Kubeflow
zenml.integrations.kubeflow
Initialization of the Kubeflow integration for ZenML.
The Kubeflow integration sub-module powers an alternative to the local orchestrator. You can enable it by registering the Kubeflow orchestrator with the CLI tool.
Attributes
KUBEFLOW = 'kubeflow'
module-attribute
KUBEFLOW_ORCHESTRATOR_FLAVOR = 'kubeflow'
module-attribute
Classes
Flavor
Class for ZenML Flavors.
Attributes
config_class: Type[StackComponentConfig]
abstractmethod
property
Returns StackComponentConfig
config class.
Returns:
Type | Description |
---|---|
Type[StackComponentConfig]
|
The config class. |
config_schema: Dict[str, Any]
property
The config schema for a flavor.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
The config schema. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[StackComponent]
abstractmethod
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[StackComponent]
|
The implementation class for this flavor. |
logo_url: Optional[str]
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
Optional[str]
|
The flavor logo. |
name: str
abstractmethod
property
The flavor name.
Returns:
Type | Description |
---|---|
str
|
The flavor name. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
service_connector_requirements: Optional[ServiceConnectorRequirements]
property
Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
Type | Description |
---|---|
Optional[ServiceConnectorRequirements]
|
Requirements for compatible service connectors, if a service |
Optional[ServiceConnectorRequirements]
|
connector is required for this flavor. |
type: StackComponentType
abstractmethod
property
Functions
from_model(flavor_model: FlavorResponse) -> Flavor
classmethod
Loads a flavor from a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flavor_model
|
FlavorResponse
|
The model to load from. |
required |
Raises:
Type | Description |
---|---|
CustomFlavorImportError
|
If the custom flavor can't be imported. |
ImportError
|
If the flavor can't be imported. |
Returns:
Type | Description |
---|---|
Flavor
|
The loaded flavor. |
Source code in src/zenml/stack/flavor.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
generate_default_docs_url() -> str
Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors, which do not have any docs in the main zenml docs.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml documentation |
Source code in src/zenml/stack/flavor.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
generate_default_sdk_docs_url() -> str
Generate SDK docs url for a flavor.
Returns:
Type | Description |
---|---|
str
|
The complete url to the zenml SDK docs |
Source code in src/zenml/stack/flavor.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
to_model(integration: Optional[str] = None, is_custom: bool = True) -> FlavorRequest
Converts a flavor to a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integration
|
Optional[str]
|
The integration to use for the model. |
None
|
is_custom
|
bool
|
Whether the flavor is a custom flavor. |
True
|
Returns:
Type | Description |
---|---|
FlavorRequest
|
The model. |
Source code in src/zenml/stack/flavor.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
Integration
Base class for integration in ZenML.
Functions
activate() -> None
classmethod
Abstract method to activate the integration.
Source code in src/zenml/integrations/integration.py
175 176 177 |
|
check_installation() -> bool
classmethod
Method to check whether the required packages are installed.
Returns:
Type | Description |
---|---|
bool
|
True if all required packages are installed, False otherwise. |
Source code in src/zenml/integrations/integration.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
flavors() -> List[Type[Flavor]]
classmethod
Abstract method to declare new stack component flavors.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
A list of new stack component flavors. |
Source code in src/zenml/integrations/integration.py
179 180 181 182 183 184 185 186 |
|
get_requirements(target_os: Optional[str] = None, python_version: Optional[str] = None) -> List[str]
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
python_version
|
Optional[str]
|
The Python version to use for the requirements. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str]
classmethod
Method to get the uninstall requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os
|
Optional[str]
|
The target operating system to get the requirements for. |
None
|
Returns:
Type | Description |
---|---|
List[str]
|
A list of requirements. |
Source code in src/zenml/integrations/integration.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
plugin_flavors() -> List[Type[BasePluginFlavor]]
classmethod
Abstract method to declare new plugin flavors.
Returns:
Type | Description |
---|---|
List[Type[BasePluginFlavor]]
|
A list of new plugin flavors. |
Source code in src/zenml/integrations/integration.py
188 189 190 191 192 193 194 195 |
|
KubeflowIntegration
Bases: Integration
Definition of Kubeflow Integration for ZenML.
Functions
flavors() -> List[Type[Flavor]]
classmethod
Declare the stack component flavors for the Kubeflow integration.
Returns:
Type | Description |
---|---|
List[Type[Flavor]]
|
List of stack component flavors for this integration. |
Source code in src/zenml/integrations/kubeflow/__init__.py
38 39 40 41 42 43 44 45 46 47 48 49 |
|
Modules
flavors
Kubeflow integration flavors.
Classes
KubeflowOrchestratorConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseOrchestratorConfig
, KubeflowOrchestratorSettings
Configuration for the Kubeflow orchestrator.
Attributes:
Name | Type | Description |
---|---|---|
kubeflow_hostname |
Optional[str]
|
The hostname to use to talk to the Kubeflow Pipelines API. If not set, the hostname will be derived from the Kubernetes API proxy. Mandatory when connecting to a multi-tenant Kubeflow Pipelines deployment. |
kubeflow_namespace |
str
|
The Kubernetes namespace in which Kubeflow
Pipelines is deployed. Defaults to |
kubernetes_context |
Optional[str]
|
Name of a kubernetes context to run
pipelines in. Not applicable when connecting to a multi-tenant
Kubeflow Pipelines deployment (i.e. when |
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
is_local: bool
property
Checks if this stack component is running locally.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a local component, False otherwise. |
is_remote: bool
property
Checks if this stack component is running remotely.
This designation is used to determine if the stack component can be used with a local ZenML database or if it requires a remote ZenML server.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a remote component, False otherwise. |
is_schedulable: bool
property
Whether the orchestrator is schedulable or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator is schedulable or not. |
is_synchronous: bool
property
Whether the orchestrator runs synchronous or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator runs synchronous or not. |
KubeflowOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Kubeflow orchestrator flavor.
config_class: Type[KubeflowOrchestratorConfig]
property
Returns KubeflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[KubeflowOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[KubeflowOrchestrator]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[KubeflowOrchestrator]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
service_connector_requirements: Optional[ServiceConnectorRequirements]
property
Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
Type | Description |
---|---|
Optional[ServiceConnectorRequirements]
|
Requirements for compatible service connectors, if a service |
Optional[ServiceConnectorRequirements]
|
connector is required for this flavor. |
Modules
kubeflow_orchestrator_flavor
Kubeflow orchestrator flavor.
KubeflowOrchestratorConfig(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseOrchestratorConfig
, KubeflowOrchestratorSettings
Configuration for the Kubeflow orchestrator.
Attributes:
Name | Type | Description |
---|---|---|
kubeflow_hostname |
Optional[str]
|
The hostname to use to talk to the Kubeflow Pipelines API. If not set, the hostname will be derived from the Kubernetes API proxy. Mandatory when connecting to a multi-tenant Kubeflow Pipelines deployment. |
kubeflow_namespace |
str
|
The Kubernetes namespace in which Kubeflow
Pipelines is deployed. Defaults to |
kubernetes_context |
Optional[str]
|
Name of a kubernetes context to run
pipelines in. Not applicable when connecting to a multi-tenant
Kubeflow Pipelines deployment (i.e. when |
Source code in src/zenml/stack/stack_component.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
is_local: bool
property
Checks if this stack component is running locally.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a local component, False otherwise. |
is_remote: bool
property
Checks if this stack component is running remotely.
This designation is used to determine if the stack component can be used with a local ZenML database or if it requires a remote ZenML server.
Returns:
Type | Description |
---|---|
bool
|
True if this config is for a remote component, False otherwise. |
is_schedulable: bool
property
Whether the orchestrator is schedulable or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator is schedulable or not. |
is_synchronous: bool
property
Whether the orchestrator runs synchronous or not.
Returns:
Type | Description |
---|---|
bool
|
Whether the orchestrator runs synchronous or not. |
KubeflowOrchestratorFlavor
Bases: BaseOrchestratorFlavor
Kubeflow orchestrator flavor.
config_class: Type[KubeflowOrchestratorConfig]
property
Returns KubeflowOrchestratorConfig
config class.
Returns:
Type | Description |
---|---|
Type[KubeflowOrchestratorConfig]
|
The config class. |
docs_url: Optional[str]
property
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor docs url. |
implementation_class: Type[KubeflowOrchestrator]
property
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[KubeflowOrchestrator]
|
The implementation class. |
logo_url: str
property
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
str
|
The flavor logo. |
name: str
property
Name of the flavor.
Returns:
Type | Description |
---|---|
str
|
The name of the flavor. |
sdk_docs_url: Optional[str]
property
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str]
|
A flavor SDK docs url. |
service_connector_requirements: Optional[ServiceConnectorRequirements]
property
Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
Type | Description |
---|---|
Optional[ServiceConnectorRequirements]
|
Requirements for compatible service connectors, if a service |
Optional[ServiceConnectorRequirements]
|
connector is required for this flavor. |
KubeflowOrchestratorSettings(warn_about_plain_text_secrets: bool = False, **kwargs: Any)
Bases: BaseSettings
Settings for the Kubeflow orchestrator.
Attributes:
Name | Type | Description |
---|---|---|
synchronous |
bool
|
If |
timeout |
int
|
How many seconds to wait for synchronous runs. |
client_args |
Dict[str, Any]
|
Arguments to pass when initializing the KFP client. |
client_username |
Optional[str]
|
Username to generate a session cookie for the kubeflow client. Both |
client_password |
Optional[str]
|
Password to generate a session cookie for the kubeflow client. Both |
user_namespace |
Optional[str]
|
The user namespace to use when creating experiments and runs. |
pod_settings |
Optional[KubernetesPodSettings]
|
Pod settings to apply. |
Source code in src/zenml/config/secret_reference_mixin.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
orchestrators
Initialization of the Kubeflow ZenML orchestrator.
Classes
KubeflowOrchestrator(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: ContainerizedOrchestrator
Orchestrator responsible for running pipelines using Kubeflow.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: KubeflowOrchestratorConfig
property
Returns the KubeflowOrchestratorConfig
config.
Returns:
Type | Description |
---|---|
KubeflowOrchestratorConfig
|
The configuration. |
pipeline_directory: str
property
Returns path to a directory in which the kubeflow pipeline files are stored.
Returns:
Type | Description |
---|---|
str
|
Path to the pipeline directory. |
root_directory: str
property
Path to the root directory for all files concerning this orchestrator.
Returns:
Type | Description |
---|---|
str
|
Path to the root directory. |
settings_class: Type[KubeflowOrchestratorSettings]
property
Settings class for the Kubeflow orchestrator.
Returns:
Type | Description |
---|---|
Type[KubeflowOrchestratorSettings]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates that the stack contains a container registry.
Also check that requirements are met for local components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_kubernetes_contexts() -> Tuple[List[str], Optional[str]]
Get the list of configured Kubernetes contexts and the active context.
Returns:
Type | Description |
---|---|
List[str]
|
A tuple containing the list of configured Kubernetes contexts and |
Optional[str]
|
the active context. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If the environment variable specifying the run id is not set. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
|
get_pipeline_run_metadata(run_id: UUID) -> Dict[str, MetadataType]
Get general component-specific metadata for a pipeline run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
UUID
|
The ID of the pipeline run. |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
A dictionary of metadata. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str]) -> Any
Creates a kfp yaml file.
This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.
How it works:
Before this method is called the prepare_pipeline_deployment()
method builds a docker image that contains the code for the
pipeline, all steps the context around these files.
Based on this docker image a callable is created which builds
container_ops for each step (_construct_kfp_pipeline
).
To do this the entrypoint of the docker image is configured to
run the correct step within the docker image. The dependencies
between these container_ops are then also configured onto each
container_op by pointing at the downstream steps.
This callable is then compiled into a kfp yaml file that is used as the intermediary representation of the kubeflow pipeline.
This file, together with some metadata, runtime configurations is then uploaded into the kubeflow pipelines cluster for execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If trying to run a pipeline in a notebook environment. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
|
Modules
kubeflow_orchestrator
Implementation of the Kubeflow orchestrator.
KubeClientKFPClient(client: k8s_client.ApiClient, *args: Any, **kwargs: Any)
Bases: Client
KFP client initialized from a Kubernetes client.
This is a workaround for the fact that the native KFP client does not support initialization from an existing Kubernetes client.
Initializes the KFP client from a Kubernetes client.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
client
|
ApiClient
|
pre-configured Kubernetes client. |
required |
args
|
Any
|
standard KFP client positional arguments. |
()
|
kwargs
|
Any
|
standard KFP client keyword arguments. |
{}
|
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
100 101 102 103 104 105 106 107 108 109 110 111 |
|
KubeflowOrchestrator(name: str, id: UUID, config: StackComponentConfig, flavor: str, type: StackComponentType, user: Optional[UUID], created: datetime, updated: datetime, labels: Optional[Dict[str, Any]] = None, connector_requirements: Optional[ServiceConnectorRequirements] = None, connector: Optional[UUID] = None, connector_resource_id: Optional[str] = None, *args: Any, **kwargs: Any)
Bases: ContainerizedOrchestrator
Orchestrator responsible for running pipelines using Kubeflow.
Source code in src/zenml/stack/stack_component.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
config: KubeflowOrchestratorConfig
property
Returns the KubeflowOrchestratorConfig
config.
Returns:
Type | Description |
---|---|
KubeflowOrchestratorConfig
|
The configuration. |
pipeline_directory: str
property
Returns path to a directory in which the kubeflow pipeline files are stored.
Returns:
Type | Description |
---|---|
str
|
Path to the pipeline directory. |
root_directory: str
property
Path to the root directory for all files concerning this orchestrator.
Returns:
Type | Description |
---|---|
str
|
Path to the root directory. |
settings_class: Type[KubeflowOrchestratorSettings]
property
Settings class for the Kubeflow orchestrator.
Returns:
Type | Description |
---|---|
Type[KubeflowOrchestratorSettings]
|
The settings class. |
validator: Optional[StackValidator]
property
Validates that the stack contains a container registry.
Also check that requirements are met for local components.
Returns:
Type | Description |
---|---|
Optional[StackValidator]
|
A |
get_kubernetes_contexts() -> Tuple[List[str], Optional[str]]
Get the list of configured Kubernetes contexts and the active context.
Returns:
Type | Description |
---|---|
List[str]
|
A tuple containing the list of configured Kubernetes contexts and |
Optional[str]
|
the active context. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
get_orchestrator_run_id() -> str
Returns the active orchestrator run id.
Raises:
Type | Description |
---|---|
RuntimeError
|
If the environment variable specifying the run id is not set. |
Returns:
Type | Description |
---|---|
str
|
The orchestrator run id. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
|
get_pipeline_run_metadata(run_id: UUID) -> Dict[str, MetadataType]
Get general component-specific metadata for a pipeline run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id
|
UUID
|
The ID of the pipeline run. |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType]
|
A dictionary of metadata. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
|
prepare_or_run_pipeline(deployment: PipelineDeploymentResponse, stack: Stack, environment: Dict[str, str]) -> Any
Creates a kfp yaml file.
This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.
How it works:
Before this method is called the prepare_pipeline_deployment()
method builds a docker image that contains the code for the
pipeline, all steps the context around these files.
Based on this docker image a callable is created which builds
container_ops for each step (_construct_kfp_pipeline
).
To do this the entrypoint of the docker image is configured to
run the correct step within the docker image. The dependencies
between these container_ops are then also configured onto each
container_op by pointing at the downstream steps.
This callable is then compiled into a kfp yaml file that is used as the intermediary representation of the kubeflow pipeline.
This file, together with some metadata, runtime configurations is then uploaded into the kubeflow pipelines cluster for execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment
|
PipelineDeploymentResponse
|
The pipeline deployment to prepare or run. |
required |
stack
|
Stack
|
The stack the pipeline will run on. |
required |
environment
|
Dict[str, str]
|
Environment variables to set in the orchestration environment. |
required |
Raises:
Type | Description |
---|---|
RuntimeError
|
If trying to run a pipeline in a notebook environment. |
Source code in src/zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
|
local_deployment_utils
Utils for the local Kubeflow deployment behaviors.
add_hostpath_to_kubeflow_pipelines(kubernetes_context: str, local_path: str) -> None
Patches the Kubeflow Pipelines deployment to mount a local folder.
This folder serves as a hostpath for visualization purposes.
This function reconfigures the Kubeflow pipelines deployment to use a shared local folder to support loading the TensorBoard viewer and other pipeline visualization results from a local artifact store, as described here:
https://github.com/kubeflow/pipelines/blob/master/docs/config/volume-support.md
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kubernetes_context
|
str
|
The kubernetes context on which Kubeflow Pipelines should be patched. |
required |
local_path
|
str
|
The path to the local folder to mount as a hostpath. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
check_prerequisites(skip_k3d: bool = False, skip_kubectl: bool = False) -> bool
Checks prerequisites for a local kubeflow pipelines deployment.
It makes sure they are installed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
skip_k3d
|
bool
|
Whether to skip the check for the k3d command. |
False
|
skip_kubectl
|
bool
|
Whether to skip the check for the kubectl command. |
False
|
Returns:
Type | Description |
---|---|
bool
|
Whether all prerequisites are installed. |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|
create_k3d_cluster(cluster_name: str, registry_name: str, registry_config_path: str) -> None
Creates a K3D cluster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster_name
|
str
|
Name of the cluster to create. |
required |
registry_name
|
str
|
Name of the registry to create for this cluster. |
required |
registry_config_path
|
str
|
Path to the registry config file. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
delete_k3d_cluster(cluster_name: str) -> None
Deletes a K3D cluster with the given name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster_name
|
str
|
Name of the cluster to delete. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
167 168 169 170 171 172 173 174 |
|
deploy_kubeflow_pipelines(kubernetes_context: str) -> None
Deploys Kubeflow Pipelines.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kubernetes_context
|
str
|
The kubernetes context on which Kubeflow Pipelines should be deployed. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
k3d_cluster_exists(cluster_name: str) -> bool
Checks whether there exists a K3D cluster with the given name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster_name
|
str
|
Name of the cluster to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether the cluster exists. |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
k3d_cluster_running(cluster_name: str) -> bool
Checks whether the K3D cluster with the given name is running.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster_name
|
str
|
Name of the cluster to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether the cluster is running. |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
kubeflow_pipelines_ready(kubernetes_context: str) -> bool
Returns whether all Kubeflow Pipelines pods are ready.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kubernetes_context
|
str
|
The kubernetes context in which the pods should be checked. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether all Kubeflow Pipelines pods are ready. |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|
start_k3d_cluster(cluster_name: str) -> None
Starts a K3D cluster with the given name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster_name
|
str
|
Name of the cluster to start. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
147 148 149 150 151 152 153 154 |
|
start_kfp_ui_daemon(pid_file_path: str, log_file_path: str, port: int, kubernetes_context: str) -> None
Starts a daemon process that forwards ports.
This is so the Kubeflow Pipelines UI is accessible in the browser.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pid_file_path
|
str
|
Path where the file with the daemons process ID should be written. |
required |
log_file_path
|
str
|
Path to a file where the daemon logs should be written. |
required |
port
|
int
|
Port on which the UI should be accessible. |
required |
kubernetes_context
|
str
|
The kubernetes context for the cluster where Kubeflow Pipelines is running. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
|
stop_k3d_cluster(cluster_name: str) -> None
Stops a K3D cluster with the given name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster_name
|
str
|
Name of the cluster to stop. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
157 158 159 160 161 162 163 164 |
|
stop_kfp_ui_daemon(pid_file_path: str) -> None
Stops the KFP UI daemon process if it is running.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pid_file_path
|
str
|
Path to the file with the daemons process ID. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
|
wait_until_kubeflow_pipelines_ready(kubernetes_context: str) -> None
Waits until all Kubeflow Pipelines pods are ready.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kubernetes_context
|
str
|
The kubernetes context in which the pods should be checked. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
write_local_registry_yaml(yaml_path: str, registry_name: str, registry_uri: str) -> None
Writes a K3D registry config file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yaml_path
|
str
|
Path where the config file should be written to. |
required |
registry_name
|
str
|
Name of the registry. |
required |
registry_uri
|
str
|
URI of the registry. |
required |
Source code in src/zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|