will spin up a local Airflow server to run pipelines. |
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
is_schedulable: bool
property
Whether the orchestrator is schedulable or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator is schedulable or not. |
AirflowOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Flavor for the Airflow orchestrator.
config_class: Type[AirflowOrchestratorConfig]
property
Returns AirflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[AirflowOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[AirflowOrchestrator]
property
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
AirflowOrchestratorSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Settings for the Airflow orchestrator.
Attributes:
Name | Type | Description |
---|---|---|
dag_output_dir |
Optional[str]
|
Output directory in which to write the Airflow DAG. |
dag_id |
Optional[str]
|
Optional ID of the Airflow DAG to create. This value is only applied if the settings are defined on a ZenML pipeline and ignored if defined on a step. |
dag_tags |
List[str]
|
Tags to add to the Airflow DAG. This value is only applied if the settings are defined on a ZenML pipeline and ignored if defined on a step. |
dag_args |
Dict[str, Any]
|
Arguments for initializing the Airflow DAG. This value is only applied if the settings are defined on a ZenML pipeline and ignored if defined on a step. |
operator |
str
|
The operator to use for one or all steps. This can either be
a |
operator_args |
Dict[str, Any]
|
Arguments for initializing the Airflow operator. |
custom_dag_generator |
Optional[str]
|
Source string of a module to use for generating
Airflow DAGs. This module must contain the same classes and
constants as the
|
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
OperatorType
Bases: Enum
Airflow operator types.
source: str
property
Operator source.
Returns:
Type | Description |
---|---|
str
|
The operator source. |
orchestrators
The Airflow integration enables the use of Airflow as a pipeline orchestrator.
Classes
AirflowOrchestrator(**values: Any)
Bases: ContainerizedOrchestrator
Orchestrator responsible for running pipelines using Airflow.
Initialize the orchestrator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**values
|
Any
|
Values to set in the orchestrator. |
{}
|
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
config: AirflowOrchestratorConfig
property
Returns the orchestrator config.
Returns:
Type | Description |
---|---|
AirflowOrchestratorConfig
|
The configuration. |
settings_class: Optional[Type[BaseSettings]]
property
Settings class for the Kubeflow orchestrator.
Returns:
Type | Description |
---|---|
Optional[Type[BaseSettings]]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates the stack.
In the remote case, checks that the stack contains a container registry and only remote components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If the environment variable specifying the run id is not set. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str], placeholder_run: Optional[PipelineRunResponse] = None) -> Any
Creates and writes an Airflow DAG zip file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
placeholder_run
|
Optional[PipelineRunResponse]
|
An optional placeholder run for the deployment. |
None
|
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
prepare_pipeline_deployment(deployment: PipelineDeploymentResponse, stack: Stack) -> None
Builds a Docker image to run pipeline steps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment configuration. |
required |
stack
|
Stack
|
The stack on which the pipeline will be deployed. |
required |
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
Modules
airflow_orchestrator
Implementation of Airflow orchestrator integration.
AirflowOrchestrator(**values: Any)
Bases: ContainerizedOrchestrator
Orchestrator responsible for running pipelines using Airflow.
Initialize the orchestrator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**values
|
Any
|
Values to set in the orchestrator. |
{}
|
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
config: AirflowOrchestratorConfig
property
Returns the orchestrator config.
Returns:
Type | Description |
---|---|
AirflowOrchestratorConfig
|
The configuration. |
settings_class: Optional[Type[BaseSettings]]
property
Settings class for the Kubeflow orchestrator.
Returns:
Type | Description |
---|---|
Optional[Type[BaseSettings]]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates the stack.
In the remote case, checks that the stack contains a container registry and only remote components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If the environment variable specifying the run id is not set. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str], placeholder_run: Optional[PipelineRunResponse] = None) -> Any
Creates and writes an Airflow DAG zip file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
placeholder_run
|
Optional[PipelineRunResponse]
|
An optional placeholder run for the deployment. |
None
|
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
prepare_pipeline_deployment(deployment: PipelineDeploymentResponse, stack: Stack) -> None
Builds a Docker image to run pipeline steps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment configuration. |
required |
stack
|
Stack
|
The stack on which the pipeline will be deployed. |
required |
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
DagGeneratorValues
Bases: NamedTuple
Values from the DAG generator module.
get_dag_generator_values(custom_dag_generator_source: Optional[str] = None) -> DagGeneratorValues
Gets values from the DAG generator module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
custom_dag_generator_source
|
Optional[str]
|
Source of a custom DAG generator module. |
None
|
Returns:
Type | Description |
---|---|
DagGeneratorValues
|
DAG generator module values. |
Source code in src/zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
dag_generator
Module to generate an Airflow DAG from a config file.
DagConfiguration
Bases: BaseModel
Airflow DAG configuration.
TaskConfiguration
Bases: BaseModel
Airflow task configuration.
get_docker_operator_init_kwargs(dag_config: DagConfiguration, task_config: TaskConfiguration) -> Dict[str, Any]
Gets keyword arguments to pass to the DockerOperator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dag_config
|
DagConfiguration
|
The configuration of the DAG. |
required |
task_config
|
TaskConfiguration
|
The configuration of the task. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The init keyword arguments. |
Source code in src/zenml/integrations/airflow/orchestrators/dag_generator.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
get_kubernetes_pod_operator_init_kwargs(dag_config: DagConfiguration, task_config: TaskConfiguration) -> Dict[str, Any]
Gets keyword arguments to pass to the KubernetesPodOperator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dag_config
|
DagConfiguration
|
The configuration of the DAG. |
required |
task_config
|
TaskConfiguration
|
The configuration of the task. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The init keyword arguments. |
Source code in src/zenml/integrations/airflow/orchestrators/dag_generator.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
get_operator_init_kwargs(operator_class: Type[Any], dag_config: DagConfiguration, task_config: TaskConfiguration) -> Dict[str, Any]
Gets keyword arguments to pass to the operator init method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
operator_class
|
Type[Any]
|
The operator class for which to get the kwargs. |
required |
dag_config
|
DagConfiguration
|
The configuration of the DAG. |
required |
task_config
|
TaskConfiguration
|
The configuration of the task. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The init keyword arguments. |
Source code in src/zenml/integrations/airflow/orchestrators/dag_generator.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
import_class_by_path(class_path: str) -> Type[Any]
Imports a class based on a given path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
class_path
|
str
|
str, class_source e.g. this.module.Class |
required |
Returns:
Type | Description |
---|---|
Type[Any]
|
the given class |
Source code in src/zenml/integrations/airflow/orchestrators/dag_generator.py
65 66 67 68 69 70 71 72 73 74 75 76 |
|