Langchain
            zenml.integrations.langchain
    Initialization of the langchain integration.
Attributes
            LANGCHAIN = 'langchain'
  
      module-attribute
  
    
            logger = get_logger(__name__)
  
      module-attribute
  
    Classes
            Integration
    Base class for integration in ZenML.
Functions
            activate() -> None
  
      classmethod
  
    Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
              140 141 142  |  | 
            check_installation() -> bool
  
      classmethod
  
    Method to check whether the required packages are installed.
Returns:
| Type | Description | 
|---|---|
                  bool
             | 
            
               True if all required packages are installed, False otherwise.  | 
          
Source code in src/zenml/integrations/integration.py
              63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98  |  | 
            flavors() -> List[Type[Flavor]]
  
      classmethod
  
    Abstract method to declare new stack component flavors.
Returns:
| Type | Description | 
|---|---|
                  List[Type[Flavor]]
             | 
            
               A list of new stack component flavors.  | 
          
Source code in src/zenml/integrations/integration.py
              144 145 146 147 148 149 150 151  |  | 
            get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
  
      classmethod
  
    Method to get the requirements for the integration.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                target_os
             | 
            
                  Optional[str]
             | 
            
               The target operating system to get the requirements for.  | 
            
                  None
             | 
          
                python_version
             | 
            
                  Optional[str]
             | 
            
               The Python version to use for the requirements.  | 
            
                  None
             | 
          
Returns:
| Type | Description | 
|---|---|
                  List[str]
             | 
            
               A list of requirements.  | 
          
Source code in src/zenml/integrations/integration.py
              100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115  |  | 
            get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
  
      classmethod
  
    Method to get the uninstall requirements for the integration.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                target_os
             | 
            
                  Optional[str]
             | 
            
               The target operating system to get the requirements for.  | 
            
                  None
             | 
          
Returns:
| Type | Description | 
|---|---|
                  List[str]
             | 
            
               A list of requirements.  | 
          
Source code in src/zenml/integrations/integration.py
              117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138  |  | 
            plugin_flavors() -> List[Type[BasePluginFlavor]]
  
      classmethod
  
    Abstract method to declare new plugin flavors.
Returns:
| Type | Description | 
|---|---|
                  List[Type[BasePluginFlavor]]
             | 
            
               A list of new plugin flavors.  | 
          
Source code in src/zenml/integrations/integration.py
              153 154 155 156 157 158 159 160  |  | 
            LangchainIntegration
    
              Bases: Integration
Definition of langchain integration for ZenML.
Functions
            activate() -> None
  
      classmethod
  
    Activates the integration.
Source code in src/zenml/integrations/langchain/__init__.py
              36 37 38 39  |  | 
Functions
            get_logger(logger_name: str) -> logging.Logger
    Main function to get logger name,.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                logger_name
             | 
            
                  str
             | 
            
               Name of logger to initialize.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  Logger
             | 
            
               A logger object.  | 
          
Source code in src/zenml/logger.py
              173 174 175 176 177 178 179 180 181 182 183 184 185 186 187  |  | 
Modules
            materializers
    Initialization of the langchain materializer.
Classes
Modules
            document_materializer
    Implementation of ZenML's Langchain Document materializer.
LangchainDocumentMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
              Bases: BaseMaterializer
Handle Langchain Document objects.
Source code in src/zenml/materializers/base_materializer.py
                    125 126 127 128 129 130 131 132 133 134 135  |  | 
extract_metadata(data: Document) -> Dict[str, MetadataType]
Extract metadata from the given BaseModel object.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                data
             | 
            
                  Document
             | 
            
               The BaseModel object to extract metadata from.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  Dict[str, MetadataType]
             | 
            
               The extracted metadata as a dictionary.  | 
          
Source code in src/zenml/integrations/langchain/materializers/document_materializer.py
              59 60 61 62 63 64 65 66 67 68  |  | 
load(data_type: Type[Document]) -> Any
Reads BaseModel from JSON.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                data_type
             | 
            
                  Type[Document]
             | 
            
               The type of the data to read.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  Any
             | 
            
               The data read.  | 
          
Source code in src/zenml/integrations/langchain/materializers/document_materializer.py
              37 38 39 40 41 42 43 44 45 46 47 48  |  | 
save(data: Document) -> None
Serialize a BaseModel to JSON.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                data
             | 
            
                  Document
             | 
            
               The data to store.  | 
            required | 
Source code in src/zenml/integrations/langchain/materializers/document_materializer.py
              50 51 52 53 54 55 56 57  |  | 
            openai_embedding_materializer
    Implementation of the Langchain OpenAI embedding materializer.
LangchainOpenaiEmbeddingMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
              Bases: CloudpickleMaterializer
Materializer for Langchain OpenAI Embeddings.
Source code in src/zenml/materializers/base_materializer.py
                    125 126 127 128 129 130 131 132 133 134 135  |  | 
load(data_type: Type[Any]) -> Any
Loads the embeddings model and lets it recreate clients when needed.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                data_type
             | 
            
                  Type[Any]
             | 
            
               The type of the data to load.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  Any
             | 
            
               The loaded embeddings model.  | 
          
Source code in src/zenml/integrations/langchain/materializers/openai_embedding_materializer.py
              47 48 49 50 51 52 53 54 55 56  |  | 
save(embeddings: Any) -> None
Saves the embeddings model after clearing non-picklable clients.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                embeddings
             | 
            
                  Any
             | 
            
               The embeddings model to save.  | 
            required | 
Source code in src/zenml/integrations/langchain/materializers/openai_embedding_materializer.py
              34 35 36 37 38 39 40 41 42 43 44 45  |  | 
            vector_store_materializer
    Implementation of the langchain vector store materializer.
LangchainVectorStoreMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)
              Bases: CloudpickleMaterializer
Handle langchain vector store objects.
Source code in src/zenml/materializers/base_materializer.py
                    125 126 127 128 129 130 131 132 133 134 135  |  |