Skip to content

Lightgbm

zenml.integrations.lightgbm

Initialization of the LightGBM integration.

Attributes

LIGHTGBM = 'lightgbm' module-attribute

Classes

Integration

Base class for integration in ZenML.

Functions
activate() -> None classmethod

Abstract method to activate the integration.

Source code in src/zenml/integrations/integration.py
170
171
172
@classmethod
def activate(cls) -> None:
    """Abstract method to activate the integration."""
check_installation() -> bool classmethod

Method to check whether the required packages are installed.

Returns:

Type Description
bool

True if all required packages are installed, False otherwise.

Source code in src/zenml/integrations/integration.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
@classmethod
def check_installation(cls) -> bool:
    """Method to check whether the required packages are installed.

    Returns:
        True if all required packages are installed, False otherwise.
    """
    for r in cls.get_requirements():
        try:
            # First check if the base package is installed
            dist = pkg_resources.get_distribution(r)

            # Next, check if the dependencies (including extras) are
            # installed
            deps: List[Requirement] = []

            _, extras = parse_requirement(r)
            if extras:
                extra_list = extras[1:-1].split(",")
                for extra in extra_list:
                    try:
                        requirements = dist.requires(extras=[extra])  # type: ignore[arg-type]
                    except pkg_resources.UnknownExtra as e:
                        logger.debug(f"Unknown extra: {str(e)}")
                        return False
                    deps.extend(requirements)
            else:
                deps = dist.requires()

            for ri in deps:
                try:
                    # Remove the "extra == ..." part from the requirement string
                    cleaned_req = re.sub(
                        r"; extra == \"\w+\"", "", str(ri)
                    )
                    pkg_resources.get_distribution(cleaned_req)
                except pkg_resources.DistributionNotFound as e:
                    logger.debug(
                        f"Unable to find required dependency "
                        f"'{e.req}' for requirement '{r}' "
                        f"necessary for integration '{cls.NAME}'."
                    )
                    return False
                except pkg_resources.VersionConflict as e:
                    logger.debug(
                        f"Package version '{e.dist}' does not match "
                        f"version '{e.req}' required by '{r}' "
                        f"necessary for integration '{cls.NAME}'."
                    )
                    return False

        except pkg_resources.DistributionNotFound as e:
            logger.debug(
                f"Unable to find required package '{e.req}' for "
                f"integration {cls.NAME}."
            )
            return False
        except pkg_resources.VersionConflict as e:
            logger.debug(
                f"Package version '{e.dist}' does not match version "
                f"'{e.req}' necessary for integration {cls.NAME}."
            )
            return False

    logger.debug(
        f"Integration {cls.NAME} is installed correctly with "
        f"requirements {cls.get_requirements()}."
    )
    return True
flavors() -> List[Type[Flavor]] classmethod

Abstract method to declare new stack component flavors.

Returns:

Type Description
List[Type[Flavor]]

A list of new stack component flavors.

Source code in src/zenml/integrations/integration.py
174
175
176
177
178
179
180
181
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Abstract method to declare new stack component flavors.

    Returns:
        A list of new stack component flavors.
    """
    return []
get_requirements(target_os: Optional[str] = None) -> List[str] classmethod

Method to get the requirements for the integration.

Parameters:

Name Type Description Default
target_os Optional[str]

The target operating system to get the requirements for.

None

Returns:

Type Description
List[str]

A list of requirements.

Source code in src/zenml/integrations/integration.py
135
136
137
138
139
140
141
142
143
144
145
@classmethod
def get_requirements(cls, target_os: Optional[str] = None) -> List[str]:
    """Method to get the requirements for the integration.

    Args:
        target_os: The target operating system to get the requirements for.

    Returns:
        A list of requirements.
    """
    return cls.REQUIREMENTS
get_uninstall_requirements(target_os: Optional[str] = None) -> List[str] classmethod

Method to get the uninstall requirements for the integration.

Parameters:

Name Type Description Default
target_os Optional[str]

The target operating system to get the requirements for.

None

Returns:

Type Description
List[str]

A list of requirements.

Source code in src/zenml/integrations/integration.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
@classmethod
def get_uninstall_requirements(
    cls, target_os: Optional[str] = None
) -> List[str]:
    """Method to get the uninstall requirements for the integration.

    Args:
        target_os: The target operating system to get the requirements for.

    Returns:
        A list of requirements.
    """
    ret = []
    for each in cls.get_requirements(target_os=target_os):
        is_ignored = False
        for ignored in cls.REQUIREMENTS_IGNORED_ON_UNINSTALL:
            if each.startswith(ignored):
                is_ignored = True
                break
        if not is_ignored:
            ret.append(each)
    return ret
plugin_flavors() -> List[Type[BasePluginFlavor]] classmethod

Abstract method to declare new plugin flavors.

Returns:

Type Description
List[Type[BasePluginFlavor]]

A list of new plugin flavors.

Source code in src/zenml/integrations/integration.py
183
184
185
186
187
188
189
190
@classmethod
def plugin_flavors(cls) -> List[Type["BasePluginFlavor"]]:
    """Abstract method to declare new plugin flavors.

    Returns:
        A list of new plugin flavors.
    """
    return []

LightGBMIntegration

Bases: Integration

Definition of lightgbm integration for ZenML.

Functions
activate() -> None classmethod

Activates the integration.

Source code in src/zenml/integrations/lightgbm/__init__.py
27
28
29
30
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.lightgbm import materializers  # noqa

Modules

materializers

Initialization of the Neural Prophet materializer.

Classes
Modules
lightgbm_booster_materializer

Implementation of the LightGBM booster materializer.

Classes
LightGBMBoosterMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)

Bases: BaseMaterializer

Materializer to read data to and from lightgbm.Booster.

Source code in src/zenml/materializers/base_materializer.py
125
126
127
128
129
130
131
132
133
134
135
def __init__(
    self, uri: str, artifact_store: Optional[BaseArtifactStore] = None
):
    """Initializes a materializer with the given URI.

    Args:
        uri: The URI where the artifact data will be stored.
        artifact_store: The artifact store used to store this artifact.
    """
    self.uri = uri
    self._artifact_store = artifact_store
Functions
load(data_type: Type[Any]) -> lgb.Booster

Reads a lightgbm Booster model from a serialized JSON file.

Parameters:

Name Type Description Default
data_type Type[Any]

A lightgbm Booster type.

required

Returns:

Type Description
Booster

A lightgbm Booster object.

Source code in src/zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def load(self, data_type: Type[Any]) -> lgb.Booster:
    """Reads a lightgbm Booster model from a serialized JSON file.

    Args:
        data_type: A lightgbm Booster type.

    Returns:
        A lightgbm Booster object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    with self.get_temporary_directory(delete_at_exit=True) as temp_dir:
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        booster = lgb.Booster(model_file=temp_file)
        return booster
save(booster: lgb.Booster) -> None

Creates a JSON serialization for a lightgbm Booster model.

Parameters:

Name Type Description Default
booster Booster

A lightgbm Booster model.

required
Source code in src/zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
52
53
54
55
56
57
58
59
60
61
62
def save(self, booster: lgb.Booster) -> None:
    """Creates a JSON serialization for a lightgbm Booster model.

    Args:
        booster: A lightgbm Booster model.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    with self.get_temporary_directory(delete_at_exit=True) as temp_dir:
        tmp_path = os.path.join(temp_dir, "model.txt")
        booster.save_model(tmp_path)
        fileio.copy(tmp_path, filepath)
Modules
lightgbm_dataset_materializer

Implementation of the LightGBM materializer.

Classes
LightGBMDatasetMaterializer(uri: str, artifact_store: Optional[BaseArtifactStore] = None)

Bases: BaseMaterializer

Materializer to read data to and from lightgbm.Dataset.

Source code in src/zenml/materializers/base_materializer.py
125
126
127
128
129
130
131
132
133
134
135
def __init__(
    self, uri: str, artifact_store: Optional[BaseArtifactStore] = None
):
    """Initializes a materializer with the given URI.

    Args:
        uri: The URI where the artifact data will be stored.
        artifact_store: The artifact store used to store this artifact.
    """
    self.uri = uri
    self._artifact_store = artifact_store
Functions
extract_metadata(matrix: lgb.Dataset) -> Dict[str, MetadataType]

Extract metadata from the given Dataset object.

Parameters:

Name Type Description Default
matrix Dataset

The Dataset object to extract metadata from.

required

Returns:

Type Description
Dict[str, MetadataType]

The extracted metadata as a dictionary.

Source code in src/zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
72
73
74
75
76
77
78
79
80
81
82
83
def extract_metadata(
    self, matrix: lgb.Dataset
) -> Dict[str, "MetadataType"]:
    """Extract metadata from the given `Dataset` object.

    Args:
        matrix: The `Dataset` object to extract metadata from.

    Returns:
        The extracted metadata as a dictionary.
    """
    return {"shape": (matrix.num_data(), matrix.num_feature())}
load(data_type: Type[Any]) -> lgb.Dataset

Reads a lightgbm.Dataset binary file and loads it.

Parameters:

Name Type Description Default
data_type Type[Any]

A lightgbm.Dataset type.

required

Returns:

Type Description
Dataset

A lightgbm.Dataset object.

Source code in src/zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def load(self, data_type: Type[Any]) -> lgb.Dataset:
    """Reads a lightgbm.Dataset binary file and loads it.

    Args:
        data_type: A lightgbm.Dataset type.

    Returns:
        A lightgbm.Dataset object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)

    with self.get_temporary_directory(delete_at_exit=False) as temp_dir:
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        matrix = lgb.Dataset(temp_file, free_raw_data=False)

        return matrix
save(matrix: lgb.Dataset) -> None

Creates a binary serialization for a lightgbm.Dataset object.

Parameters:

Name Type Description Default
matrix Dataset

A lightgbm.Dataset object.

required
Source code in src/zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def save(self, matrix: lgb.Dataset) -> None:
    """Creates a binary serialization for a lightgbm.Dataset object.

    Args:
        matrix: A lightgbm.Dataset object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)

    with self.get_temporary_directory(delete_at_exit=True) as temp_dir:
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
        matrix.save_binary(temp_file)

        # Copy it into artifact store
        fileio.copy(temp_file, filepath)
Modules