Tensorflow
zenml.integrations.tensorflow
Initialization for TensorFlow integration.
Attributes
TENSORFLOW = 'tensorflow'
module-attribute
logger = get_logger(__name__)
module-attribute
Classes
Integration
Base class for integration in ZenML.
Functions
activate() -> None
classmethod
Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
140 141 142 |
|
check_installation() -> bool
classmethod
Method to check whether the required packages are installed.
Returns:
Type | Description |
---|---|
bool
|
True if all required packages are installed, False otherwise. |
Source code in src/zenml/integrations/integration.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
flavors() -> List[Type[Flavor]]
classmethod
Abstract method to declare new stack component flavors.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
A list of new stack component flavors. |
Source code in src/zenml/integrations/integration.py
144 145 146 147 148 149 150 151 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
classmethod
Method to get the uninstall requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
plugin_flavors() -> List[Type[BasePluginFlavor]]
classmethod
Abstract method to declare new plugin flavors.
Returns:
Type | Description |
---|---|
List[Type[BasePluginFlavor]]
|
A list of new plugin flavors. |
Source code in src/zenml/integrations/integration.py
153 154 155 156 157 158 159 160 |
|
TensorflowIntegration
Bases: Integration
Definition of Tensorflow integration for ZenML.
Functions
activate() -> None
classmethod
Activates the integration.
Source code in src/zenml/integrations/tensorflow/__init__.py
33 34 35 36 37 38 39 40 41 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Defines platform specific requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/tensorflow/__init__.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
Functions
get_logger(logger_name: str) -> logging.Logger
Main function to get logger name,.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logger_name
|
str
|
Name of logger to initialize. |
required |
Returns:
Type | Description |
---|---|
Logger
|
A logger object. |
Source code in src/zenml/logger.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
Modules
materializers
Initialization for the TensorFlow materializers.
Classes
Modules
keras_materializer
Implementation of the TensorFlow Keras materializer.
KerasMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
Bases: BaseMaterializer
Materializer to read/write Keras models.
Source code in src/zenml/materializers/base_materializer.py
125 126 127 128 129 130 131 132 133 134 135 |
|
extract_metadata(model: tf_keras.Model) -> Dict[str, MetadataType]
Extract metadata from the given Model
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
The extracted metadata as a dictionary. |
Source code in src/zenml/integrations/tensorflow/materializers/keras_materializer.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
load(data_type: Type[Any]) -> tf_keras.Model
Reads and returns a Keras model after copying it to temporary path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type
|
Type[Any]
|
The type of the data to read. |
required |
Returns:
Type | Description |
---|---|
Model
|
A keras.Model model. |
Source code in src/zenml/integrations/tensorflow/materializers/keras_materializer.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
save(model: tf_keras.Model) -> None
Writes a keras model to the artifact store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
A keras.Model model. |
required |
Source code in src/zenml/integrations/tensorflow/materializers/keras_materializer.py
60 61 62 63 64 65 66 67 68 69 |
|
tf_dataset_materializer
Implementation of the TensorFlow dataset materializer.
TensorflowDatasetMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
Bases: BaseMaterializer
Materializer to read data to and from tf.data.Dataset.
Source code in src/zenml/materializers/base_materializer.py
125 126 127 128 129 130 131 132 133 134 135 |
|
extract_metadata(dataset: tf.data.Dataset) -> Dict[str, MetadataType]
Extract metadata from the given Dataset
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
The extracted metadata as a dictionary. |
Source code in src/zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
65 66 67 68 69 70 71 72 73 74 75 76 |
|
load(data_type: Type[Any]) -> Any
Reads data into tf.data.Dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type
|
Type[Any]
|
The type of the data to read. |
required |
Returns:
Type | Description |
---|---|
Any
|
A tf.data.Dataset object. |
Source code in src/zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
save(dataset: tf.data.Dataset) -> None
Persists a tf.data.Dataset object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The dataset to persist. |
required |
Source code in src/zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
52 53 54 55 56 57 58 59 60 61 62 63 |
|