Feast
            zenml.integrations.feast
    Initialization for Feast integration.
The Feast integration offers a way to connect to a Feast Feature Store. ZenML implements a dedicated stack component that you can access as part of your ZenML steps in the usual ways.
Attributes
            FEAST = 'feast'
  
      module-attribute
  
    
            FEAST_FEATURE_STORE_FLAVOR = 'feast'
  
      module-attribute
  
    Classes
            FeastIntegration
    
              Bases: Integration
Definition of Feast integration for ZenML.
Functions
            flavors() -> List[Type[Flavor]]
  
      classmethod
  
    Declare the stack component flavors for the Feast integration.
Returns:
| Type | Description | 
|---|---|
| List[Type[Flavor]] | List of stack component flavors for this integration. | 
Source code in src/zenml/integrations/feast/__init__.py
              | 37 38 39 40 41 42 43 44 45 46 |  | 
            get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
  
      classmethod
  
    Method to get the requirements for the integration.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| target_os | Optional[str] | The target operating system to get the requirements for. | None | 
| python_version | Optional[str] | The Python version to use for the requirements. | None | 
Returns:
| Type | Description | 
|---|---|
| List[str] | A list of requirements. | 
Source code in src/zenml/integrations/feast/__init__.py
              | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |  | 
            Flavor
    Class for ZenML Flavors.
Attributes
            config_class: Type[StackComponentConfig]
  
      abstractmethod
      property
  
    Returns StackComponentConfig config class.
Returns:
| Type | Description | 
|---|---|
| Type[StackComponentConfig] | The config class. | 
            config_schema: Dict[str, Any]
  
      property
  
    The config schema for a flavor.
Returns:
| Type | Description | 
|---|---|
| Dict[str, Any] | The config schema. | 
            docs_url: Optional[str]
  
      property
  
    A url to point at docs explaining this flavor.
Returns:
| Type | Description | 
|---|---|
| Optional[str] | A flavor docs url. | 
            implementation_class: Type[StackComponent]
  
      abstractmethod
      property
  
    Implementation class for this flavor.
Returns:
| Type | Description | 
|---|---|
| Type[StackComponent] | The implementation class for this flavor. | 
            logo_url: Optional[str]
  
      property
  
    A url to represent the flavor in the dashboard.
Returns:
| Type | Description | 
|---|---|
| Optional[str] | The flavor logo. | 
            name: str
  
      abstractmethod
      property
  
    The flavor name.
Returns:
| Type | Description | 
|---|---|
| str | The flavor name. | 
            sdk_docs_url: Optional[str]
  
      property
  
    A url to point at SDK docs explaining this flavor.
Returns:
| Type | Description | 
|---|---|
| Optional[str] | A flavor SDK docs url. | 
            service_connector_requirements: Optional[ServiceConnectorRequirements]
  
      property
  
    Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
| Type | Description | 
|---|---|
| Optional[ServiceConnectorRequirements] | Requirements for compatible service connectors, if a service | 
| Optional[ServiceConnectorRequirements] | connector is required for this flavor. | 
            type: StackComponentType
  
      abstractmethod
      property
  
    
Functions
            from_model(flavor_model: FlavorResponse) -> Flavor
  
      classmethod
  
    Loads a flavor from a model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| flavor_model | FlavorResponse | The model to load from. | required | 
Raises:
| Type | Description | 
|---|---|
| CustomFlavorImportError | If the custom flavor can't be imported. | 
| ImportError | If the flavor can't be imported. | 
Returns:
| Type | Description | 
|---|---|
| Flavor | The loaded flavor. | 
Source code in src/zenml/stack/flavor.py
              | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |  | 
            generate_default_docs_url() -> str
    Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors, which do not have any docs in the main zenml docs.
Returns:
| Type | Description | 
|---|---|
| str | The complete url to the zenml documentation | 
Source code in src/zenml/stack/flavor.py
              | 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |  | 
            generate_default_sdk_docs_url() -> str
    Generate SDK docs url for a flavor.
Returns:
| Type | Description | 
|---|---|
| str | The complete url to the zenml SDK docs | 
Source code in src/zenml/stack/flavor.py
              | 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |  | 
            to_model(integration: Optional[str] = None, is_custom: bool = True) -> FlavorRequest
    Converts a flavor to a model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| integration | Optional[str] | The integration to use for the model. | None | 
| is_custom | bool | Whether the flavor is a custom flavor. | True | 
Returns:
| Type | Description | 
|---|---|
| FlavorRequest | The model. | 
Source code in src/zenml/stack/flavor.py
              | 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |  | 
            Integration
    Base class for integration in ZenML.
Functions
            activate() -> None
  
      classmethod
  
    Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
              | 140 141 142 |  | 
            check_installation() -> bool
  
      classmethod
  
    Method to check whether the required packages are installed.
Returns:
| Type | Description | 
|---|---|
| bool | True if all required packages are installed, False otherwise. | 
Source code in src/zenml/integrations/integration.py
              | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |  | 
            flavors() -> List[Type[Flavor]]
  
      classmethod
  
    Abstract method to declare new stack component flavors.
Returns:
| Type | Description | 
|---|---|
| List[Type[Flavor]] | A list of new stack component flavors. | 
Source code in src/zenml/integrations/integration.py
              | 144 145 146 147 148 149 150 151 |  | 
            get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
  
      classmethod
  
    Method to get the requirements for the integration.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| target_os | Optional[str] | The target operating system to get the requirements for. | None | 
| python_version | Optional[str] | The Python version to use for the requirements. | None | 
Returns:
| Type | Description | 
|---|---|
| List[str] | A list of requirements. | 
Source code in src/zenml/integrations/integration.py
              | 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |  | 
            get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
  
      classmethod
  
    Method to get the uninstall requirements for the integration.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| target_os | Optional[str] | The target operating system to get the requirements for. | None | 
Returns:
| Type | Description | 
|---|---|
| List[str] | A list of requirements. | 
Source code in src/zenml/integrations/integration.py
              | 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |  | 
            plugin_flavors() -> List[Type[BasePluginFlavor]]
  
      classmethod
  
    Abstract method to declare new plugin flavors.
Returns:
| Type | Description | 
|---|---|
| List[Type[BasePluginFlavor]] | A list of new plugin flavors. | 
Source code in src/zenml/integrations/integration.py
              | 153 154 155 156 157 158 159 160 |  | 
Modules
            feature_stores
    Feast Feature Store integration for ZenML.
Feature stores allow data teams to serve data via an offline store and an online low-latency store where data is kept in sync between the two. It also offers a centralized registry where features (and feature schemas) are stored for use within a team or wider organization. Feature stores are a relatively recent addition to commonly-used machine learning stacks. Feast is a leading open-source feature store, first developed by Gojek in collaboration with Google.
Classes
              FeastFeatureStore(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, environment: Optional[Dict[str, str]] = None, secrets: Optional[List[UUID]] = None, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
    
              Bases: BaseFeatureStore
Class to interact with the Feast feature store.
Source code in src/zenml/stack/stack_component.py
                    | 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |  | 
config: FeastFeatureStoreConfig
  
      property
  
Returns the FeastFeatureStoreConfig config.
Returns:
| Type | Description | 
|---|---|
| FeastFeatureStoreConfig | The configuration. | 
get_data_sources() -> List[str]
Returns the data sources' names.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[str] | The data sources' names. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 97 98 99 100 101 102 103 104 105 106 107 |  | 
get_entities() -> List[str]
Returns the entity names.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[str] | The entity names. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 109 110 111 112 113 114 115 116 117 118 119 |  | 
get_feast_version() -> str
Returns the version of Feast used.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| str | The version of Feast currently being used. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 173 174 175 176 177 178 179 180 181 182 183 |  | 
get_feature_services() -> List[FeatureService]
Returns the feature services.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[FeatureService] | The feature services. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |  | 
get_feature_views() -> List[str]
Returns the feature view names.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[str] | The feature view names. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 137 138 139 140 141 142 143 144 145 146 147 |  | 
get_historical_features(entity_df: Union[pd.DataFrame, str], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> pd.DataFrame
Returns the historical features for training or batch scoring.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| entity_df | Union[DataFrame, str] | The entity DataFrame or entity name. | required | 
| features | Union[List[str], FeatureService] | The features to retrieve or a FeatureService. | required | 
| full_feature_names | bool | Whether to return the full feature names. | False | 
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| DataFrame | The historical features as a Pandas DataFrame. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |  | 
get_online_features(entity_rows: List[Dict[str, Any]], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> Dict[str, Any]
Returns the latest online feature data.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| entity_rows | List[Dict[str, Any]] | The entity rows to retrieve. | required | 
| features | Union[List[str], FeatureService] | The features to retrieve or a FeatureService. | required | 
| full_feature_names | bool | Whether to return the full feature names. | False | 
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| Dict[str, Any] | The latest online feature data as a dictionary. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |  | 
get_project() -> str
Returns the project name.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| str | The project name. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 149 150 151 152 153 154 155 156 157 158 159 |  | 
get_registry() -> BaseRegistry
Returns the feature store registry.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| BaseRegistry | The registry. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 161 162 163 164 165 166 167 168 169 170 171 |  | 
Modules
            feast_feature_store
    Implementation of the Feast Feature Store for ZenML.
FeastFeatureStore(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, environment: Optional[Dict[str, str]] = None, secrets: Optional[List[UUID]] = None, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
              Bases: BaseFeatureStore
Class to interact with the Feast feature store.
Source code in src/zenml/stack/stack_component.py
                    | 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |  | 
config: FeastFeatureStoreConfig
  
      property
  
Returns the FeastFeatureStoreConfig config.
Returns:
| Type | Description | 
|---|---|
| FeastFeatureStoreConfig | The configuration. | 
get_data_sources() -> List[str]
Returns the data sources' names.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[str] | The data sources' names. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 97 98 99 100 101 102 103 104 105 106 107 |  | 
get_entities() -> List[str]
Returns the entity names.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[str] | The entity names. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 109 110 111 112 113 114 115 116 117 118 119 |  | 
get_feast_version() -> str
Returns the version of Feast used.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| str | The version of Feast currently being used. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 173 174 175 176 177 178 179 180 181 182 183 |  | 
get_feature_services() -> List[FeatureService]
Returns the feature services.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[FeatureService] | The feature services. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |  | 
get_feature_views() -> List[str]
Returns the feature view names.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| List[str] | The feature view names. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 137 138 139 140 141 142 143 144 145 146 147 |  | 
get_historical_features(entity_df: Union[pd.DataFrame, str], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> pd.DataFrame
Returns the historical features for training or batch scoring.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| entity_df | Union[DataFrame, str] | The entity DataFrame or entity name. | required | 
| features | Union[List[str], FeatureService] | The features to retrieve or a FeatureService. | required | 
| full_feature_names | bool | Whether to return the full feature names. | False | 
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| DataFrame | The historical features as a Pandas DataFrame. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |  | 
get_online_features(entity_rows: List[Dict[str, Any]], features: Union[List[str], FeatureService], full_feature_names: bool = False) -> Dict[str, Any]
Returns the latest online feature data.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| entity_rows | List[Dict[str, Any]] | The entity rows to retrieve. | required | 
| features | Union[List[str], FeatureService] | The features to retrieve or a FeatureService. | required | 
| full_feature_names | bool | Whether to return the full feature names. | False | 
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| Dict[str, Any] | The latest online feature data as a dictionary. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |  | 
get_project() -> str
Returns the project name.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| str | The project name. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 149 150 151 152 153 154 155 156 157 158 159 |  | 
get_registry() -> BaseRegistry
Returns the feature store registry.
Raise
ConnectionError: If the online component (Redis) is not available.
Returns:
| Type | Description | 
|---|---|
| BaseRegistry | The registry. | 
Source code in src/zenml/integrations/feast/feature_stores/feast_feature_store.py
              | 161 162 163 164 165 166 167 168 169 170 171 |  | 
            flavors
    Feast integration flavors.
Classes
              FeastFeatureStoreConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
    
              Bases: BaseFeatureStoreConfig
Config for Feast feature store.
Configuration for connecting to Feast feature stores. Field descriptions are defined inline using Field() descriptors.
Source code in src/zenml/stack/stack_component.py
                    | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |  | 
is_local: bool
  
      property
  
Checks if this stack component is running locally.
Returns:
| Type | Description | 
|---|---|
| bool | True if this config is for a local component, False otherwise. | 
            FeastFeatureStoreFlavor
    
              Bases: BaseFeatureStoreFlavor
Feast Feature store flavor.
config_class: Type[FeastFeatureStoreConfig]
  
      property
  
Returns FeastFeatureStoreConfig config class.
Returns:
| Type | Description | 
|---|---|
| Type[FeastFeatureStoreConfig] | The config class. | 
docs_url: Optional[str]
  
      property
  
A url to point at docs explaining this flavor.
Returns:
| Type | Description | 
|---|---|
| Optional[str] | A flavor docs url. | 
implementation_class: Type[FeastFeatureStore]
  
      property
  
Implementation class for this flavor.
Returns:
| Type | Description | 
|---|---|
| Type[FeastFeatureStore] | The implementation class. | 
logo_url: str
  
      property
  
A url to represent the flavor in the dashboard.
Returns:
| Type | Description | 
|---|---|
| str | The flavor logo. | 
name: str
  
      property
  
Name of the flavor.
Returns:
| Type | Description | 
|---|---|
| str | The name of the flavor. | 
sdk_docs_url: Optional[str]
  
      property
  
A url to point at SDK docs explaining this flavor.
Returns:
| Type | Description | 
|---|---|
| Optional[str] | A flavor SDK docs url. | 
Modules
            feast_feature_store_flavor
    Feast feature store flavor.
FeastFeatureStoreConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
              Bases: BaseFeatureStoreConfig
Config for Feast feature store.
Configuration for connecting to Feast feature stores. Field descriptions are defined inline using Field() descriptors.
Source code in src/zenml/stack/stack_component.py
                    | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |  | 
is_local: bool
  
      property
  
Checks if this stack component is running locally.
Returns:
| Type | Description | 
|---|---|
| bool | True if this config is for a local component, False otherwise. | 
FeastFeatureStoreFlavor
              Bases: BaseFeatureStoreFlavor
Feast Feature store flavor.
config_class: Type[FeastFeatureStoreConfig]
  
      property
  
Returns FeastFeatureStoreConfig config class.
Returns:
| Type | Description | 
|---|---|
| Type[FeastFeatureStoreConfig] | The config class. | 
docs_url: Optional[str]
  
      property
  
A url to point at docs explaining this flavor.
Returns:
| Type | Description | 
|---|---|
| Optional[str] | A flavor docs url. | 
implementation_class: Type[FeastFeatureStore]
  
      property
  
Implementation class for this flavor.
Returns:
| Type | Description | 
|---|---|
| Type[FeastFeatureStore] | The implementation class. | 
logo_url: str
  
      property
  
A url to represent the flavor in the dashboard.
Returns:
| Type | Description | 
|---|---|
| str | The flavor logo. | 
name: str
  
      property
  
Name of the flavor.
Returns:
| Type | Description | 
|---|---|
| str | The name of the flavor. | 
sdk_docs_url: Optional[str]
  
      property
  
A url to point at SDK docs explaining this flavor.
Returns:
| Type | Description | 
|---|---|
| Optional[str] | A flavor SDK docs url. |