Skip to content

Integrations

zenml.integrations special

The ZenML integrations module contains sub-modules for each integration that we support. This includes orchestrators like Apache Airflow, visualization tools like the facets library, as well as deep learning libraries like PyTorch.

airflow special

The Airflow integration sub-module powers an alternative to the local orchestrator. You can enable it by registering the Airflow orchestrator with the CLI tool, then bootstrap using the zenml orchestrator up command.

AirflowIntegration (Integration)

Definition of Airflow Integration for ZenML.

Source code in zenml/integrations/airflow/__init__.py
class AirflowIntegration(Integration):
    """Definition of Airflow Integration for ZenML."""

    NAME = AIRFLOW
    REQUIREMENTS = ["apache-airflow==2.2.0"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the Airflow integration."""
        return [
            FlavorWrapper(
                name=AIRFLOW_ORCHESTRATOR_FLAVOR,
                source="zenml.integrations.airflow.orchestrators.AirflowOrchestrator",
                type=StackComponentType.ORCHESTRATOR,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the Airflow integration.

Source code in zenml/integrations/airflow/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the Airflow integration."""
    return [
        FlavorWrapper(
            name=AIRFLOW_ORCHESTRATOR_FLAVOR,
            source="zenml.integrations.airflow.orchestrators.AirflowOrchestrator",
            type=StackComponentType.ORCHESTRATOR,
            integration=cls.NAME,
        )
    ]

orchestrators special

The Airflow integration enables the use of Airflow as a pipeline orchestrator.

airflow_orchestrator
AirflowOrchestrator (BaseOrchestrator) pydantic-model

Orchestrator responsible for running pipelines using Airflow.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
class AirflowOrchestrator(BaseOrchestrator):
    """Orchestrator responsible for running pipelines using Airflow."""

    airflow_home: str = ""

    # Class Configuration
    FLAVOR: ClassVar[str] = AIRFLOW_ORCHESTRATOR_FLAVOR

    def __init__(self, **values: Any):
        """Sets environment variables to configure airflow."""
        super().__init__(**values)
        self._set_env()

    @staticmethod
    def _translate_schedule(
        schedule: Optional[Schedule] = None,
    ) -> Dict[str, Any]:
        """Convert ZenML schedule into airflow schedule which uses slightly
        different naming and needs some default entries for execution without a
        schedule.

        Args:
            schedule: Containing the interval, start and end date and
                a boolean flag that defines if past runs should be caught up
                on
        Returns:
            Airflow configuration dict.
        """
        if schedule:
            return {
                "schedule_interval": schedule.interval_second,
                "start_date": schedule.start_time,
                "end_date": schedule.end_time,
                "catchup": schedule.catchup,
            }
        return {
            "schedule_interval": "@once",
            # set the a start time in the past and disable catchup so airflow runs the dag immediately
            "start_date": datetime.datetime.now() - datetime.timedelta(7),
            "catchup": False,
        }

    def prepare_or_run_pipeline(
        self,
        sorted_steps: List[BaseStep],
        pipeline: "BasePipeline",
        pb2_pipeline: Pb2Pipeline,
        stack: "Stack",
        runtime_configuration: "RuntimeConfiguration",
    ) -> Any:
        """Create an airflow dag as the intermediate representation for the
        pipeline. This dag will be loaded by airflow in the target environment
        and used for orchestration of the pipeline.

        How it works:
        -------------
        A new airflow_dag is instantiated with the pipeline name and among
        others things the run schedule.

        For each step of the pipeline a callable is created. This callable
        uses the run_step() method to execute the step. The parameters of
        this callable are pre-filled and an airflow step_operator is created
        within the dag. The dependencies to upstream steps are then
        configured.

        Finally, the dag is fully complete and can be returned.
        """

        import airflow
        from airflow.operators import python as airflow_python

        # Instantiate and configure airflow Dag with name and schedule
        airflow_dag = airflow.DAG(
            dag_id=pipeline.name,
            is_paused_upon_creation=False,
            **self._translate_schedule(runtime_configuration.schedule),
        )

        # Dictionary mapping step names to airflow_operators. This will be needed
        # to configure airflow operator dependencies
        step_name_to_airflow_operator = {}

        for step in sorted_steps:
            # Create callable that will be used by airflow to execute the step
            # within the orchestrated environment
            def _step_callable(step_instance: "BaseStep", **kwargs):
                # Extract run name for the kwargs that will be passed to the
                # callable
                run_name = kwargs["ti"].get_dagrun().run_id
                self.run_step(
                    step=step_instance,
                    run_name=run_name,
                    pb2_pipeline=pb2_pipeline,
                )

            # Create airflow python operator that contains the step callable
            airflow_operator = airflow_python.PythonOperator(
                dag=airflow_dag,
                task_id=step.name,
                provide_context=True,
                python_callable=functools.partial(
                    _step_callable, step_instance=step
                ),
            )

            # Configure the current airflow operator to run after all upstream
            # operators finished executing
            step_name_to_airflow_operator[step.name] = airflow_operator
            upstream_step_names = self.get_upstream_step_names(
                step=step, pb2_pipeline=pb2_pipeline
            )
            for upstream_step_name in upstream_step_names:
                airflow_operator.set_upstream(
                    step_name_to_airflow_operator[upstream_step_name]
                )

        # Return the finished airflow dag
        return airflow_dag

    @root_validator(skip_on_failure=True)
    def set_airflow_home(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Sets airflow home according to orchestrator UUID."""
        if "uuid" not in values:
            raise ValueError("`uuid` needs to exist for AirflowOrchestrator.")
        values["airflow_home"] = os.path.join(
            zenml.io.utils.get_global_config_directory(),
            AIRFLOW_ROOT_DIR,
            str(values["uuid"]),
        )
        return values

    @property
    def dags_directory(self) -> str:
        """Returns path to the airflow dags directory."""
        return os.path.join(self.airflow_home, "dags")

    @property
    def pid_file(self) -> str:
        """Returns path to the daemon PID file."""
        return os.path.join(self.airflow_home, "airflow_daemon.pid")

    @property
    def log_file(self) -> str:
        """Returns path to the airflow log file."""
        return os.path.join(self.airflow_home, "airflow_orchestrator.log")

    @property
    def password_file(self) -> str:
        """Returns path to the webserver password file."""
        return os.path.join(self.airflow_home, "standalone_admin_password.txt")

    def _set_env(self) -> None:
        """Sets environment variables to configure airflow."""
        os.environ["AIRFLOW_HOME"] = self.airflow_home
        os.environ["AIRFLOW__CORE__DAGS_FOLDER"] = self.dags_directory
        os.environ["AIRFLOW__CORE__DAG_DISCOVERY_SAFE_MODE"] = "false"
        os.environ["AIRFLOW__CORE__LOAD_EXAMPLES"] = "false"
        # check the DAG folder every 10 seconds for new files
        os.environ["AIRFLOW__SCHEDULER__DAG_DIR_LIST_INTERVAL"] = "10"

    def _copy_to_dag_directory_if_necessary(self, dag_filepath: str) -> None:
        """Copies the DAG module to the airflow DAGs directory if it's not
        already located there.

        Args:
            dag_filepath: Path to the file in which the DAG is defined.
        """
        dags_directory = zenml.io.utils.resolve_relative_path(
            self.dags_directory
        )

        if dags_directory == os.path.dirname(dag_filepath):
            logger.debug("File is already in airflow DAGs directory.")
        else:
            logger.debug(
                "Copying dag file '%s' to DAGs directory.", dag_filepath
            )
            destination_path = os.path.join(
                dags_directory, os.path.basename(dag_filepath)
            )
            if fileio.exists(destination_path):
                logger.info(
                    "File '%s' already exists, overwriting with new DAG file",
                    destination_path,
                )
            fileio.copy(dag_filepath, destination_path, overwrite=True)

    def _log_webserver_credentials(self) -> None:
        """Logs URL and credentials to log in to the airflow webserver.

        Raises:
            FileNotFoundError: If the password file does not exist.
        """
        if fileio.exists(self.password_file):
            with open(self.password_file) as file:
                password = file.read().strip()
        else:
            raise FileNotFoundError(
                f"Can't find password file '{self.password_file}'"
            )
        logger.info(
            "To inspect your DAGs, login to http://0.0.0.0:8080 "
            "with username: admin password: %s",
            password,
        )

    def runtime_options(self) -> Dict[str, Any]:
        """Runtime options for the airflow orchestrator."""
        return {DAG_FILEPATH_OPTION_KEY: None}

    def prepare_pipeline_deployment(
        self,
        pipeline: "BasePipeline",
        stack: "Stack",
        runtime_configuration: "RuntimeConfiguration",
    ) -> None:
        """Checks whether airflow is running and copies the DAG file to the
        airflow DAGs directory.

        Raises:
            RuntimeError: If airflow is not running or no DAG filepath runtime
                          option is provided.
        """
        if not self.is_running:
            raise RuntimeError(
                "Airflow orchestrator is currently not running. Run `zenml "
                "stack up` to provision resources for the active stack."
            )

        try:
            dag_filepath = runtime_configuration[DAG_FILEPATH_OPTION_KEY]
        except KeyError:
            raise RuntimeError(
                f"No DAG filepath found in runtime configuration. Make sure "
                f"to add the filepath to your airflow DAG file as a runtime "
                f"option (key: '{DAG_FILEPATH_OPTION_KEY}')."
            )

        self._copy_to_dag_directory_if_necessary(dag_filepath=dag_filepath)

    @property
    def is_running(self) -> bool:
        """Returns whether the airflow daemon is currently running."""
        from airflow.cli.commands.standalone_command import StandaloneCommand
        from airflow.jobs.triggerer_job import TriggererJob

        daemon_running = daemon.check_if_daemon_is_running(self.pid_file)

        command = StandaloneCommand()
        webserver_port_open = command.port_open(8080)

        if not daemon_running:
            if webserver_port_open:
                raise RuntimeError(
                    "The airflow daemon does not seem to be running but "
                    "local port 8080 is occupied. Make sure the port is "
                    "available and try again."
                )

            # exit early so we don't check non-existing airflow databases
            return False

        # we can't use StandaloneCommand().is_ready() here as the
        # Airflow SequentialExecutor apparently does not send a heartbeat
        # while running a task which would result in this returning `False`
        # even if Airflow is running.
        airflow_running = webserver_port_open and command.job_running(
            TriggererJob
        )
        return airflow_running

    @property
    def is_provisioned(self) -> bool:
        """Returns whether the airflow daemon is currently running."""
        return self.is_running

    def provision(self) -> None:
        """Ensures that Airflow is running."""
        if self.is_running:
            logger.info("Airflow is already running.")
            self._log_webserver_credentials()
            return

        if not fileio.exists(self.dags_directory):
            zenml.io.utils.create_dir_recursive_if_not_exists(
                self.dags_directory
            )

        from airflow.cli.commands.standalone_command import StandaloneCommand

        try:
            command = StandaloneCommand()
            # Run the daemon with a working directory inside the current
            # zenml repo so the same repo will be used to run the DAGs
            daemon.run_as_daemon(
                command.run,
                pid_file=self.pid_file,
                log_file=self.log_file,
                working_directory=get_source_root_path(),
            )
            while not self.is_running:
                # Wait until the daemon started all the relevant airflow
                # processes
                time.sleep(0.1)
            self._log_webserver_credentials()
        except Exception as e:
            logger.error(e)
            logger.error(
                "An error occurred while starting the Airflow daemon. If you "
                "want to start it manually, use the commands described in the "
                "official Airflow quickstart guide for running Airflow locally."
            )
            self.deprovision()

    def deprovision(self) -> None:
        """Stops the airflow daemon if necessary and tears down resources."""
        if self.is_running:
            daemon.stop_daemon(self.pid_file)

        fileio.rmtree(self.airflow_home)
        logger.info("Airflow spun down.")
dags_directory: str property readonly

Returns path to the airflow dags directory.

is_provisioned: bool property readonly

Returns whether the airflow daemon is currently running.

is_running: bool property readonly

Returns whether the airflow daemon is currently running.

log_file: str property readonly

Returns path to the airflow log file.

password_file: str property readonly

Returns path to the webserver password file.

pid_file: str property readonly

Returns path to the daemon PID file.

__init__(self, **values) special

Sets environment variables to configure airflow.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
def __init__(self, **values: Any):
    """Sets environment variables to configure airflow."""
    super().__init__(**values)
    self._set_env()
deprovision(self)

Stops the airflow daemon if necessary and tears down resources.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
def deprovision(self) -> None:
    """Stops the airflow daemon if necessary and tears down resources."""
    if self.is_running:
        daemon.stop_daemon(self.pid_file)

    fileio.rmtree(self.airflow_home)
    logger.info("Airflow spun down.")
prepare_or_run_pipeline(self, sorted_steps, pipeline, pb2_pipeline, stack, runtime_configuration)

Create an airflow dag as the intermediate representation for the pipeline. This dag will be loaded by airflow in the target environment and used for orchestration of the pipeline.

How it works:

A new airflow_dag is instantiated with the pipeline name and among others things the run schedule.

For each step of the pipeline a callable is created. This callable uses the run_step() method to execute the step. The parameters of this callable are pre-filled and an airflow step_operator is created within the dag. The dependencies to upstream steps are then configured.

Finally, the dag is fully complete and can be returned.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
def prepare_or_run_pipeline(
    self,
    sorted_steps: List[BaseStep],
    pipeline: "BasePipeline",
    pb2_pipeline: Pb2Pipeline,
    stack: "Stack",
    runtime_configuration: "RuntimeConfiguration",
) -> Any:
    """Create an airflow dag as the intermediate representation for the
    pipeline. This dag will be loaded by airflow in the target environment
    and used for orchestration of the pipeline.

    How it works:
    -------------
    A new airflow_dag is instantiated with the pipeline name and among
    others things the run schedule.

    For each step of the pipeline a callable is created. This callable
    uses the run_step() method to execute the step. The parameters of
    this callable are pre-filled and an airflow step_operator is created
    within the dag. The dependencies to upstream steps are then
    configured.

    Finally, the dag is fully complete and can be returned.
    """

    import airflow
    from airflow.operators import python as airflow_python

    # Instantiate and configure airflow Dag with name and schedule
    airflow_dag = airflow.DAG(
        dag_id=pipeline.name,
        is_paused_upon_creation=False,
        **self._translate_schedule(runtime_configuration.schedule),
    )

    # Dictionary mapping step names to airflow_operators. This will be needed
    # to configure airflow operator dependencies
    step_name_to_airflow_operator = {}

    for step in sorted_steps:
        # Create callable that will be used by airflow to execute the step
        # within the orchestrated environment
        def _step_callable(step_instance: "BaseStep", **kwargs):
            # Extract run name for the kwargs that will be passed to the
            # callable
            run_name = kwargs["ti"].get_dagrun().run_id
            self.run_step(
                step=step_instance,
                run_name=run_name,
                pb2_pipeline=pb2_pipeline,
            )

        # Create airflow python operator that contains the step callable
        airflow_operator = airflow_python.PythonOperator(
            dag=airflow_dag,
            task_id=step.name,
            provide_context=True,
            python_callable=functools.partial(
                _step_callable, step_instance=step
            ),
        )

        # Configure the current airflow operator to run after all upstream
        # operators finished executing
        step_name_to_airflow_operator[step.name] = airflow_operator
        upstream_step_names = self.get_upstream_step_names(
            step=step, pb2_pipeline=pb2_pipeline
        )
        for upstream_step_name in upstream_step_names:
            airflow_operator.set_upstream(
                step_name_to_airflow_operator[upstream_step_name]
            )

    # Return the finished airflow dag
    return airflow_dag
prepare_pipeline_deployment(self, pipeline, stack, runtime_configuration)

Checks whether airflow is running and copies the DAG file to the airflow DAGs directory.

Exceptions:

Type Description
RuntimeError

If airflow is not running or no DAG filepath runtime option is provided.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
def prepare_pipeline_deployment(
    self,
    pipeline: "BasePipeline",
    stack: "Stack",
    runtime_configuration: "RuntimeConfiguration",
) -> None:
    """Checks whether airflow is running and copies the DAG file to the
    airflow DAGs directory.

    Raises:
        RuntimeError: If airflow is not running or no DAG filepath runtime
                      option is provided.
    """
    if not self.is_running:
        raise RuntimeError(
            "Airflow orchestrator is currently not running. Run `zenml "
            "stack up` to provision resources for the active stack."
        )

    try:
        dag_filepath = runtime_configuration[DAG_FILEPATH_OPTION_KEY]
    except KeyError:
        raise RuntimeError(
            f"No DAG filepath found in runtime configuration. Make sure "
            f"to add the filepath to your airflow DAG file as a runtime "
            f"option (key: '{DAG_FILEPATH_OPTION_KEY}')."
        )

    self._copy_to_dag_directory_if_necessary(dag_filepath=dag_filepath)
provision(self)

Ensures that Airflow is running.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
def provision(self) -> None:
    """Ensures that Airflow is running."""
    if self.is_running:
        logger.info("Airflow is already running.")
        self._log_webserver_credentials()
        return

    if not fileio.exists(self.dags_directory):
        zenml.io.utils.create_dir_recursive_if_not_exists(
            self.dags_directory
        )

    from airflow.cli.commands.standalone_command import StandaloneCommand

    try:
        command = StandaloneCommand()
        # Run the daemon with a working directory inside the current
        # zenml repo so the same repo will be used to run the DAGs
        daemon.run_as_daemon(
            command.run,
            pid_file=self.pid_file,
            log_file=self.log_file,
            working_directory=get_source_root_path(),
        )
        while not self.is_running:
            # Wait until the daemon started all the relevant airflow
            # processes
            time.sleep(0.1)
        self._log_webserver_credentials()
    except Exception as e:
        logger.error(e)
        logger.error(
            "An error occurred while starting the Airflow daemon. If you "
            "want to start it manually, use the commands described in the "
            "official Airflow quickstart guide for running Airflow locally."
        )
        self.deprovision()
runtime_options(self)

Runtime options for the airflow orchestrator.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
def runtime_options(self) -> Dict[str, Any]:
    """Runtime options for the airflow orchestrator."""
    return {DAG_FILEPATH_OPTION_KEY: None}
set_airflow_home(values) classmethod

Sets airflow home according to orchestrator UUID.

Source code in zenml/integrations/airflow/orchestrators/airflow_orchestrator.py
@root_validator(skip_on_failure=True)
def set_airflow_home(cls, values: Dict[str, Any]) -> Dict[str, Any]:
    """Sets airflow home according to orchestrator UUID."""
    if "uuid" not in values:
        raise ValueError("`uuid` needs to exist for AirflowOrchestrator.")
    values["airflow_home"] = os.path.join(
        zenml.io.utils.get_global_config_directory(),
        AIRFLOW_ROOT_DIR,
        str(values["uuid"]),
    )
    return values

aws special

The AWS integration provides a way for our users to manage their secrets through AWS.

AWSIntegration (Integration)

Definition of AWS integration for ZenML.

Source code in zenml/integrations/aws/__init__.py
class AWSIntegration(Integration):
    """Definition of AWS integration for ZenML."""

    NAME = AWS
    REQUIREMENTS = ["boto3==1.21.21"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.aws import secret_schemas  # noqa

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the AWS integration."""
        return [
            FlavorWrapper(
                name=AWS_SECRET_MANAGER_FLAVOR,
                source="zenml.integrations.aws.secrets_managers"
                ".AWSSecretsManager",
                type=StackComponentType.SECRETS_MANAGER,
                integration=cls.NAME,
            ),
            FlavorWrapper(
                name=AWS_CONTAINER_REGISTRY_FLAVOR,
                source="zenml.integrations.aws.container_registries.AWSContainerRegistry",
                type=StackComponentType.CONTAINER_REGISTRY,
                integration=cls.NAME,
            ),
        ]
activate() classmethod

Activates the integration.

Source code in zenml/integrations/aws/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.aws import secret_schemas  # noqa
flavors() classmethod

Declare the stack component flavors for the AWS integration.

Source code in zenml/integrations/aws/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the AWS integration."""
    return [
        FlavorWrapper(
            name=AWS_SECRET_MANAGER_FLAVOR,
            source="zenml.integrations.aws.secrets_managers"
            ".AWSSecretsManager",
            type=StackComponentType.SECRETS_MANAGER,
            integration=cls.NAME,
        ),
        FlavorWrapper(
            name=AWS_CONTAINER_REGISTRY_FLAVOR,
            source="zenml.integrations.aws.container_registries.AWSContainerRegistry",
            type=StackComponentType.CONTAINER_REGISTRY,
            integration=cls.NAME,
        ),
    ]

container_registries special

aws_container_registry
AWSContainerRegistry (BaseContainerRegistry) pydantic-model

Class for AWS Container Registry.

Source code in zenml/integrations/aws/container_registries/aws_container_registry.py
class AWSContainerRegistry(BaseContainerRegistry):
    """Class for AWS Container Registry."""

    # Class Configuration
    FLAVOR: ClassVar[str] = AWS_CONTAINER_REGISTRY_FLAVOR

    @validator("uri")
    def validate_aws_uri(cls, uri: str) -> str:
        """Validates that the URI is in the correct format."""
        if "/" in uri:
            raise ValueError(
                "Property `uri` can not contain a `/`. An example of a valid "
                "URI is: `715803424592.dkr.ecr.us-east-1.amazonaws.com`"
            )

        return uri

    def prepare_image_push(self, image_name: str) -> None:
        """Logs a warning message if trying to push an image for which no
        repository exists.

        Args:
            image_name: Name of the docker image that will be pushed.

        Raises:
            ValueError: If the docker image name is invalid.
        """
        response = boto3.client("ecr").describe_repositories()
        try:
            repo_uris: List[str] = [
                repository["repositoryUri"]
                for repository in response["repositories"]
            ]
        except (KeyError, ClientError) as e:
            # invalid boto response, let's hope for the best and just push
            logger.debug("Error while trying to fetch ECR repositories: %s", e)
            return

        repo_exists = any(image_name.startswith(f"{uri}:") for uri in repo_uris)
        if not repo_exists:
            match = re.search(f"{self.uri}/(.*):.*", image_name)
            if not match:
                raise ValueError(f"Invalid docker image name '{image_name}'.")

            repo_name = match.group(1)
            logger.warning(
                "Amazon ECR requires you to create a repository before you can "
                f"push an image to it. ZenML is trying to push the image "
                f"{image_name} but could only detect the following "
                f"repositories: {repo_uris}. We will try to push anyway, but "
                f"in case it fails you need to create a repository named "
                f"`{repo_name}`."
            )

    @property
    def post_registration_message(self) -> Optional[str]:
        """Optional message that will be printed after the stack component is
        registered."""
        return (
            "Amazon ECR requires you to create a repository before you can "
            "push an image to it. If you want to for example run a pipeline "
            "using our Kubeflow orchestrator, ZenML will automatically build a "
            f"docker image called `{self.uri}/zenml-kubeflow:<PIPELINE_NAME>` "
            f"and try to push it. This will fail unless you create the "
            f"repository `zenml-kubeflow` inside your amazon registry."
        )
post_registration_message: Optional[str] property readonly

Optional message that will be printed after the stack component is registered.

prepare_image_push(self, image_name)

Logs a warning message if trying to push an image for which no repository exists.

Parameters:

Name Type Description Default
image_name str

Name of the docker image that will be pushed.

required

Exceptions:

Type Description
ValueError

If the docker image name is invalid.

Source code in zenml/integrations/aws/container_registries/aws_container_registry.py
def prepare_image_push(self, image_name: str) -> None:
    """Logs a warning message if trying to push an image for which no
    repository exists.

    Args:
        image_name: Name of the docker image that will be pushed.

    Raises:
        ValueError: If the docker image name is invalid.
    """
    response = boto3.client("ecr").describe_repositories()
    try:
        repo_uris: List[str] = [
            repository["repositoryUri"]
            for repository in response["repositories"]
        ]
    except (KeyError, ClientError) as e:
        # invalid boto response, let's hope for the best and just push
        logger.debug("Error while trying to fetch ECR repositories: %s", e)
        return

    repo_exists = any(image_name.startswith(f"{uri}:") for uri in repo_uris)
    if not repo_exists:
        match = re.search(f"{self.uri}/(.*):.*", image_name)
        if not match:
            raise ValueError(f"Invalid docker image name '{image_name}'.")

        repo_name = match.group(1)
        logger.warning(
            "Amazon ECR requires you to create a repository before you can "
            f"push an image to it. ZenML is trying to push the image "
            f"{image_name} but could only detect the following "
            f"repositories: {repo_uris}. We will try to push anyway, but "
            f"in case it fails you need to create a repository named "
            f"`{repo_name}`."
        )
validate_aws_uri(uri) classmethod

Validates that the URI is in the correct format.

Source code in zenml/integrations/aws/container_registries/aws_container_registry.py
@validator("uri")
def validate_aws_uri(cls, uri: str) -> str:
    """Validates that the URI is in the correct format."""
    if "/" in uri:
        raise ValueError(
            "Property `uri` can not contain a `/`. An example of a valid "
            "URI is: `715803424592.dkr.ecr.us-east-1.amazonaws.com`"
        )

    return uri

secret_schemas special

Secret Schema

...

secrets_managers special

Secret Manager

...

aws_secrets_manager
AWSSecretsManager (BaseSecretsManager) pydantic-model

Class to interact with the AWS secrets manager.

Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
class AWSSecretsManager(BaseSecretsManager):
    """Class to interact with the AWS secrets manager."""

    region_name: str = DEFAULT_AWS_REGION

    # Class configuration
    FLAVOR: ClassVar[str] = AWS_SECRET_MANAGER_FLAVOR
    CLIENT: ClassVar[Any] = None

    @classmethod
    def _ensure_client_connected(cls, region_name: str) -> None:
        if cls.CLIENT is None:
            # Create a Secrets Manager client
            session = boto3.session.Session()
            cls.CLIENT = session.client(
                service_name="secretsmanager", region_name=region_name
            )

    def register_secret(self, secret: BaseSecretSchema) -> None:
        """Registers a new secret.

        Args:
            secret: the secret to register"""
        self._ensure_client_connected(self.region_name)
        secret_value = jsonify_secret_contents(secret)

        kwargs = {"Name": secret.name, "SecretString": secret_value}
        # TODO [ENG-872]: Catch error if secret name already exists and use
        #  SecretExistsError instead.
        self.CLIENT.create_secret(**kwargs)

    def get_secret(self, secret_name: str) -> BaseSecretSchema:
        """Gets a secret.

        Args:
            secret_name: the name of the secret to get

        Returns:
            The secret.

        Raises:
            RuntimeError: if the secret does not exist"""
        self._ensure_client_connected(self.region_name)
        get_secret_value_response = self.CLIENT.get_secret_value(
            SecretId=secret_name
        )
        if "SecretString" not in get_secret_value_response:
            raise RuntimeError(f"No secrets found within the {secret_name}")
        secret_contents: Dict[str, str] = json.loads(
            get_secret_value_response["SecretString"]
        )

        zenml_schema_name = secret_contents.pop(ZENML_SCHEMA_NAME)
        secret_contents["name"] = secret_name

        secret_schema = SecretSchemaClassRegistry.get_class(
            secret_schema=zenml_schema_name
        )
        return secret_schema(**secret_contents)

    def get_all_secret_keys(self) -> List[str]:
        """Get all secret keys.

        Returns:
            A list of all secret keys."""
        self._ensure_client_connected(self.region_name)

        # TODO [ENG-720]: Deal with pagination in the aws secret manager when
        #  listing all secrets
        # TODO [ENG-721]: take out this magic maxresults number
        response = self.CLIENT.list_secrets(MaxResults=100)
        return [secret["Name"] for secret in response["SecretList"]]

    def update_secret(self, secret: BaseSecretSchema) -> None:
        """Update an existing secret.

        Args:
            secret: the secret to update"""
        self._ensure_client_connected(self.region_name)

        secret_value = jsonify_secret_contents(secret)

        kwargs = {"SecretId": secret.name, "SecretString": secret_value}

        self.CLIENT.put_secret_value(**kwargs)

    def delete_secret(self, secret_name: str) -> None:
        """Delete an existing secret.

        Args:
            secret_name: the name of the secret to delete"""
        self._ensure_client_connected(self.region_name)
        self.CLIENT.delete_secret(
            SecretId=secret_name, ForceDeleteWithoutRecovery=False
        )

    def delete_all_secrets(self, force: bool = False) -> None:
        """Delete all existing secrets.

        Args:
            force: whether to force delete all secrets"""
        self._ensure_client_connected(self.region_name)
        for secret_name in self.get_all_secret_keys():
            self.CLIENT.delete_secret(
                SecretId=secret_name, ForceDeleteWithoutRecovery=force
            )
delete_all_secrets(self, force=False)

Delete all existing secrets.

Parameters:

Name Type Description Default
force bool

whether to force delete all secrets

False
Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
def delete_all_secrets(self, force: bool = False) -> None:
    """Delete all existing secrets.

    Args:
        force: whether to force delete all secrets"""
    self._ensure_client_connected(self.region_name)
    for secret_name in self.get_all_secret_keys():
        self.CLIENT.delete_secret(
            SecretId=secret_name, ForceDeleteWithoutRecovery=force
        )
delete_secret(self, secret_name)

Delete an existing secret.

Parameters:

Name Type Description Default
secret_name str

the name of the secret to delete

required
Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
def delete_secret(self, secret_name: str) -> None:
    """Delete an existing secret.

    Args:
        secret_name: the name of the secret to delete"""
    self._ensure_client_connected(self.region_name)
    self.CLIENT.delete_secret(
        SecretId=secret_name, ForceDeleteWithoutRecovery=False
    )
get_all_secret_keys(self)

Get all secret keys.

Returns:

Type Description
List[str]

A list of all secret keys.

Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
def get_all_secret_keys(self) -> List[str]:
    """Get all secret keys.

    Returns:
        A list of all secret keys."""
    self._ensure_client_connected(self.region_name)

    # TODO [ENG-720]: Deal with pagination in the aws secret manager when
    #  listing all secrets
    # TODO [ENG-721]: take out this magic maxresults number
    response = self.CLIENT.list_secrets(MaxResults=100)
    return [secret["Name"] for secret in response["SecretList"]]
get_secret(self, secret_name)

Gets a secret.

Parameters:

Name Type Description Default
secret_name str

the name of the secret to get

required

Returns:

Type Description
BaseSecretSchema

The secret.

Exceptions:

Type Description
RuntimeError

if the secret does not exist

Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
def get_secret(self, secret_name: str) -> BaseSecretSchema:
    """Gets a secret.

    Args:
        secret_name: the name of the secret to get

    Returns:
        The secret.

    Raises:
        RuntimeError: if the secret does not exist"""
    self._ensure_client_connected(self.region_name)
    get_secret_value_response = self.CLIENT.get_secret_value(
        SecretId=secret_name
    )
    if "SecretString" not in get_secret_value_response:
        raise RuntimeError(f"No secrets found within the {secret_name}")
    secret_contents: Dict[str, str] = json.loads(
        get_secret_value_response["SecretString"]
    )

    zenml_schema_name = secret_contents.pop(ZENML_SCHEMA_NAME)
    secret_contents["name"] = secret_name

    secret_schema = SecretSchemaClassRegistry.get_class(
        secret_schema=zenml_schema_name
    )
    return secret_schema(**secret_contents)
register_secret(self, secret)

Registers a new secret.

Parameters:

Name Type Description Default
secret BaseSecretSchema

the secret to register

required
Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
def register_secret(self, secret: BaseSecretSchema) -> None:
    """Registers a new secret.

    Args:
        secret: the secret to register"""
    self._ensure_client_connected(self.region_name)
    secret_value = jsonify_secret_contents(secret)

    kwargs = {"Name": secret.name, "SecretString": secret_value}
    # TODO [ENG-872]: Catch error if secret name already exists and use
    #  SecretExistsError instead.
    self.CLIENT.create_secret(**kwargs)
update_secret(self, secret)

Update an existing secret.

Parameters:

Name Type Description Default
secret BaseSecretSchema

the secret to update

required
Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
def update_secret(self, secret: BaseSecretSchema) -> None:
    """Update an existing secret.

    Args:
        secret: the secret to update"""
    self._ensure_client_connected(self.region_name)

    secret_value = jsonify_secret_contents(secret)

    kwargs = {"SecretId": secret.name, "SecretString": secret_value}

    self.CLIENT.put_secret_value(**kwargs)
jsonify_secret_contents(secret)

Adds the secret type to the secret contents to persist the schema type in the secrets backend, so that the correct SecretSchema can be retrieved when the secret is queried from the backend.

Parameters:

Name Type Description Default
secret BaseSecretSchema

should be a subclass of the BaseSecretSchema class

required

Returns:

Type Description
str

jsonified dictionary containing all key-value pairs and the ZenML schema type

Source code in zenml/integrations/aws/secrets_managers/aws_secrets_manager.py
def jsonify_secret_contents(secret: BaseSecretSchema) -> str:
    """Adds the secret type to the secret contents to persist the schema
    type in the secrets backend, so that the correct SecretSchema can be
    retrieved when the secret is queried from the backend.

    Args:
        secret: should be a subclass of the BaseSecretSchema class

    Returns:
        jsonified dictionary containing all key-value pairs and the ZenML schema
        type
    """
    secret_contents = secret.content
    secret_contents[ZENML_SCHEMA_NAME] = secret.TYPE
    return json.dumps(secret_contents)

azure special

The Azure integration submodule provides a way to run ZenML pipelines in a cloud environment. Specifically, it allows the use of cloud artifact stores, and an io module to handle file operations on Azure Blob Storage.

AzureIntegration (Integration)

Definition of Azure integration for ZenML.

Source code in zenml/integrations/azure/__init__.py
class AzureIntegration(Integration):
    """Definition of Azure integration for ZenML."""

    NAME = AZURE
    REQUIREMENTS = ["adlfs==2021.10.0"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declares the flavors for the integration."""
        return [
            FlavorWrapper(
                name=AZURE_ARTIFACT_STORE_FLAVOR,
                source="zenml.integrations.azure.artifact_stores.AzureArtifactStore",
                type=StackComponentType.ARTIFACT_STORE,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declares the flavors for the integration.

Source code in zenml/integrations/azure/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declares the flavors for the integration."""
    return [
        FlavorWrapper(
            name=AZURE_ARTIFACT_STORE_FLAVOR,
            source="zenml.integrations.azure.artifact_stores.AzureArtifactStore",
            type=StackComponentType.ARTIFACT_STORE,
            integration=cls.NAME,
        )
    ]

artifact_stores special

azure_artifact_store
AzureArtifactStore (BaseArtifactStore) pydantic-model

Artifact Store for Microsoft Azure based artifacts.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
class AzureArtifactStore(BaseArtifactStore):
    """Artifact Store for Microsoft Azure based artifacts."""

    _filesystem: Optional[adlfs.AzureBlobFileSystem] = None

    # Class Configuration
    FLAVOR: ClassVar[str] = AZURE_ARTIFACT_STORE_FLAVOR
    SUPPORTED_SCHEMES: ClassVar[Set[str]] = {"abfs://", "az://"}

    @property
    def filesystem(self) -> adlfs.AzureBlobFileSystem:
        """The adlfs filesystem to access this artifact store."""
        if not self._filesystem:
            self._filesystem = adlfs.AzureBlobFileSystem(
                anon=False,
                use_listings_cache=False,
            )
        return self._filesystem

    @classmethod
    def _split_path(cls, path: PathType) -> Tuple[str, str]:
        """Splits a path into the filesystem prefix and remainder.

        Example:
        ```python
        prefix, remainder = ZenAzure._split_path("az://my_container/test.txt")
        print(prefix, remainder)  # "az://" "my_container/test.txt"
        ```
        """
        path = convert_to_str(path)
        prefix = ""
        for potential_prefix in cls.SUPPORTED_SCHEMES:
            if path.startswith(potential_prefix):
                prefix = potential_prefix
                path = path[len(potential_prefix) :]
                break

        return prefix, path

    def open(self, path: PathType, mode: str = "r") -> Any:
        """Open a file at the given path.
        Args:
            path: Path of the file to open.
            mode: Mode in which to open the file. Currently, only
                'rb' and 'wb' to read and write binary files are supported.
        """
        return self.filesystem.open(path=path, mode=mode)

    def copyfile(
        self, src: PathType, dst: PathType, overwrite: bool = False
    ) -> None:
        """Copy a file.
        Args:
            src: The path to copy from.
            dst: The path to copy to.
            overwrite: If a file already exists at the destination, this
                method will overwrite it if overwrite=`True` and
                raise a FileExistsError otherwise.
        Raises:
            FileNotFoundError: If the source file does not exist.
            FileExistsError: If a file already exists at the destination
                and overwrite is not set to `True`.
        """
        if not overwrite and self.filesystem.exists(dst):
            raise FileExistsError(
                f"Unable to copy to destination '{convert_to_str(dst)}', "
                f"file already exists. Set `overwrite=True` to copy anyway."
            )

        # TODO [ENG-151]: Check if it works with overwrite=True or if we need to
        #  manually remove it first
        self.filesystem.copy(path1=src, path2=dst)

    def exists(self, path: PathType) -> bool:
        """Check whether a path exists."""
        return self.filesystem.exists(path=path)  # type: ignore[no-any-return]

    def glob(self, pattern: PathType) -> List[PathType]:
        """Return all paths that match the given glob pattern.
        The glob pattern may include:
        - '*' to match any number of characters
        - '?' to match a single character
        - '[...]' to match one of the characters inside the brackets
        - '**' as the full name of a path component to match to search
          in subdirectories of any depth (e.g. '/some_dir/**/some_file)
        Args:
            pattern: The glob pattern to match, see details above.
        Returns:
            A list of paths that match the given glob pattern.
        """
        prefix, _ = self._split_path(pattern)
        return [
            f"{prefix}{path}" for path in self.filesystem.glob(path=pattern)
        ]

    def isdir(self, path: PathType) -> bool:
        """Check whether a path is a directory."""
        return self.filesystem.isdir(path=path)  # type: ignore[no-any-return]

    def listdir(self, path: PathType) -> List[PathType]:
        """Return a list of files in a directory."""
        _, path = self._split_path(path)

        def _extract_basename(file_dict: Dict[str, Any]) -> str:
            """Extracts the basename from a file info dict returned by the Azure
            filesystem."""
            file_path = cast(str, file_dict["name"])
            base_name = file_path[len(path) :]
            return base_name.lstrip("/")

        return [
            _extract_basename(dict_)
            for dict_ in self.filesystem.listdir(path=path)
        ]

    def makedirs(self, path: PathType) -> None:
        """Create a directory at the given path. If needed also
        create missing parent directories."""
        self.filesystem.makedirs(path=path, exist_ok=True)

    def mkdir(self, path: PathType) -> None:
        """Create a directory at the given path."""
        self.filesystem.makedir(path=path)

    def remove(self, path: PathType) -> None:
        """Remove the file at the given path."""
        self.filesystem.rm_file(path=path)

    def rename(
        self, src: PathType, dst: PathType, overwrite: bool = False
    ) -> None:
        """Rename source file to destination file.
        Args:
            src: The path of the file to rename.
            dst: The path to rename the source file to.
            overwrite: If a file already exists at the destination, this
                method will overwrite it if overwrite=`True` and
                raise a FileExistsError otherwise.
        Raises:
            FileNotFoundError: If the source file does not exist.
            FileExistsError: If a file already exists at the destination
                and overwrite is not set to `True`.
        """
        if not overwrite and self.filesystem.exists(dst):
            raise FileExistsError(
                f"Unable to rename file to '{convert_to_str(dst)}', "
                f"file already exists. Set `overwrite=True` to rename anyway."
            )

        # TODO [ENG-152]: Check if it works with overwrite=True or if we need
        #  to manually remove it first
        self.filesystem.rename(path1=src, path2=dst)

    def rmtree(self, path: PathType) -> None:
        """Remove the given directory."""
        self.filesystem.delete(path=path, recursive=True)

    def stat(self, path: PathType) -> Dict[str, Any]:
        """Return stat info for the given path."""
        return self.filesystem.stat(path=path)  # type: ignore[no-any-return]

    def walk(
        self,
        top: PathType,
        topdown: bool = True,
        onerror: Optional[Callable[..., None]] = None,
    ) -> Iterable[Tuple[PathType, List[PathType], List[PathType]]]:
        """Return an iterator that walks the contents of the given directory.
        Args:
            top: Path of directory to walk.
            topdown: Unused argument to conform to interface.
            onerror: Unused argument to conform to interface.
        Returns:
            An Iterable of Tuples, each of which contain the path of the current
            directory path, a list of directories inside the current directory
            and a list of files inside the current directory.
        """
        # TODO [ENG-153]: Additional params
        prefix, _ = self._split_path(top)
        for (
            directory,
            subdirectories,
            files,
        ) in self.filesystem.walk(path=top):
            yield f"{prefix}{directory}", subdirectories, files
filesystem: AzureBlobFileSystem property readonly

The adlfs filesystem to access this artifact store.

copyfile(self, src, dst, overwrite=False)

Copy a file.

Parameters:

Name Type Description Default
src Union[bytes, str]

The path to copy from.

required
dst Union[bytes, str]

The path to copy to.

required
overwrite bool

If a file already exists at the destination, this method will overwrite it if overwrite=True and raise a FileExistsError otherwise.

False

Exceptions:

Type Description
FileNotFoundError

If the source file does not exist.

FileExistsError

If a file already exists at the destination and overwrite is not set to True.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def copyfile(
    self, src: PathType, dst: PathType, overwrite: bool = False
) -> None:
    """Copy a file.
    Args:
        src: The path to copy from.
        dst: The path to copy to.
        overwrite: If a file already exists at the destination, this
            method will overwrite it if overwrite=`True` and
            raise a FileExistsError otherwise.
    Raises:
        FileNotFoundError: If the source file does not exist.
        FileExistsError: If a file already exists at the destination
            and overwrite is not set to `True`.
    """
    if not overwrite and self.filesystem.exists(dst):
        raise FileExistsError(
            f"Unable to copy to destination '{convert_to_str(dst)}', "
            f"file already exists. Set `overwrite=True` to copy anyway."
        )

    # TODO [ENG-151]: Check if it works with overwrite=True or if we need to
    #  manually remove it first
    self.filesystem.copy(path1=src, path2=dst)
exists(self, path)

Check whether a path exists.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def exists(self, path: PathType) -> bool:
    """Check whether a path exists."""
    return self.filesystem.exists(path=path)  # type: ignore[no-any-return]
glob(self, pattern)

Return all paths that match the given glob pattern. The glob pattern may include: - '' to match any number of characters - '?' to match a single character - '[...]' to match one of the characters inside the brackets - '' as the full name of a path component to match to search in subdirectories of any depth (e.g. '/some_dir/*/some_file)

Parameters:

Name Type Description Default
pattern Union[bytes, str]

The glob pattern to match, see details above.

required

Returns:

Type Description
List[Union[bytes, str]]

A list of paths that match the given glob pattern.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def glob(self, pattern: PathType) -> List[PathType]:
    """Return all paths that match the given glob pattern.
    The glob pattern may include:
    - '*' to match any number of characters
    - '?' to match a single character
    - '[...]' to match one of the characters inside the brackets
    - '**' as the full name of a path component to match to search
      in subdirectories of any depth (e.g. '/some_dir/**/some_file)
    Args:
        pattern: The glob pattern to match, see details above.
    Returns:
        A list of paths that match the given glob pattern.
    """
    prefix, _ = self._split_path(pattern)
    return [
        f"{prefix}{path}" for path in self.filesystem.glob(path=pattern)
    ]
isdir(self, path)

Check whether a path is a directory.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def isdir(self, path: PathType) -> bool:
    """Check whether a path is a directory."""
    return self.filesystem.isdir(path=path)  # type: ignore[no-any-return]
listdir(self, path)

Return a list of files in a directory.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def listdir(self, path: PathType) -> List[PathType]:
    """Return a list of files in a directory."""
    _, path = self._split_path(path)

    def _extract_basename(file_dict: Dict[str, Any]) -> str:
        """Extracts the basename from a file info dict returned by the Azure
        filesystem."""
        file_path = cast(str, file_dict["name"])
        base_name = file_path[len(path) :]
        return base_name.lstrip("/")

    return [
        _extract_basename(dict_)
        for dict_ in self.filesystem.listdir(path=path)
    ]
makedirs(self, path)

Create a directory at the given path. If needed also create missing parent directories.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def makedirs(self, path: PathType) -> None:
    """Create a directory at the given path. If needed also
    create missing parent directories."""
    self.filesystem.makedirs(path=path, exist_ok=True)
mkdir(self, path)

Create a directory at the given path.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def mkdir(self, path: PathType) -> None:
    """Create a directory at the given path."""
    self.filesystem.makedir(path=path)
open(self, path, mode='r')

Open a file at the given path.

Parameters:

Name Type Description Default
path Union[bytes, str]

Path of the file to open.

required
mode str

Mode in which to open the file. Currently, only 'rb' and 'wb' to read and write binary files are supported.

'r'
Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def open(self, path: PathType, mode: str = "r") -> Any:
    """Open a file at the given path.
    Args:
        path: Path of the file to open.
        mode: Mode in which to open the file. Currently, only
            'rb' and 'wb' to read and write binary files are supported.
    """
    return self.filesystem.open(path=path, mode=mode)
remove(self, path)

Remove the file at the given path.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def remove(self, path: PathType) -> None:
    """Remove the file at the given path."""
    self.filesystem.rm_file(path=path)
rename(self, src, dst, overwrite=False)

Rename source file to destination file.

Parameters:

Name Type Description Default
src Union[bytes, str]

The path of the file to rename.

required
dst Union[bytes, str]

The path to rename the source file to.

required
overwrite bool

If a file already exists at the destination, this method will overwrite it if overwrite=True and raise a FileExistsError otherwise.

False

Exceptions:

Type Description
FileNotFoundError

If the source file does not exist.

FileExistsError

If a file already exists at the destination and overwrite is not set to True.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def rename(
    self, src: PathType, dst: PathType, overwrite: bool = False
) -> None:
    """Rename source file to destination file.
    Args:
        src: The path of the file to rename.
        dst: The path to rename the source file to.
        overwrite: If a file already exists at the destination, this
            method will overwrite it if overwrite=`True` and
            raise a FileExistsError otherwise.
    Raises:
        FileNotFoundError: If the source file does not exist.
        FileExistsError: If a file already exists at the destination
            and overwrite is not set to `True`.
    """
    if not overwrite and self.filesystem.exists(dst):
        raise FileExistsError(
            f"Unable to rename file to '{convert_to_str(dst)}', "
            f"file already exists. Set `overwrite=True` to rename anyway."
        )

    # TODO [ENG-152]: Check if it works with overwrite=True or if we need
    #  to manually remove it first
    self.filesystem.rename(path1=src, path2=dst)
rmtree(self, path)

Remove the given directory.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def rmtree(self, path: PathType) -> None:
    """Remove the given directory."""
    self.filesystem.delete(path=path, recursive=True)
stat(self, path)

Return stat info for the given path.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def stat(self, path: PathType) -> Dict[str, Any]:
    """Return stat info for the given path."""
    return self.filesystem.stat(path=path)  # type: ignore[no-any-return]
walk(self, top, topdown=True, onerror=None)

Return an iterator that walks the contents of the given directory.

Parameters:

Name Type Description Default
top Union[bytes, str]

Path of directory to walk.

required
topdown bool

Unused argument to conform to interface.

True
onerror Optional[Callable[..., NoneType]]

Unused argument to conform to interface.

None

Returns:

Type Description
Iterable[Tuple[Union[bytes, str], List[Union[bytes, str]], List[Union[bytes, str]]]]

An Iterable of Tuples, each of which contain the path of the current directory path, a list of directories inside the current directory and a list of files inside the current directory.

Source code in zenml/integrations/azure/artifact_stores/azure_artifact_store.py
def walk(
    self,
    top: PathType,
    topdown: bool = True,
    onerror: Optional[Callable[..., None]] = None,
) -> Iterable[Tuple[PathType, List[PathType], List[PathType]]]:
    """Return an iterator that walks the contents of the given directory.
    Args:
        top: Path of directory to walk.
        topdown: Unused argument to conform to interface.
        onerror: Unused argument to conform to interface.
    Returns:
        An Iterable of Tuples, each of which contain the path of the current
        directory path, a list of directories inside the current directory
        and a list of files inside the current directory.
    """
    # TODO [ENG-153]: Additional params
    prefix, _ = self._split_path(top)
    for (
        directory,
        subdirectories,
        files,
    ) in self.filesystem.walk(path=top):
        yield f"{prefix}{directory}", subdirectories, files

azureml special

The AzureML integration submodule provides a way to run ZenML steps in AzureML.

AzureMLIntegration (Integration)

Definition of AzureML integration for ZenML.

Source code in zenml/integrations/azureml/__init__.py
class AzureMLIntegration(Integration):
    """Definition of AzureML integration for ZenML."""

    NAME = AZUREML
    REQUIREMENTS = ["azureml-core==1.39.0.post1"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the AzureML integration."""
        return [
            FlavorWrapper(
                name=AZUREML_STEP_OPERATOR_FLAVOR,
                source="zenml.integrations.azureml.step_operators.AzureMLStepOperator",
                type=StackComponentType.STEP_OPERATOR,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the AzureML integration.

Source code in zenml/integrations/azureml/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the AzureML integration."""
    return [
        FlavorWrapper(
            name=AZUREML_STEP_OPERATOR_FLAVOR,
            source="zenml.integrations.azureml.step_operators.AzureMLStepOperator",
            type=StackComponentType.STEP_OPERATOR,
            integration=cls.NAME,
        )
    ]

step_operators special

azureml_step_operator
AzureMLStepOperator (BaseStepOperator) pydantic-model

Step operator to run a step on AzureML.

This class defines code that can set up an AzureML environment and run the ZenML entrypoint command in it.

Attributes:

Name Type Description
subscription_id str

The Azure account's subscription ID

resource_group str

The resource group to which the AzureML workspace is deployed.

workspace_name str

The name of the AzureML Workspace.

compute_target_name str

The name of the configured ComputeTarget. An instance of it has to be created on the portal if it doesn't exist already.

environment_name Optional[str]

[Optional] The name of the environment if there already exists one.

docker_base_image Optional[str]

[Optional] The custom docker base image that the environment should use.

tenant_id Optional[str]

The Azure Tenant ID.

service_principal_id Optional[str]

The ID for the service principal that is created to allow apps to access secure resources.

service_principal_password Optional[str]

Password for the service principal.

Source code in zenml/integrations/azureml/step_operators/azureml_step_operator.py
class AzureMLStepOperator(BaseStepOperator):
    """Step operator to run a step on AzureML.

    This class defines code that can set up an AzureML environment and run the
    ZenML entrypoint command in it.

    Attributes:
        subscription_id: The Azure account's subscription ID
        resource_group: The resource group to which the AzureML workspace
            is deployed.
        workspace_name: The name of the AzureML Workspace.
        compute_target_name: The name of the configured ComputeTarget.
            An instance of it has to be created on the portal if it doesn't
            exist already.
        environment_name: [Optional] The name of the environment if there
            already exists one.
        docker_base_image: [Optional] The custom docker base image that the
            environment should use.
        tenant_id: The Azure Tenant ID.
        service_principal_id: The ID for the service principal that is created
            to allow apps to access secure resources.
        service_principal_password: Password for the service principal.
    """

    subscription_id: str
    resource_group: str
    workspace_name: str
    compute_target_name: str

    # Environment
    environment_name: Optional[str] = None
    docker_base_image: Optional[str] = None

    # Service principal authentication
    # https://docs.microsoft.com/en-us/azure/machine-learning/how-to-setup-authentication#configure-a-service-principal
    tenant_id: Optional[str] = None
    service_principal_id: Optional[str] = None
    service_principal_password: Optional[str] = None

    # Class Configuration
    FLAVOR: ClassVar[str] = AZUREML_STEP_OPERATOR_FLAVOR

    def _get_authentication(self) -> Optional[AbstractAuthentication]:
        if (
            self.tenant_id
            and self.service_principal_id
            and self.service_principal_password
        ):
            return ServicePrincipalAuthentication(
                tenant_id=self.tenant_id,
                service_principal_id=self.service_principal_id,
                service_principal_password=self.service_principal_password,
            )
        return None

    def _prepare_environment(
        self, workspace: Workspace, requirements: List[str], run_name: str
    ) -> Environment:
        """Prepares the environment in which Azure will run all jobs.

        Args:
            workspace: The AzureML Workspace that has configuration
                for a storage account, container registry among other
                things.
            requirements: The list of requirements to be installed
                in the environment.
            run_name: The name of the pipeline run that can be used
                for naming environments and runs.
        """
        if self.environment_name:
            environment = Environment.get(
                workspace=workspace, name=self.environment_name
            )
            if not environment.python.conda_dependencies:
                environment.python.conda_dependencies = (
                    CondaDependencies.create(
                        python_version=ZenMLEnvironment.python_version()
                    )
                )

            for requirement in requirements:
                environment.python.conda_dependencies.add_pip_package(
                    requirement
                )
        else:
            environment = Environment(name=f"zenml-{run_name}")
            environment.python.conda_dependencies = CondaDependencies.create(
                pip_packages=requirements,
                python_version=ZenMLEnvironment.python_version(),
            )

            if self.docker_base_image:
                # replace the default azure base image
                environment.docker.base_image = self.docker_base_image

        environment_variables = {
            "ENV_ZENML_PREVENT_PIPELINE_EXECUTION": "True",
        }
        # set credentials to access azure storage
        for key in [
            "AZURE_STORAGE_ACCOUNT_KEY",
            "AZURE_STORAGE_ACCOUNT_NAME",
            "AZURE_STORAGE_CONNECTION_STRING",
            "AZURE_STORAGE_SAS_TOKEN",
        ]:
            value = os.getenv(key)
            if value:
                environment_variables[key] = value

        environment_variables[
            ENV_ZENML_CONFIG_PATH
        ] = f"./{CONTAINER_ZENML_CONFIG_DIR}"

        environment.environment_variables = environment_variables
        return environment

    def launch(
        self,
        pipeline_name: str,
        run_name: str,
        requirements: List[str],
        entrypoint_command: List[str],
    ) -> None:
        """Launches a step on AzureML.

        Args:
            pipeline_name: Name of the pipeline which the step to be executed
                is part of.
            run_name: Name of the pipeline run which the step to be executed
                is part of.
            entrypoint_command: Command that executes the step.
            requirements: List of pip requirements that must be installed
                inside the step operator environment.
        """
        workspace = Workspace.get(
            subscription_id=self.subscription_id,
            resource_group=self.resource_group,
            name=self.workspace_name,
            auth=self._get_authentication(),
        )

        source_directory = get_source_root_path()
        config_path = os.path.join(source_directory, CONTAINER_ZENML_CONFIG_DIR)
        try:

            # Save a copy of the current global configuration with the
            # active profile contents into the build context, to have
            # the configured stacks accessible from within the Azure ML
            # environment.
            GlobalConfiguration().copy_active_configuration(
                config_path,
                load_config_path=f"./{CONTAINER_ZENML_CONFIG_DIR}",
            )

            environment = self._prepare_environment(
                workspace=workspace,
                requirements=requirements,
                run_name=run_name,
            )
            compute_target = ComputeTarget(
                workspace=workspace, name=self.compute_target_name
            )

            run_config = ScriptRunConfig(
                source_directory=source_directory,
                environment=environment,
                compute_target=compute_target,
                command=entrypoint_command,
            )

            experiment = Experiment(workspace=workspace, name=pipeline_name)
            run = experiment.submit(config=run_config)

        finally:
            # Clean up the temporary build files
            fileio.rmtree(config_path)

        run.display_name = run_name
        run.wait_for_completion(show_output=True)
launch(self, pipeline_name, run_name, requirements, entrypoint_command)

Launches a step on AzureML.

Parameters:

Name Type Description Default
pipeline_name str

Name of the pipeline which the step to be executed is part of.

required
run_name str

Name of the pipeline run which the step to be executed is part of.

required
entrypoint_command List[str]

Command that executes the step.

required
requirements List[str]

List of pip requirements that must be installed inside the step operator environment.

required
Source code in zenml/integrations/azureml/step_operators/azureml_step_operator.py
def launch(
    self,
    pipeline_name: str,
    run_name: str,
    requirements: List[str],
    entrypoint_command: List[str],
) -> None:
    """Launches a step on AzureML.

    Args:
        pipeline_name: Name of the pipeline which the step to be executed
            is part of.
        run_name: Name of the pipeline run which the step to be executed
            is part of.
        entrypoint_command: Command that executes the step.
        requirements: List of pip requirements that must be installed
            inside the step operator environment.
    """
    workspace = Workspace.get(
        subscription_id=self.subscription_id,
        resource_group=self.resource_group,
        name=self.workspace_name,
        auth=self._get_authentication(),
    )

    source_directory = get_source_root_path()
    config_path = os.path.join(source_directory, CONTAINER_ZENML_CONFIG_DIR)
    try:

        # Save a copy of the current global configuration with the
        # active profile contents into the build context, to have
        # the configured stacks accessible from within the Azure ML
        # environment.
        GlobalConfiguration().copy_active_configuration(
            config_path,
            load_config_path=f"./{CONTAINER_ZENML_CONFIG_DIR}",
        )

        environment = self._prepare_environment(
            workspace=workspace,
            requirements=requirements,
            run_name=run_name,
        )
        compute_target = ComputeTarget(
            workspace=workspace, name=self.compute_target_name
        )

        run_config = ScriptRunConfig(
            source_directory=source_directory,
            environment=environment,
            compute_target=compute_target,
            command=entrypoint_command,
        )

        experiment = Experiment(workspace=workspace, name=pipeline_name)
        run = experiment.submit(config=run_config)

    finally:
        # Clean up the temporary build files
        fileio.rmtree(config_path)

    run.display_name = run_name
    run.wait_for_completion(show_output=True)

dash special

DashIntegration (Integration)

Definition of Dash integration for ZenML.

Source code in zenml/integrations/dash/__init__.py
class DashIntegration(Integration):
    """Definition of Dash integration for ZenML."""

    NAME = DASH
    REQUIREMENTS = [
        "dash>=2.0.0",
        "dash-cytoscape>=0.3.0",
        "dash-bootstrap-components>=1.0.1",
        "jupyter-dash>=0.4.2",
    ]

visualizers special

pipeline_run_lineage_visualizer
PipelineRunLineageVisualizer (BasePipelineRunVisualizer)

Implementation of a lineage diagram via the dash and dash-cyctoscape library.

Source code in zenml/integrations/dash/visualizers/pipeline_run_lineage_visualizer.py
class PipelineRunLineageVisualizer(BasePipelineRunVisualizer):
    """Implementation of a lineage diagram via the [dash](
    https://plotly.com/dash/) and [dash-cyctoscape](
    https://dash.plotly.com/cytoscape) library."""

    ARTIFACT_PREFIX = "artifact_"
    STEP_PREFIX = "step_"
    STATUS_CLASS_MAPPING = {
        ExecutionStatus.CACHED: "green",
        ExecutionStatus.FAILED: "red",
        ExecutionStatus.RUNNING: "yellow",
        ExecutionStatus.COMPLETED: "blue",
    }

    def visualize(
        self,
        object: PipelineRunView,
        magic: bool = False,
        *args: Any,
        **kwargs: Any,
    ) -> dash.Dash:
        """Method to visualize pipeline runs via the Dash library. The layout
        puts every layer of the dag in a column.
        """
        external_stylesheets = [
            dbc.themes.BOOTSTRAP,
            dbc.icons.BOOTSTRAP,
        ]
        if magic:
            if Environment.in_notebook:
                # Only import jupyter_dash in this case
                from jupyter_dash import JupyterDash  # noqa

                JupyterDash.infer_jupyter_proxy_config()

                app = JupyterDash(
                    __name__,
                    external_stylesheets=external_stylesheets,
                )
                mode = "inline"
            else:
                # TODO [ENG-895]: Refactor this to raise a warning instead.
                raise AssertionError(
                    "Cannot set magic flag in non-notebook environments."
                )
        else:
            app = dash.Dash(
                __name__,
                external_stylesheets=external_stylesheets,
            )
            mode = None
        nodes, edges, first_step_id = [], [], None
        first_step_id = None
        for step in object.steps:
            step_output_artifacts = list(step.outputs.values())
            execution_id = (
                step_output_artifacts[0].producer_step.id
                if step_output_artifacts
                else step.id
            )
            step_id = self.STEP_PREFIX + str(step.id)
            if first_step_id is None:
                first_step_id = step_id
            nodes.append(
                {
                    "data": {
                        "id": step_id,
                        "execution_id": execution_id,
                        "label": f"{execution_id} / {step.entrypoint_name}",
                        "entrypoint_name": step.entrypoint_name,  # redundant for consistency
                        "name": step.name,  # redundant for consistency
                        "type": "step",
                        "parameters": step.parameters,
                        "inputs": {k: v.uri for k, v in step.inputs.items()},
                        "outputs": {k: v.uri for k, v in step.outputs.items()},
                    },
                    "classes": self.STATUS_CLASS_MAPPING[step.status],
                }
            )

            for artifact_name, artifact in step.outputs.items():
                nodes.append(
                    {
                        "data": {
                            "id": self.ARTIFACT_PREFIX + str(artifact.id),
                            "execution_id": artifact.id,
                            "label": f"{artifact.id} / {artifact_name} ("
                            f"{artifact.data_type})",
                            "type": "artifact",
                            "name": artifact_name,
                            "is_cached": artifact.is_cached,
                            "artifact_type": artifact.type,
                            "artifact_data_type": artifact.data_type,
                            "parent_step_id": artifact.parent_step_id,
                            "producer_step_id": artifact.producer_step.id,
                            "uri": artifact.uri,
                        },
                        "classes": f"rectangle "
                        f"{self.STATUS_CLASS_MAPPING[step.status]}",
                    }
                )
                edges.append(
                    {
                        "data": {
                            "source": self.STEP_PREFIX + str(step.id),
                            "target": self.ARTIFACT_PREFIX + str(artifact.id),
                        },
                        "classes": f"edge-arrow "
                        f"{self.STATUS_CLASS_MAPPING[step.status]}"
                        + (" dashed" if artifact.is_cached else " solid"),
                    }
                )

            for artifact_name, artifact in step.inputs.items():
                edges.append(
                    {
                        "data": {
                            "source": self.ARTIFACT_PREFIX + str(artifact.id),
                            "target": self.STEP_PREFIX + str(step.id),
                        },
                        "classes": "edge-arrow "
                        + (
                            f"{self.STATUS_CLASS_MAPPING[ExecutionStatus.CACHED]} dashed"
                            if artifact.is_cached
                            else f"{self.STATUS_CLASS_MAPPING[step.status]} solid"
                        ),
                    }
                )

        app.layout = dbc.Row(
            [
                dbc.Container(f"Run: {object.name}", class_name="h1"),
                dbc.Row(
                    [
                        dbc.Col(
                            [
                                dbc.Row(
                                    [
                                        html.Span(
                                            [
                                                html.Span(
                                                    [
                                                        html.I(
                                                            className="bi bi-circle-fill me-1"
                                                        ),
                                                        "Step",
                                                    ],
                                                    className="me-2",
                                                ),
                                                html.Span(
                                                    [
                                                        html.I(
                                                            className="bi bi-square-fill me-1"
                                                        ),
                                                        "Artifact",
                                                    ],
                                                    className="me-4",
                                                ),
                                                dbc.Badge(
                                                    "Completed",
                                                    color=COLOR_BLUE,
                                                    className="me-1",
                                                ),
                                                dbc.Badge(
                                                    "Cached",
                                                    color=COLOR_GREEN,
                                                    className="me-1",
                                                ),
                                                dbc.Badge(
                                                    "Running",
                                                    color=COLOR_YELLOW,
                                                    className="me-1",
                                                ),
                                                dbc.Badge(
                                                    "Failed",
                                                    color=COLOR_RED,
                                                    className="me-1",
                                                ),
                                            ]
                                        ),
                                    ]
                                ),
                                dbc.Row(
                                    [
                                        cyto.Cytoscape(
                                            id="cytoscape",
                                            layout={
                                                "name": "breadthfirst",
                                                "roots": f'[id = "{first_step_id}"]',
                                            },
                                            elements=edges + nodes,
                                            stylesheet=STYLESHEET,
                                            style={
                                                "width": "100%",
                                                "height": "800px",
                                            },
                                            zoom=1,
                                        )
                                    ]
                                ),
                                dbc.Row(
                                    [
                                        dbc.Button(
                                            "Reset",
                                            id="bt-reset",
                                            color="primary",
                                            className="me-1",
                                        )
                                    ]
                                ),
                            ]
                        ),
                        dbc.Col(
                            [
                                dcc.Markdown(id="markdown-selected-node-data"),
                            ]
                        ),
                    ]
                ),
            ],
            className="p-5",
        )

        @app.callback(  # type: ignore[misc]
            Output("markdown-selected-node-data", "children"),
            Input("cytoscape", "selectedNodeData"),
        )
        def display_data(data_list: List[Dict[str, Any]]) -> str:
            """Callback for the text area below the graph"""
            if data_list is None:
                return "Click on a node in the diagram."

            text = ""
            for data in data_list:
                text += f'## {data["execution_id"]} / {data["name"]}' + "\n\n"
                if data["type"] == "artifact":
                    for item in [
                        "artifact_data_type",
                        "is_cached",
                        "producer_step_id",
                        "parent_step_id",
                        "uri",
                    ]:
                        text += f"**{item}**: {data[item]}" + "\n\n"
                elif data["type"] == "step":
                    text += "### Inputs:" + "\n\n"
                    for k, v in data["inputs"].items():
                        text += f"**{k}**: {v}" + "\n\n"
                    text += "### Outputs:" + "\n\n"
                    for k, v in data["outputs"].items():
                        text += f"**{k}**: {v}" + "\n\n"
                    text += "### Params:"
                    for k, v in data["parameters"].items():
                        text += f"**{k}**: {v}" + "\n\n"
            return text

        @app.callback(  # type: ignore[misc]
            [Output("cytoscape", "zoom"), Output("cytoscape", "elements")],
            [Input("bt-reset", "n_clicks")],
        )
        def reset_layout(
            n_clicks: int,
        ) -> List[Union[int, List[Dict[str, Collection[str]]]]]:
            """Resets the layout"""
            logger.debug(n_clicks, "clicked in reset button.")
            return [1, edges + nodes]

        if mode is not None:
            app.run_server(mode=mode)
        app.run_server()
        return app
visualize(self, object, magic=False, *args, **kwargs)

Method to visualize pipeline runs via the Dash library. The layout puts every layer of the dag in a column.

Source code in zenml/integrations/dash/visualizers/pipeline_run_lineage_visualizer.py
def visualize(
    self,
    object: PipelineRunView,
    magic: bool = False,
    *args: Any,
    **kwargs: Any,
) -> dash.Dash:
    """Method to visualize pipeline runs via the Dash library. The layout
    puts every layer of the dag in a column.
    """
    external_stylesheets = [
        dbc.themes.BOOTSTRAP,
        dbc.icons.BOOTSTRAP,
    ]
    if magic:
        if Environment.in_notebook:
            # Only import jupyter_dash in this case
            from jupyter_dash import JupyterDash  # noqa

            JupyterDash.infer_jupyter_proxy_config()

            app = JupyterDash(
                __name__,
                external_stylesheets=external_stylesheets,
            )
            mode = "inline"
        else:
            # TODO [ENG-895]: Refactor this to raise a warning instead.
            raise AssertionError(
                "Cannot set magic flag in non-notebook environments."
            )
    else:
        app = dash.Dash(
            __name__,
            external_stylesheets=external_stylesheets,
        )
        mode = None
    nodes, edges, first_step_id = [], [], None
    first_step_id = None
    for step in object.steps:
        step_output_artifacts = list(step.outputs.values())
        execution_id = (
            step_output_artifacts[0].producer_step.id
            if step_output_artifacts
            else step.id
        )
        step_id = self.STEP_PREFIX + str(step.id)
        if first_step_id is None:
            first_step_id = step_id
        nodes.append(
            {
                "data": {
                    "id": step_id,
                    "execution_id": execution_id,
                    "label": f"{execution_id} / {step.entrypoint_name}",
                    "entrypoint_name": step.entrypoint_name,  # redundant for consistency
                    "name": step.name,  # redundant for consistency
                    "type": "step",
                    "parameters": step.parameters,
                    "inputs": {k: v.uri for k, v in step.inputs.items()},
                    "outputs": {k: v.uri for k, v in step.outputs.items()},
                },
                "classes": self.STATUS_CLASS_MAPPING[step.status],
            }
        )

        for artifact_name, artifact in step.outputs.items():
            nodes.append(
                {
                    "data": {
                        "id": self.ARTIFACT_PREFIX + str(artifact.id),
                        "execution_id": artifact.id,
                        "label": f"{artifact.id} / {artifact_name} ("
                        f"{artifact.data_type})",
                        "type": "artifact",
                        "name": artifact_name,
                        "is_cached": artifact.is_cached,
                        "artifact_type": artifact.type,
                        "artifact_data_type": artifact.data_type,
                        "parent_step_id": artifact.parent_step_id,
                        "producer_step_id": artifact.producer_step.id,
                        "uri": artifact.uri,
                    },
                    "classes": f"rectangle "
                    f"{self.STATUS_CLASS_MAPPING[step.status]}",
                }
            )
            edges.append(
                {
                    "data": {
                        "source": self.STEP_PREFIX + str(step.id),
                        "target": self.ARTIFACT_PREFIX + str(artifact.id),
                    },
                    "classes": f"edge-arrow "
                    f"{self.STATUS_CLASS_MAPPING[step.status]}"
                    + (" dashed" if artifact.is_cached else " solid"),
                }
            )

        for artifact_name, artifact in step.inputs.items():
            edges.append(
                {
                    "data": {
                        "source": self.ARTIFACT_PREFIX + str(artifact.id),
                        "target": self.STEP_PREFIX + str(step.id),
                    },
                    "classes": "edge-arrow "
                    + (
                        f"{self.STATUS_CLASS_MAPPING[ExecutionStatus.CACHED]} dashed"
                        if artifact.is_cached
                        else f"{self.STATUS_CLASS_MAPPING[step.status]} solid"
                    ),
                }
            )

    app.layout = dbc.Row(
        [
            dbc.Container(f"Run: {object.name}", class_name="h1"),
            dbc.Row(
                [
                    dbc.Col(
                        [
                            dbc.Row(
                                [
                                    html.Span(
                                        [
                                            html.Span(
                                                [
                                                    html.I(
                                                        className="bi bi-circle-fill me-1"
                                                    ),
                                                    "Step",
                                                ],
                                                className="me-2",
                                            ),
                                            html.Span(
                                                [
                                                    html.I(
                                                        className="bi bi-square-fill me-1"
                                                    ),
                                                    "Artifact",
                                                ],
                                                className="me-4",
                                            ),
                                            dbc.Badge(
                                                "Completed",
                                                color=COLOR_BLUE,
                                                className="me-1",
                                            ),
                                            dbc.Badge(
                                                "Cached",
                                                color=COLOR_GREEN,
                                                className="me-1",
                                            ),
                                            dbc.Badge(
                                                "Running",
                                                color=COLOR_YELLOW,
                                                className="me-1",
                                            ),
                                            dbc.Badge(
                                                "Failed",
                                                color=COLOR_RED,
                                                className="me-1",
                                            ),
                                        ]
                                    ),
                                ]
                            ),
                            dbc.Row(
                                [
                                    cyto.Cytoscape(
                                        id="cytoscape",
                                        layout={
                                            "name": "breadthfirst",
                                            "roots": f'[id = "{first_step_id}"]',
                                        },
                                        elements=edges + nodes,
                                        stylesheet=STYLESHEET,
                                        style={
                                            "width": "100%",
                                            "height": "800px",
                                        },
                                        zoom=1,
                                    )
                                ]
                            ),
                            dbc.Row(
                                [
                                    dbc.Button(
                                        "Reset",
                                        id="bt-reset",
                                        color="primary",
                                        className="me-1",
                                    )
                                ]
                            ),
                        ]
                    ),
                    dbc.Col(
                        [
                            dcc.Markdown(id="markdown-selected-node-data"),
                        ]
                    ),
                ]
            ),
        ],
        className="p-5",
    )

    @app.callback(  # type: ignore[misc]
        Output("markdown-selected-node-data", "children"),
        Input("cytoscape", "selectedNodeData"),
    )
    def display_data(data_list: List[Dict[str, Any]]) -> str:
        """Callback for the text area below the graph"""
        if data_list is None:
            return "Click on a node in the diagram."

        text = ""
        for data in data_list:
            text += f'## {data["execution_id"]} / {data["name"]}' + "\n\n"
            if data["type"] == "artifact":
                for item in [
                    "artifact_data_type",
                    "is_cached",
                    "producer_step_id",
                    "parent_step_id",
                    "uri",
                ]:
                    text += f"**{item}**: {data[item]}" + "\n\n"
            elif data["type"] == "step":
                text += "### Inputs:" + "\n\n"
                for k, v in data["inputs"].items():
                    text += f"**{k}**: {v}" + "\n\n"
                text += "### Outputs:" + "\n\n"
                for k, v in data["outputs"].items():
                    text += f"**{k}**: {v}" + "\n\n"
                text += "### Params:"
                for k, v in data["parameters"].items():
                    text += f"**{k}**: {v}" + "\n\n"
        return text

    @app.callback(  # type: ignore[misc]
        [Output("cytoscape", "zoom"), Output("cytoscape", "elements")],
        [Input("bt-reset", "n_clicks")],
    )
    def reset_layout(
        n_clicks: int,
    ) -> List[Union[int, List[Dict[str, Collection[str]]]]]:
        """Resets the layout"""
        logger.debug(n_clicks, "clicked in reset button.")
        return [1, edges + nodes]

    if mode is not None:
        app.run_server(mode=mode)
    app.run_server()
    return app

evidently special

The Evidently integration provides a way to monitor your models in production. It includes a way to detect data drift and different kinds of model performance issues.

The results of Evidently calculations can either be exported as an interactive dashboard (visualized as an html file or in your Jupyter notebook), or as a JSON file.

EvidentlyIntegration (Integration)

Definition of Evidently integration for ZenML.

Source code in zenml/integrations/evidently/__init__.py
class EvidentlyIntegration(Integration):
    """Definition of [Evidently](https://github.com/evidentlyai/evidently) integration
    for ZenML."""

    NAME = EVIDENTLY
    REQUIREMENTS = ["evidently==v0.1.41.dev0"]

steps special

evidently_profile
EvidentlyProfileConfig (BaseDriftDetectionConfig) pydantic-model

Config class for Evidently profile steps.

column_mapping: properties of the dataframe's columns used !!! profile_section "a string that identifies the profile section to be used." The following are valid options supported by Evidently: - "datadrift" - "categoricaltargetdrift" - "numericaltargetdrift" - "classificationmodelperformance" - "regressionmodelperformance" - "probabilisticmodelperformance"

Source code in zenml/integrations/evidently/steps/evidently_profile.py
class EvidentlyProfileConfig(BaseDriftDetectionConfig):
    """Config class for Evidently profile steps.

    column_mapping: properties of the dataframe's columns used
    profile_section: a string that identifies the profile section to be used.
        The following are valid options supported by Evidently:
        - "datadrift"
        - "categoricaltargetdrift"
        - "numericaltargetdrift"
        - "classificationmodelperformance"
        - "regressionmodelperformance"
        - "probabilisticmodelperformance"
    """

    def get_profile_sections_and_tabs(
        self,
    ) -> Tuple[List[ProfileSection], List[Tab]]:
        try:
            return (
                [
                    profile_mapper[profile]()
                    for profile in self.profile_sections
                ],
                [
                    dashboard_mapper[profile]()
                    for profile in self.profile_sections
                ],
            )
        except KeyError:
            nl = "\n"
            raise ValueError(
                f"Invalid profile section: {self.profile_sections} \n\n"
                f"Valid and supported options are: {nl}- "
                f'{f"{nl}- ".join(list(profile_mapper.keys()))}'
            )

    column_mapping: Optional[ColumnMapping]
    profile_sections: Sequence[str]
EvidentlyProfileStep (BaseDriftDetectionStep)

Simple step implementation which implements Evidently's functionality for creating a profile.

Source code in zenml/integrations/evidently/steps/evidently_profile.py
class EvidentlyProfileStep(BaseDriftDetectionStep):
    """Simple step implementation which implements Evidently's functionality for
    creating a profile."""

    OUTPUT_SPEC = {
        "profile": DataAnalysisArtifact,
        "dashboard": DataAnalysisArtifact,
    }

    def entrypoint(  # type: ignore[override]
        self,
        reference_dataset: pd.DataFrame,
        comparison_dataset: pd.DataFrame,
        config: EvidentlyProfileConfig,
    ) -> Output(  # type:ignore[valid-type]
        profile=dict, dashboard=str
    ):
        """Main entrypoint for the Evidently categorical target drift detection
        step.

        Args:
            reference_dataset: a Pandas dataframe
            comparison_dataset: a Pandas dataframe of new data you wish to
                compare against the reference data
            config: the configuration for the step

        Returns:
            profile: dictionary report extracted from an Evidently Profile
              generated for the data drift
            dashboard: HTML report extracted from an Evidently Dashboard
              generated for the data drift
        """
        sections, tabs = config.get_profile_sections_and_tabs()
        data_drift_dashboard = Dashboard(tabs=tabs)
        data_drift_dashboard.calculate(
            reference_dataset,
            comparison_dataset,
            column_mapping=config.column_mapping or None,
        )
        data_drift_profile = Profile(sections=sections)
        data_drift_profile.calculate(
            reference_dataset,
            comparison_dataset,
            column_mapping=config.column_mapping or None,
        )
        return [data_drift_profile.object(), data_drift_dashboard.html()]
CONFIG_CLASS (BaseDriftDetectionConfig) pydantic-model

Config class for Evidently profile steps.

column_mapping: properties of the dataframe's columns used !!! profile_section "a string that identifies the profile section to be used." The following are valid options supported by Evidently: - "datadrift" - "categoricaltargetdrift" - "numericaltargetdrift" - "classificationmodelperformance" - "regressionmodelperformance" - "probabilisticmodelperformance"

Source code in zenml/integrations/evidently/steps/evidently_profile.py
class EvidentlyProfileConfig(BaseDriftDetectionConfig):
    """Config class for Evidently profile steps.

    column_mapping: properties of the dataframe's columns used
    profile_section: a string that identifies the profile section to be used.
        The following are valid options supported by Evidently:
        - "datadrift"
        - "categoricaltargetdrift"
        - "numericaltargetdrift"
        - "classificationmodelperformance"
        - "regressionmodelperformance"
        - "probabilisticmodelperformance"
    """

    def get_profile_sections_and_tabs(
        self,
    ) -> Tuple[List[ProfileSection], List[Tab]]:
        try:
            return (
                [
                    profile_mapper[profile]()
                    for profile in self.profile_sections
                ],
                [
                    dashboard_mapper[profile]()
                    for profile in self.profile_sections
                ],
            )
        except KeyError:
            nl = "\n"
            raise ValueError(
                f"Invalid profile section: {self.profile_sections} \n\n"
                f"Valid and supported options are: {nl}- "
                f'{f"{nl}- ".join(list(profile_mapper.keys()))}'
            )

    column_mapping: Optional[ColumnMapping]
    profile_sections: Sequence[str]
entrypoint(self, reference_dataset, comparison_dataset, config)

Main entrypoint for the Evidently categorical target drift detection step.

Parameters:

Name Type Description Default
reference_dataset DataFrame

a Pandas dataframe

required
comparison_dataset DataFrame

a Pandas dataframe of new data you wish to compare against the reference data

required
config EvidentlyProfileConfig

the configuration for the step

required

Returns:

Type Description
profile

dictionary report extracted from an Evidently Profile generated for the data drift dashboard: HTML report extracted from an Evidently Dashboard generated for the data drift

Source code in zenml/integrations/evidently/steps/evidently_profile.py
def entrypoint(  # type: ignore[override]
    self,
    reference_dataset: pd.DataFrame,
    comparison_dataset: pd.DataFrame,
    config: EvidentlyProfileConfig,
) -> Output(  # type:ignore[valid-type]
    profile=dict, dashboard=str
):
    """Main entrypoint for the Evidently categorical target drift detection
    step.

    Args:
        reference_dataset: a Pandas dataframe
        comparison_dataset: a Pandas dataframe of new data you wish to
            compare against the reference data
        config: the configuration for the step

    Returns:
        profile: dictionary report extracted from an Evidently Profile
          generated for the data drift
        dashboard: HTML report extracted from an Evidently Dashboard
          generated for the data drift
    """
    sections, tabs = config.get_profile_sections_and_tabs()
    data_drift_dashboard = Dashboard(tabs=tabs)
    data_drift_dashboard.calculate(
        reference_dataset,
        comparison_dataset,
        column_mapping=config.column_mapping or None,
    )
    data_drift_profile = Profile(sections=sections)
    data_drift_profile.calculate(
        reference_dataset,
        comparison_dataset,
        column_mapping=config.column_mapping or None,
    )
    return [data_drift_profile.object(), data_drift_dashboard.html()]

visualizers special

evidently_visualizer
EvidentlyVisualizer (BaseStepVisualizer)

The implementation of an Evidently Visualizer.

Source code in zenml/integrations/evidently/visualizers/evidently_visualizer.py
class EvidentlyVisualizer(BaseStepVisualizer):
    """The implementation of an Evidently Visualizer."""

    @abstractmethod
    def visualize(self, object: StepView, *args: Any, **kwargs: Any) -> None:
        """Method to visualize components

        Args:
            object: StepView fetched from run.get_step().
        """
        for artifact_view in object.outputs.values():
            # filter out anything but data analysis artifacts
            if (
                artifact_view.type == DataAnalysisArtifact.__name__
                and artifact_view.data_type == "builtins.str"
            ):
                artifact = artifact_view.read()
                self.generate_facet(artifact)

    def generate_facet(self, html_: str) -> None:
        """Generate a Facet Overview

        Args:
            html_: HTML represented as a string.
        """
        if Environment.in_notebook() or Environment.in_google_colab():
            from IPython.core.display import HTML, display

            display(HTML(html_))
        else:
            logger.warning(
                "The magic functions are only usable in a Jupyter notebook."
            )
            with tempfile.NamedTemporaryFile(
                mode="w", delete=False, suffix=".html", encoding="utf-8"
            ) as f:
                f.write(html_)
                url = f"file:///{f.name}"
                logger.info("Opening %s in a new browser.." % f.name)
                webbrowser.open(url, new=2)
generate_facet(self, html_)

Generate a Facet Overview

Parameters:

Name Type Description Default
html_ str

HTML represented as a string.

required
Source code in zenml/integrations/evidently/visualizers/evidently_visualizer.py
def generate_facet(self, html_: str) -> None:
    """Generate a Facet Overview

    Args:
        html_: HTML represented as a string.
    """
    if Environment.in_notebook() or Environment.in_google_colab():
        from IPython.core.display import HTML, display

        display(HTML(html_))
    else:
        logger.warning(
            "The magic functions are only usable in a Jupyter notebook."
        )
        with tempfile.NamedTemporaryFile(
            mode="w", delete=False, suffix=".html", encoding="utf-8"
        ) as f:
            f.write(html_)
            url = f"file:///{f.name}"
            logger.info("Opening %s in a new browser.." % f.name)
            webbrowser.open(url, new=2)
visualize(self, object, *args, **kwargs)

Method to visualize components

Parameters:

Name Type Description Default
object StepView

StepView fetched from run.get_step().

required
Source code in zenml/integrations/evidently/visualizers/evidently_visualizer.py
@abstractmethod
def visualize(self, object: StepView, *args: Any, **kwargs: Any) -> None:
    """Method to visualize components

    Args:
        object: StepView fetched from run.get_step().
    """
    for artifact_view in object.outputs.values():
        # filter out anything but data analysis artifacts
        if (
            artifact_view.type == DataAnalysisArtifact.__name__
            and artifact_view.data_type == "builtins.str"
        ):
            artifact = artifact_view.read()
            self.generate_facet(artifact)

facets special

The Facets integration provides a simple way to visualize post-execution objects like PipelineView, PipelineRunView and StepView. These objects can be extended using the BaseVisualization class. This integration requires facets-overview be installed in your Python environment.

FacetsIntegration (Integration)

Definition of Facet integration for ZenML.

Source code in zenml/integrations/facets/__init__.py
class FacetsIntegration(Integration):
    """Definition of [Facet](https://pair-code.github.io/facets/) integration
    for ZenML."""

    NAME = FACETS
    REQUIREMENTS = ["facets-overview>=1.0.0", "IPython"]

visualizers special

facet_statistics_visualizer
FacetStatisticsVisualizer (BaseStepVisualizer)

The base implementation of a ZenML Visualizer.

Source code in zenml/integrations/facets/visualizers/facet_statistics_visualizer.py
class FacetStatisticsVisualizer(BaseStepVisualizer):
    """The base implementation of a ZenML Visualizer."""

    @abstractmethod
    def visualize(
        self, object: StepView, magic: bool = False, *args: Any, **kwargs: Any
    ) -> None:
        """Method to visualize components

        Args:
            object: StepView fetched from run.get_step().
            magic: Whether to render in a Jupyter notebook or not.
        """
        datasets = []
        for output_name, artifact_view in object.outputs.items():
            df = artifact_view.read()
            if type(df) is not pd.DataFrame:
                logger.warning(
                    "`%s` is not a pd.DataFrame. You can only visualize "
                    "statistics of steps that output pandas dataframes. "
                    "Skipping this output.." % output_name
                )
            else:
                datasets.append({"name": output_name, "table": df})
        h = self.generate_html(datasets)
        self.generate_facet(h, magic)

    def generate_html(self, datasets: List[Dict[Text, pd.DataFrame]]) -> str:
        """Generates html for facet.

        Args:
            datasets: List of dicts of dataframes to be visualized as stats.

        Returns:
            HTML template with proto string embedded.
        """
        proto = GenericFeatureStatisticsGenerator().ProtoFromDataFrames(
            datasets
        )
        protostr = base64.b64encode(proto.SerializeToString()).decode("utf-8")

        template = os.path.join(
            os.path.abspath(os.path.dirname(__file__)),
            "stats.html",
        )
        html_template = zenml.io.utils.read_file_contents_as_string(template)

        html_ = html_template.replace("protostr", protostr)
        return html_

    def generate_facet(self, html_: str, magic: bool = False) -> None:
        """Generate a Facet Overview

        Args:
            html_: HTML represented as a string.
            magic: Whether to magically materialize facet in a notebook.
        """
        if magic:
            if not Environment.in_notebook() or Environment.in_google_colab():
                raise EnvironmentError(
                    "The magic functions are only usable in a Jupyter notebook."
                )
            display(HTML(html_))
        else:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f:
                zenml.io.utils.write_file_contents_as_string(f.name, html_)
                url = f"file:///{f.name}"
                logger.info("Opening %s in a new browser.." % f.name)
                webbrowser.open(url, new=2)
generate_facet(self, html_, magic=False)

Generate a Facet Overview

Parameters:

Name Type Description Default
html_ str

HTML represented as a string.

required
magic bool

Whether to magically materialize facet in a notebook.

False
Source code in zenml/integrations/facets/visualizers/facet_statistics_visualizer.py
def generate_facet(self, html_: str, magic: bool = False) -> None:
    """Generate a Facet Overview

    Args:
        html_: HTML represented as a string.
        magic: Whether to magically materialize facet in a notebook.
    """
    if magic:
        if not Environment.in_notebook() or Environment.in_google_colab():
            raise EnvironmentError(
                "The magic functions are only usable in a Jupyter notebook."
            )
        display(HTML(html_))
    else:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f:
            zenml.io.utils.write_file_contents_as_string(f.name, html_)
            url = f"file:///{f.name}"
            logger.info("Opening %s in a new browser.." % f.name)
            webbrowser.open(url, new=2)
generate_html(self, datasets)

Generates html for facet.

Parameters:

Name Type Description Default
datasets List[Dict[str, pandas.core.frame.DataFrame]]

List of dicts of dataframes to be visualized as stats.

required

Returns:

Type Description
str

HTML template with proto string embedded.

Source code in zenml/integrations/facets/visualizers/facet_statistics_visualizer.py
def generate_html(self, datasets: List[Dict[Text, pd.DataFrame]]) -> str:
    """Generates html for facet.

    Args:
        datasets: List of dicts of dataframes to be visualized as stats.

    Returns:
        HTML template with proto string embedded.
    """
    proto = GenericFeatureStatisticsGenerator().ProtoFromDataFrames(
        datasets
    )
    protostr = base64.b64encode(proto.SerializeToString()).decode("utf-8")

    template = os.path.join(
        os.path.abspath(os.path.dirname(__file__)),
        "stats.html",
    )
    html_template = zenml.io.utils.read_file_contents_as_string(template)

    html_ = html_template.replace("protostr", protostr)
    return html_
visualize(self, object, magic=False, *args, **kwargs)

Method to visualize components

Parameters:

Name Type Description Default
object StepView

StepView fetched from run.get_step().

required
magic bool

Whether to render in a Jupyter notebook or not.

False
Source code in zenml/integrations/facets/visualizers/facet_statistics_visualizer.py
@abstractmethod
def visualize(
    self, object: StepView, magic: bool = False, *args: Any, **kwargs: Any
) -> None:
    """Method to visualize components

    Args:
        object: StepView fetched from run.get_step().
        magic: Whether to render in a Jupyter notebook or not.
    """
    datasets = []
    for output_name, artifact_view in object.outputs.items():
        df = artifact_view.read()
        if type(df) is not pd.DataFrame:
            logger.warning(
                "`%s` is not a pd.DataFrame. You can only visualize "
                "statistics of steps that output pandas dataframes. "
                "Skipping this output.." % output_name
            )
        else:
            datasets.append({"name": output_name, "table": df})
    h = self.generate_html(datasets)
    self.generate_facet(h, magic)

feast special

The Feast integration offers a way to connect to a Feast Feature Store. ZenML implements a dedicated stack component that you can access as part of your ZenML steps in the usual ways.

FeastIntegration (Integration)

Definition of Feast integration for ZenML.

Source code in zenml/integrations/feast/__init__.py
class FeastIntegration(Integration):
    """Definition of Feast integration for ZenML."""

    NAME = FEAST
    REQUIREMENTS = ["feast[redis]>=0.19.4", "redis-server"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the Feast integration."""
        return [
            FlavorWrapper(
                name=FEAST_FEATURE_STORE_FLAVOR,
                source="zenml.integrations.feast.feature_store.FeastFeatureStore",
                type=StackComponentType.FEATURE_STORE,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the Feast integration.

Source code in zenml/integrations/feast/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the Feast integration."""
    return [
        FlavorWrapper(
            name=FEAST_FEATURE_STORE_FLAVOR,
            source="zenml.integrations.feast.feature_store.FeastFeatureStore",
            type=StackComponentType.FEATURE_STORE,
            integration=cls.NAME,
        )
    ]

feature_stores special

Feast Feature Store

Feature stores allow data teams to serve data via an offline store and an online low-latency store where data is kept in sync between the two. It also offers a centralized registry where features (and feature schemas) are stored for use within a team or wider organization. Feature stores are a relatively recent addition to commonly-used machine learning stacks. Feast is a leading open-source feature store, first developed by Gojek in collaboration with Google.

feast_feature_store
FeastFeatureStore (BaseFeatureStore) pydantic-model

Class to interact with the Feast feature store.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
class FeastFeatureStore(BaseFeatureStore):
    """Class to interact with the Feast feature store."""

    FLAVOR: ClassVar[str] = FEAST_FEATURE_STORE_FLAVOR

    online_host: str = "localhost"
    online_port: int = 6379
    feast_repo: str

    def _validate_connection(self) -> None:
        """Validates the connection to the feature store.

        Raises:
            RuntimeError: If the online component (Redis) is not available.
        """
        client = redis.Redis(host=self.online_host, port=self.online_port)
        try:
            client.ping()
        except redis.exceptions.ConnectionError as e:
            raise redis.exceptions.ConnectionError(
                "Could not connect to feature store's online component. "
                "Please make sure that Redis is running."
            ) from e

    def get_historical_features(
        self,
        entity_df: Union[pd.DataFrame, str],
        features: List[str],
        full_feature_names: bool = False,
    ) -> pd.DataFrame:
        """Returns the historical features for training or batch scoring.

        Args:
            entity_df: The entity dataframe or entity name.
            features: The features to retrieve.
            full_feature_names: Whether to return the full feature names.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The historical features as a Pandas DataFrame.
        """
        fs = FeatureStore(repo_path=self.feast_repo)

        return fs.get_historical_features(
            entity_df=entity_df,
            features=features,
            full_feature_names=full_feature_names,
        ).to_df()

    def get_online_features(
        self,
        entity_rows: List[Dict[str, Any]],
        features: List[str],
        full_feature_names: bool = False,
    ) -> Dict[str, Any]:
        """Returns the latest online feature data.

        Args:
            entity_rows: The entity rows to retrieve.
            features: The features to retrieve.
            full_feature_names: Whether to return the full feature names.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The latest online feature data as a dictionary.
        """
        self._validate_connection()
        fs = FeatureStore(repo_path=self.feast_repo)

        return fs.get_online_features(  # type: ignore[no-any-return]
            entity_rows=entity_rows,
            features=features,
            full_feature_names=full_feature_names,
        ).to_dict()

    def get_data_sources(self) -> List[str]:
        """Returns the data sources' names.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The data sources' names.
        """
        self._validate_connection()
        fs = FeatureStore(repo_path=self.feast_repo)
        return [ds.name for ds in fs.list_data_sources()]

    def get_entities(self) -> List[str]:
        """Returns the entity names.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The entity names.
        """
        self._validate_connection()
        fs = FeatureStore(repo_path=self.feast_repo)
        return [ds.name for ds in fs.list_entities()]

    def get_feature_services(self) -> List[str]:
        """Returns the feature service names.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The feature service names.
        """
        self._validate_connection()
        fs = FeatureStore(repo_path=self.feast_repo)
        return [ds.name for ds in fs.list_feature_services()]

    def get_feature_views(self) -> List[str]:
        """Returns the feature view names.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The feature view names.
        """
        self._validate_connection()
        fs = FeatureStore(repo_path=self.feast_repo)
        return [ds.name for ds in fs.list_feature_views()]

    def get_project(self) -> str:
        """Returns the project name.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The project name.
        """
        fs = FeatureStore(repo_path=self.feast_repo)
        return str(fs.project)

    def get_registry(self) -> Registry:
        """Returns the feature store registry.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The registry.
        """
        fs = FeatureStore(repo_path=self.feast_repo)
        return fs.registry

    def get_feast_version(self) -> str:
        """Returns the version of Feast used.

        Raise:
            ConnectionError: If the online component (Redis) is not available.

        Returns:
            The version of Feast currently being used.
        """
        fs = FeatureStore(repo_path=self.feast_repo)
        return str(fs.version())
get_data_sources(self)

Returns the data sources' names.

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The data sources' names.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_data_sources(self) -> List[str]:
    """Returns the data sources' names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The data sources' names.
    """
    self._validate_connection()
    fs = FeatureStore(repo_path=self.feast_repo)
    return [ds.name for ds in fs.list_data_sources()]
get_entities(self)

Returns the entity names.

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The entity names.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_entities(self) -> List[str]:
    """Returns the entity names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The entity names.
    """
    self._validate_connection()
    fs = FeatureStore(repo_path=self.feast_repo)
    return [ds.name for ds in fs.list_entities()]
get_feast_version(self)

Returns the version of Feast used.

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
str

The version of Feast currently being used.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_feast_version(self) -> str:
    """Returns the version of Feast used.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The version of Feast currently being used.
    """
    fs = FeatureStore(repo_path=self.feast_repo)
    return str(fs.version())
get_feature_services(self)

Returns the feature service names.

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The feature service names.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_feature_services(self) -> List[str]:
    """Returns the feature service names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The feature service names.
    """
    self._validate_connection()
    fs = FeatureStore(repo_path=self.feast_repo)
    return [ds.name for ds in fs.list_feature_services()]
get_feature_views(self)

Returns the feature view names.

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
List[str]

The feature view names.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_feature_views(self) -> List[str]:
    """Returns the feature view names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The feature view names.
    """
    self._validate_connection()
    fs = FeatureStore(repo_path=self.feast_repo)
    return [ds.name for ds in fs.list_feature_views()]
get_historical_features(self, entity_df, features, full_feature_names=False)

Returns the historical features for training or batch scoring.

Parameters:

Name Type Description Default
entity_df Union[pandas.core.frame.DataFrame, str]

The entity dataframe or entity name.

required
features List[str]

The features to retrieve.

required
full_feature_names bool

Whether to return the full feature names.

False

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
DataFrame

The historical features as a Pandas DataFrame.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_historical_features(
    self,
    entity_df: Union[pd.DataFrame, str],
    features: List[str],
    full_feature_names: bool = False,
) -> pd.DataFrame:
    """Returns the historical features for training or batch scoring.

    Args:
        entity_df: The entity dataframe or entity name.
        features: The features to retrieve.
        full_feature_names: Whether to return the full feature names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The historical features as a Pandas DataFrame.
    """
    fs = FeatureStore(repo_path=self.feast_repo)

    return fs.get_historical_features(
        entity_df=entity_df,
        features=features,
        full_feature_names=full_feature_names,
    ).to_df()
get_online_features(self, entity_rows, features, full_feature_names=False)

Returns the latest online feature data.

Parameters:

Name Type Description Default
entity_rows List[Dict[str, Any]]

The entity rows to retrieve.

required
features List[str]

The features to retrieve.

required
full_feature_names bool

Whether to return the full feature names.

False

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
Dict[str, Any]

The latest online feature data as a dictionary.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_online_features(
    self,
    entity_rows: List[Dict[str, Any]],
    features: List[str],
    full_feature_names: bool = False,
) -> Dict[str, Any]:
    """Returns the latest online feature data.

    Args:
        entity_rows: The entity rows to retrieve.
        features: The features to retrieve.
        full_feature_names: Whether to return the full feature names.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The latest online feature data as a dictionary.
    """
    self._validate_connection()
    fs = FeatureStore(repo_path=self.feast_repo)

    return fs.get_online_features(  # type: ignore[no-any-return]
        entity_rows=entity_rows,
        features=features,
        full_feature_names=full_feature_names,
    ).to_dict()
get_project(self)

Returns the project name.

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
str

The project name.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_project(self) -> str:
    """Returns the project name.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The project name.
    """
    fs = FeatureStore(repo_path=self.feast_repo)
    return str(fs.project)
get_registry(self)

Returns the feature store registry.

Exceptions:

Type Description
ConnectionError

If the online component (Redis) is not available.

Returns:

Type Description
Registry

The registry.

Source code in zenml/integrations/feast/feature_stores/feast_feature_store.py
def get_registry(self) -> Registry:
    """Returns the feature store registry.

    Raise:
        ConnectionError: If the online component (Redis) is not available.

    Returns:
        The registry.
    """
    fs = FeatureStore(repo_path=self.feast_repo)
    return fs.registry

gcp special

The GCP integration submodule provides a way to run ZenML pipelines in a cloud environment. Specifically, it allows the use of cloud artifact stores, metadata stores, and an io module to handle file operations on Google Cloud Storage (GCS).

GcpIntegration (Integration)

Definition of Google Cloud Platform integration for ZenML.

Source code in zenml/integrations/gcp/__init__.py
class GcpIntegration(Integration):
    """Definition of Google Cloud Platform integration for ZenML."""

    NAME = GCP
    REQUIREMENTS = ["gcsfs"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the GCP integration."""
        return [
            FlavorWrapper(
                name=GCP_ARTIFACT_STORE_FLAVOR,
                source="zenml.integrations.gcp.artifact_stores.GCSArtifactStore",
                type=StackComponentType.ARTIFACT_STORE,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the GCP integration.

Source code in zenml/integrations/gcp/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the GCP integration."""
    return [
        FlavorWrapper(
            name=GCP_ARTIFACT_STORE_FLAVOR,
            source="zenml.integrations.gcp.artifact_stores.GCSArtifactStore",
            type=StackComponentType.ARTIFACT_STORE,
            integration=cls.NAME,
        )
    ]

artifact_stores special

gcp_artifact_store
GCPArtifactStore (BaseArtifactStore) pydantic-model

Artifact Store for Google Cloud Storage based artifacts.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
class GCPArtifactStore(BaseArtifactStore):
    """Artifact Store for Google Cloud Storage based artifacts."""

    _filesystem: Optional[gcsfs.GCSFileSystem] = None

    # Class Configuration
    FLAVOR: ClassVar[str] = GCP_ARTIFACT_STORE_FLAVOR
    SUPPORTED_SCHEMES: ClassVar[Set[str]] = {"gs://"}

    @property
    def filesystem(self) -> gcsfs.GCSFileSystem:
        """The gcsfs filesystem to access this artifact store."""
        if not self._filesystem:
            self._filesystem = gcsfs.GCSFileSystem()
        return self._filesystem

    def open(self, path: PathType, mode: str = "r") -> Any:
        """Open a file at the given path.
        Args:
            path: Path of the file to open.
            mode: Mode in which to open the file. Currently, only
                'rb' and 'wb' to read and write binary files are supported.
        """
        return self.filesystem.open(path=path, mode=mode)

    def copyfile(
        self, src: PathType, dst: PathType, overwrite: bool = False
    ) -> None:
        """Copy a file.
        Args:
            src: The path to copy from.
            dst: The path to copy to.
            overwrite: If a file already exists at the destination, this
                method will overwrite it if overwrite=`True` and
                raise a FileExistsError otherwise.
        Raises:
            FileNotFoundError: If the source file does not exist.
            FileExistsError: If a file already exists at the destination
                and overwrite is not set to `True`.
        """
        if not overwrite and self.filesystem.exists(dst):
            raise FileExistsError(
                f"Unable to copy to destination '{convert_to_str(dst)}', "
                f"file already exists. Set `overwrite=True` to copy anyway."
            )
        # TODO [ENG-151]: Check if it works with overwrite=True or if we need to
        #  manually remove it first
        self.filesystem.copy(path1=src, path2=dst)

    def exists(self, path: PathType) -> bool:
        """Check whether a path exists."""
        return self.filesystem.exists(path=path)  # type: ignore[no-any-return]

    def glob(self, pattern: PathType) -> List[PathType]:
        """Return all paths that match the given glob pattern.
        The glob pattern may include:
        - '*' to match any number of characters
        - '?' to match a single character
        - '[...]' to match one of the characters inside the brackets
        - '**' as the full name of a path component to match to search
          in subdirectories of any depth (e.g. '/some_dir/**/some_file)
        Args:
            pattern: The glob pattern to match, see details above.
        Returns:
            A list of paths that match the given glob pattern.
        """
        return self.filesystem.glob(path=pattern)  # type: ignore[no-any-return]

    def isdir(self, path: PathType) -> bool:
        """Check whether a path is a directory."""
        return self.filesystem.isdir(path=path)  # type: ignore[no-any-return]

    def listdir(self, path: PathType) -> List[PathType]:
        """Return a list of files in a directory."""
        return self.filesystem.listdir(path=path)  # type: ignore[no-any-return]

    def makedirs(self, path: PathType) -> None:
        """Create a directory at the given path. If needed also
        create missing parent directories."""
        self.filesystem.makedirs(path=path, exist_ok=True)

    def mkdir(self, path: PathType) -> None:
        """Create a directory at the given path."""
        self.filesystem.makedir(path=path)

    def remove(self, path: PathType) -> None:
        """Remove the file at the given path."""
        self.filesystem.rm_file(path=path)

    def rename(
        self, src: PathType, dst: PathType, overwrite: bool = False
    ) -> None:
        """Rename source file to destination file.
        Args:
            src: The path of the file to rename.
            dst: The path to rename the source file to.
            overwrite: If a file already exists at the destination, this
                method will overwrite it if overwrite=`True` and
                raise a FileExistsError otherwise.
        Raises:
            FileNotFoundError: If the source file does not exist.
            FileExistsError: If a file already exists at the destination
                and overwrite is not set to `True`.
        """
        if not overwrite and self.filesystem.exists(dst):
            raise FileExistsError(
                f"Unable to rename file to '{convert_to_str(dst)}', "
                f"file already exists. Set `overwrite=True` to rename anyway."
            )

        # TODO [ENG-152]: Check if it works with overwrite=True or if we need
        #  to manually remove it first
        self.filesystem.rename(path1=src, path2=dst)

    def rmtree(self, path: PathType) -> None:
        """Remove the given directory."""
        self.filesystem.delete(path=path, recursive=True)

    def stat(self, path: PathType) -> Dict[str, Any]:
        """Return stat info for the given path."""
        return self.filesystem.stat(path=path)  # type: ignore[no-any-return]

    def walk(
        self,
        top: PathType,
        topdown: bool = True,
        onerror: Optional[Callable[..., None]] = None,
    ) -> Iterable[Tuple[PathType, List[PathType], List[PathType]]]:
        """Return an iterator that walks the contents of the given directory.
        Args:
            top: Path of directory to walk.
            topdown: Unused argument to conform to interface.
            onerror: Unused argument to conform to interface.
        Returns:
            An Iterable of Tuples, each of which contain the path of the current
            directory path, a list of directories inside the current directory
            and a list of files inside the current directory.
        """
        # TODO [ENG-153]: Additional params
        return self.filesystem.walk(path=top)  # type: ignore[no-any-return]
filesystem: GCSFileSystem property readonly

The gcsfs filesystem to access this artifact store.

copyfile(self, src, dst, overwrite=False)

Copy a file.

Parameters:

Name Type Description Default
src Union[bytes, str]

The path to copy from.

required
dst Union[bytes, str]

The path to copy to.

required
overwrite bool

If a file already exists at the destination, this method will overwrite it if overwrite=True and raise a FileExistsError otherwise.

False

Exceptions:

Type Description
FileNotFoundError

If the source file does not exist.

FileExistsError

If a file already exists at the destination and overwrite is not set to True.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def copyfile(
    self, src: PathType, dst: PathType, overwrite: bool = False
) -> None:
    """Copy a file.
    Args:
        src: The path to copy from.
        dst: The path to copy to.
        overwrite: If a file already exists at the destination, this
            method will overwrite it if overwrite=`True` and
            raise a FileExistsError otherwise.
    Raises:
        FileNotFoundError: If the source file does not exist.
        FileExistsError: If a file already exists at the destination
            and overwrite is not set to `True`.
    """
    if not overwrite and self.filesystem.exists(dst):
        raise FileExistsError(
            f"Unable to copy to destination '{convert_to_str(dst)}', "
            f"file already exists. Set `overwrite=True` to copy anyway."
        )
    # TODO [ENG-151]: Check if it works with overwrite=True or if we need to
    #  manually remove it first
    self.filesystem.copy(path1=src, path2=dst)
exists(self, path)

Check whether a path exists.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def exists(self, path: PathType) -> bool:
    """Check whether a path exists."""
    return self.filesystem.exists(path=path)  # type: ignore[no-any-return]
glob(self, pattern)

Return all paths that match the given glob pattern. The glob pattern may include: - '' to match any number of characters - '?' to match a single character - '[...]' to match one of the characters inside the brackets - '' as the full name of a path component to match to search in subdirectories of any depth (e.g. '/some_dir/*/some_file)

Parameters:

Name Type Description Default
pattern Union[bytes, str]

The glob pattern to match, see details above.

required

Returns:

Type Description
List[Union[bytes, str]]

A list of paths that match the given glob pattern.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def glob(self, pattern: PathType) -> List[PathType]:
    """Return all paths that match the given glob pattern.
    The glob pattern may include:
    - '*' to match any number of characters
    - '?' to match a single character
    - '[...]' to match one of the characters inside the brackets
    - '**' as the full name of a path component to match to search
      in subdirectories of any depth (e.g. '/some_dir/**/some_file)
    Args:
        pattern: The glob pattern to match, see details above.
    Returns:
        A list of paths that match the given glob pattern.
    """
    return self.filesystem.glob(path=pattern)  # type: ignore[no-any-return]
isdir(self, path)

Check whether a path is a directory.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def isdir(self, path: PathType) -> bool:
    """Check whether a path is a directory."""
    return self.filesystem.isdir(path=path)  # type: ignore[no-any-return]
listdir(self, path)

Return a list of files in a directory.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def listdir(self, path: PathType) -> List[PathType]:
    """Return a list of files in a directory."""
    return self.filesystem.listdir(path=path)  # type: ignore[no-any-return]
makedirs(self, path)

Create a directory at the given path. If needed also create missing parent directories.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def makedirs(self, path: PathType) -> None:
    """Create a directory at the given path. If needed also
    create missing parent directories."""
    self.filesystem.makedirs(path=path, exist_ok=True)
mkdir(self, path)

Create a directory at the given path.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def mkdir(self, path: PathType) -> None:
    """Create a directory at the given path."""
    self.filesystem.makedir(path=path)
open(self, path, mode='r')

Open a file at the given path.

Parameters:

Name Type Description Default
path Union[bytes, str]

Path of the file to open.

required
mode str

Mode in which to open the file. Currently, only 'rb' and 'wb' to read and write binary files are supported.

'r'
Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def open(self, path: PathType, mode: str = "r") -> Any:
    """Open a file at the given path.
    Args:
        path: Path of the file to open.
        mode: Mode in which to open the file. Currently, only
            'rb' and 'wb' to read and write binary files are supported.
    """
    return self.filesystem.open(path=path, mode=mode)
remove(self, path)

Remove the file at the given path.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def remove(self, path: PathType) -> None:
    """Remove the file at the given path."""
    self.filesystem.rm_file(path=path)
rename(self, src, dst, overwrite=False)

Rename source file to destination file.

Parameters:

Name Type Description Default
src Union[bytes, str]

The path of the file to rename.

required
dst Union[bytes, str]

The path to rename the source file to.

required
overwrite bool

If a file already exists at the destination, this method will overwrite it if overwrite=True and raise a FileExistsError otherwise.

False

Exceptions:

Type Description
FileNotFoundError

If the source file does not exist.

FileExistsError

If a file already exists at the destination and overwrite is not set to True.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def rename(
    self, src: PathType, dst: PathType, overwrite: bool = False
) -> None:
    """Rename source file to destination file.
    Args:
        src: The path of the file to rename.
        dst: The path to rename the source file to.
        overwrite: If a file already exists at the destination, this
            method will overwrite it if overwrite=`True` and
            raise a FileExistsError otherwise.
    Raises:
        FileNotFoundError: If the source file does not exist.
        FileExistsError: If a file already exists at the destination
            and overwrite is not set to `True`.
    """
    if not overwrite and self.filesystem.exists(dst):
        raise FileExistsError(
            f"Unable to rename file to '{convert_to_str(dst)}', "
            f"file already exists. Set `overwrite=True` to rename anyway."
        )

    # TODO [ENG-152]: Check if it works with overwrite=True or if we need
    #  to manually remove it first
    self.filesystem.rename(path1=src, path2=dst)
rmtree(self, path)

Remove the given directory.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def rmtree(self, path: PathType) -> None:
    """Remove the given directory."""
    self.filesystem.delete(path=path, recursive=True)
stat(self, path)

Return stat info for the given path.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def stat(self, path: PathType) -> Dict[str, Any]:
    """Return stat info for the given path."""
    return self.filesystem.stat(path=path)  # type: ignore[no-any-return]
walk(self, top, topdown=True, onerror=None)

Return an iterator that walks the contents of the given directory.

Parameters:

Name Type Description Default
top Union[bytes, str]

Path of directory to walk.

required
topdown bool

Unused argument to conform to interface.

True
onerror Optional[Callable[..., NoneType]]

Unused argument to conform to interface.

None

Returns:

Type Description
Iterable[Tuple[Union[bytes, str], List[Union[bytes, str]], List[Union[bytes, str]]]]

An Iterable of Tuples, each of which contain the path of the current directory path, a list of directories inside the current directory and a list of files inside the current directory.

Source code in zenml/integrations/gcp/artifact_stores/gcp_artifact_store.py
def walk(
    self,
    top: PathType,
    topdown: bool = True,
    onerror: Optional[Callable[..., None]] = None,
) -> Iterable[Tuple[PathType, List[PathType], List[PathType]]]:
    """Return an iterator that walks the contents of the given directory.
    Args:
        top: Path of directory to walk.
        topdown: Unused argument to conform to interface.
        onerror: Unused argument to conform to interface.
    Returns:
        An Iterable of Tuples, each of which contain the path of the current
        directory path, a list of directories inside the current directory
        and a list of files inside the current directory.
    """
    # TODO [ENG-153]: Additional params
    return self.filesystem.walk(path=top)  # type: ignore[no-any-return]

gcp_secrets_manager special

The GCP secrets manager integration submodule provides a way to access the gcp secrets manager from within you ZenML Pipeline runs.

GcpSecretManagerIntegration (Integration)

Definition of the Secrets Manager for the Google Cloud Platform integration with ZenML.

Source code in zenml/integrations/gcp_secrets_manager/__init__.py
class GcpSecretManagerIntegration(Integration):
    """Definition of the Secrets Manager for the Google Cloud Platform
    integration with ZenML."""

    NAME = GCP_SECRETS_MANAGER
    REQUIREMENTS = ["google-cloud-secret-manager"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the GCP integration."""
        return [
            FlavorWrapper(
                name=GCP_SECRETS_MANAGER_FLAVOR,
                source="zenml.integrations.gcp_secrets_manager.secrets_manager."
                "GCPSecretsManager",
                type=StackComponentType.SECRETS_MANAGER,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the GCP integration.

Source code in zenml/integrations/gcp_secrets_manager/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the GCP integration."""
    return [
        FlavorWrapper(
            name=GCP_SECRETS_MANAGER_FLAVOR,
            source="zenml.integrations.gcp_secrets_manager.secrets_manager."
            "GCPSecretsManager",
            type=StackComponentType.SECRETS_MANAGER,
            integration=cls.NAME,
        )
    ]

secrets_manager special

Secrets Manager

The GCP Secrets Manager allows your pipeline to directly access the GCP secrets manager and use the secrets within during runtime.

gcp_secrets_manager
GCPSecretsManager (BaseSecretsManager) pydantic-model

Class to interact with the GCP secrets manager.

Attributes:

Name Type Description
project_id str

This is necessary to access the correct GCP project. The project_id of your GCP project space that contains the Secret Manager.

Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
class GCPSecretsManager(BaseSecretsManager):
    """Class to interact with the GCP secrets manager.

    Attributes:
        project_id:  This is necessary to access the correct GCP project.
                     The project_id of your GCP project space that contains
                     the Secret Manager.
    """

    project_id: str

    # Class configuration
    FLAVOR: ClassVar[str] = GCP_SECRETS_MANAGER_FLAVOR
    CLIENT: ClassVar[Any] = None

    @classmethod
    def _ensure_client_connected(cls) -> None:
        if cls.CLIENT is None:
            cls.CLIENT = secretmanager.SecretManagerServiceClient()

    @property
    def parent_name(self) -> str:
        """Construct the GCP parent path to the secret manager"""
        return f"projects/{self.project_id}"

    def register_secret(self, secret: BaseSecretSchema) -> None:
        """Registers a new secret.

        Args:
            secret: the secret to register"""
        self._ensure_client_connected()

        if secret.name in self.get_all_secret_keys():
            raise SecretExistsError(
                f"A Secret with the name {secret.name} already exists."
            )

        adjusted_content = prepend_group_name_to_keys(secret)
        for k, v in adjusted_content.items():
            # Create the secret, this only creates an empty secret with the
            #  supplied name.
            gcp_secret = self.CLIENT.create_secret(
                request={
                    "parent": self.parent_name,
                    "secret_id": k,
                    "secret": {
                        "replication": {"automatic": {}},
                        "labels": [
                            (ZENML_GROUP_KEY, secret.name),
                            (ZENML_SCHEMA_NAME, secret.TYPE),
                        ],
                    },
                }
            )

            logger.debug("Created empty secret: %s", gcp_secret.name)

            self.CLIENT.add_secret_version(
                request={
                    "parent": gcp_secret.name,
                    "payload": {"data": str(v).encode()},
                }
            )

            logger.debug("Added value to secret.")

    def get_secret(self, secret_name: str) -> BaseSecretSchema:
        """Get a secret by its name.

        Args:
            secret_name: the name of the secret to get

        Returns:
            The secret.

        Raises:
            RuntimeError: if the secret does not exist"""
        self._ensure_client_connected()

        secret_contents = {}
        zenml_schema_name = ""

        # List all secrets.
        for secret in self.CLIENT.list_secrets(
            request={"parent": self.parent_name}
        ):
            if (
                ZENML_GROUP_KEY in secret.labels
                and secret_name == secret.labels[ZENML_GROUP_KEY]
            ):

                secret_version_name = secret.name + "/versions/latest"

                response = self.CLIENT.access_secret_version(
                    request={"name": secret_version_name}
                )

                secret_value = response.payload.data.decode("UTF-8")

                secret_key = remove_group_name_from_key(
                    secret.name.split("/")[-1], secret_name
                )

                secret_contents[secret_key] = secret_value

                zenml_schema_name = secret.labels[ZENML_SCHEMA_NAME]

        if not secret_contents:
            raise RuntimeError(f"No secrets found within the {secret_name}")

        secret_contents["name"] = secret_name

        secret_schema = SecretSchemaClassRegistry.get_class(
            secret_schema=zenml_schema_name
        )
        return secret_schema(**secret_contents)

    def get_all_secret_keys(self) -> List[str]:
        """Get all secret keys.

        Returns:
            A list of all secret keys."""
        self._ensure_client_connected()

        set_of_secrets = set()

        # List all secrets.
        for secret in self.CLIENT.list_secrets(
            request={"parent": self.parent_name}
        ):
            if ZENML_GROUP_KEY in secret.labels:
                group_key = secret.labels[ZENML_GROUP_KEY]
                set_of_secrets.add(group_key)

        return list(set_of_secrets)

    def update_secret(self, secret: BaseSecretSchema) -> None:
        """Update an existing secret by creating new versions of the existing
        secrets.

        Args:
            secret: the secret to update"""
        self._ensure_client_connected()

        adjusted_content = prepend_group_name_to_keys(secret)

        for k, v in adjusted_content.items():
            # Create the secret, this only creates an empty secret with the
            #  supplied name.
            version_parent = self.CLIENT.secret_path(self.project_id, k)
            payload = {"data": str(v).encode()}

            self.CLIENT.add_secret_version(
                request={"parent": version_parent, "payload": payload}
            )

    def delete_secret(self, secret_name: str) -> None:
        """Delete an existing secret. by name. In GCP a secret is a single k-v
        pair. Within ZenML a secret is a collection of k-v pairs. As such,
        deleting a secret will iterate through all secrets and delete the ones
        with the secret_name as label.

        Args:
            secret_name: the name of the secret to delete"""
        self._ensure_client_connected()

        # Go through all gcp secrets and delete the ones with the secret_name
        #  as label.
        for secret in self.CLIENT.list_secrets(
            request={"parent": self.parent_name}
        ):
            if (
                ZENML_GROUP_KEY in secret.labels
                and secret_name == secret.labels[ZENML_GROUP_KEY]
            ):
                self.CLIENT.delete_secret(request={"name": secret.name})

    def delete_all_secrets(self, force: bool = False) -> None:
        """Delete all existing secrets.

        Args:
            force: whether to force delete all secrets"""
        self._ensure_client_connected()

        # List all secrets.
        for secret in self.CLIENT.list_secrets(
            request={"parent": self.parent_name}
        ):
            if (
                ZENML_GROUP_KEY in secret.labels
                or ZENML_SCHEMA_NAME in secret.labels
            ):
                logger.info(
                    "Deleted key-value pair {`%s`, `***`} from secret " "`%s`",
                    secret.name.split("/")[-1],
                    secret.labels[ZENML_GROUP_KEY],
                )
                self.CLIENT.delete_secret(request={"name": secret.name})
parent_name: str property readonly

Construct the GCP parent path to the secret manager

delete_all_secrets(self, force=False)

Delete all existing secrets.

Parameters:

Name Type Description Default
force bool

whether to force delete all secrets

False
Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def delete_all_secrets(self, force: bool = False) -> None:
    """Delete all existing secrets.

    Args:
        force: whether to force delete all secrets"""
    self._ensure_client_connected()

    # List all secrets.
    for secret in self.CLIENT.list_secrets(
        request={"parent": self.parent_name}
    ):
        if (
            ZENML_GROUP_KEY in secret.labels
            or ZENML_SCHEMA_NAME in secret.labels
        ):
            logger.info(
                "Deleted key-value pair {`%s`, `***`} from secret " "`%s`",
                secret.name.split("/")[-1],
                secret.labels[ZENML_GROUP_KEY],
            )
            self.CLIENT.delete_secret(request={"name": secret.name})
delete_secret(self, secret_name)

Delete an existing secret. by name. In GCP a secret is a single k-v pair. Within ZenML a secret is a collection of k-v pairs. As such, deleting a secret will iterate through all secrets and delete the ones with the secret_name as label.

Parameters:

Name Type Description Default
secret_name str

the name of the secret to delete

required
Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def delete_secret(self, secret_name: str) -> None:
    """Delete an existing secret. by name. In GCP a secret is a single k-v
    pair. Within ZenML a secret is a collection of k-v pairs. As such,
    deleting a secret will iterate through all secrets and delete the ones
    with the secret_name as label.

    Args:
        secret_name: the name of the secret to delete"""
    self._ensure_client_connected()

    # Go through all gcp secrets and delete the ones with the secret_name
    #  as label.
    for secret in self.CLIENT.list_secrets(
        request={"parent": self.parent_name}
    ):
        if (
            ZENML_GROUP_KEY in secret.labels
            and secret_name == secret.labels[ZENML_GROUP_KEY]
        ):
            self.CLIENT.delete_secret(request={"name": secret.name})
get_all_secret_keys(self)

Get all secret keys.

Returns:

Type Description
List[str]

A list of all secret keys.

Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def get_all_secret_keys(self) -> List[str]:
    """Get all secret keys.

    Returns:
        A list of all secret keys."""
    self._ensure_client_connected()

    set_of_secrets = set()

    # List all secrets.
    for secret in self.CLIENT.list_secrets(
        request={"parent": self.parent_name}
    ):
        if ZENML_GROUP_KEY in secret.labels:
            group_key = secret.labels[ZENML_GROUP_KEY]
            set_of_secrets.add(group_key)

    return list(set_of_secrets)
get_secret(self, secret_name)

Get a secret by its name.

Parameters:

Name Type Description Default
secret_name str

the name of the secret to get

required

Returns:

Type Description
BaseSecretSchema

The secret.

Exceptions:

Type Description
RuntimeError

if the secret does not exist

Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def get_secret(self, secret_name: str) -> BaseSecretSchema:
    """Get a secret by its name.

    Args:
        secret_name: the name of the secret to get

    Returns:
        The secret.

    Raises:
        RuntimeError: if the secret does not exist"""
    self._ensure_client_connected()

    secret_contents = {}
    zenml_schema_name = ""

    # List all secrets.
    for secret in self.CLIENT.list_secrets(
        request={"parent": self.parent_name}
    ):
        if (
            ZENML_GROUP_KEY in secret.labels
            and secret_name == secret.labels[ZENML_GROUP_KEY]
        ):

            secret_version_name = secret.name + "/versions/latest"

            response = self.CLIENT.access_secret_version(
                request={"name": secret_version_name}
            )

            secret_value = response.payload.data.decode("UTF-8")

            secret_key = remove_group_name_from_key(
                secret.name.split("/")[-1], secret_name
            )

            secret_contents[secret_key] = secret_value

            zenml_schema_name = secret.labels[ZENML_SCHEMA_NAME]

    if not secret_contents:
        raise RuntimeError(f"No secrets found within the {secret_name}")

    secret_contents["name"] = secret_name

    secret_schema = SecretSchemaClassRegistry.get_class(
        secret_schema=zenml_schema_name
    )
    return secret_schema(**secret_contents)
register_secret(self, secret)

Registers a new secret.

Parameters:

Name Type Description Default
secret BaseSecretSchema

the secret to register

required
Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def register_secret(self, secret: BaseSecretSchema) -> None:
    """Registers a new secret.

    Args:
        secret: the secret to register"""
    self._ensure_client_connected()

    if secret.name in self.get_all_secret_keys():
        raise SecretExistsError(
            f"A Secret with the name {secret.name} already exists."
        )

    adjusted_content = prepend_group_name_to_keys(secret)
    for k, v in adjusted_content.items():
        # Create the secret, this only creates an empty secret with the
        #  supplied name.
        gcp_secret = self.CLIENT.create_secret(
            request={
                "parent": self.parent_name,
                "secret_id": k,
                "secret": {
                    "replication": {"automatic": {}},
                    "labels": [
                        (ZENML_GROUP_KEY, secret.name),
                        (ZENML_SCHEMA_NAME, secret.TYPE),
                    ],
                },
            }
        )

        logger.debug("Created empty secret: %s", gcp_secret.name)

        self.CLIENT.add_secret_version(
            request={
                "parent": gcp_secret.name,
                "payload": {"data": str(v).encode()},
            }
        )

        logger.debug("Added value to secret.")
update_secret(self, secret)

Update an existing secret by creating new versions of the existing secrets.

Parameters:

Name Type Description Default
secret BaseSecretSchema

the secret to update

required
Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def update_secret(self, secret: BaseSecretSchema) -> None:
    """Update an existing secret by creating new versions of the existing
    secrets.

    Args:
        secret: the secret to update"""
    self._ensure_client_connected()

    adjusted_content = prepend_group_name_to_keys(secret)

    for k, v in adjusted_content.items():
        # Create the secret, this only creates an empty secret with the
        #  supplied name.
        version_parent = self.CLIENT.secret_path(self.project_id, k)
        payload = {"data": str(v).encode()}

        self.CLIENT.add_secret_version(
            request={"parent": version_parent, "payload": payload}
        )
prepend_group_name_to_keys(secret)

This function adds the secret group name to the keys of each secret key-value pair to allow using the same key across multiple secrets.

Parameters:

Name Type Description Default
secret BaseSecretSchema

The ZenML Secret schema

required
Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def prepend_group_name_to_keys(secret: BaseSecretSchema) -> Dict[str, str]:
    """This function adds the secret group name to the keys of each
    secret key-value pair to allow using the same key across multiple
    secrets.

    Args:
        secret: The ZenML Secret schema
    """
    return {f"{secret.name}_{k}": v for k, v in secret.content.items()}
remove_group_name_from_key(combined_key_name, group_name)

This function serves to remove the secret group name from the secret key.

Parameters:

Name Type Description Default
combined_key_name str

Full name as it is within the gcp secrets manager

required
group_name str

Group name (the ZenML Secret name)

required

Returns:

Type Description
str

The cleaned key

Source code in zenml/integrations/gcp_secrets_manager/secrets_manager/gcp_secrets_manager.py
def remove_group_name_from_key(combined_key_name: str, group_name: str) -> str:
    """This function serves to remove the secret group name from the secret
    key.

    Args:
        combined_key_name: Full name as it is within the gcp secrets manager
        group_name: Group name (the ZenML Secret name)
    Returns:
        The cleaned key
    """
    if combined_key_name.startswith(group_name + "_"):
        return combined_key_name[len(group_name + "_") :]
    else:
        raise RuntimeError(
            f"Key-name `{combined_key_name}` does not have the "
            f"prefix `{group_name}`. Key could not be "
            f"extracted."
        )

graphviz special

GraphvizIntegration (Integration)

Definition of Graphviz integration for ZenML.

Source code in zenml/integrations/graphviz/__init__.py
class GraphvizIntegration(Integration):
    """Definition of Graphviz integration for ZenML."""

    NAME = GRAPHVIZ
    REQUIREMENTS = ["graphviz>=0.17"]
    SYSTEM_REQUIREMENTS = {"graphviz": "dot"}

visualizers special

pipeline_run_dag_visualizer
PipelineRunDagVisualizer (BasePipelineRunVisualizer)

Visualize the lineage of runs in a pipeline.

Source code in zenml/integrations/graphviz/visualizers/pipeline_run_dag_visualizer.py
class PipelineRunDagVisualizer(BasePipelineRunVisualizer):
    """Visualize the lineage of runs in a pipeline."""

    ARTIFACT_DEFAULT_COLOR = "blue"
    ARTIFACT_CACHED_COLOR = "green"
    ARTIFACT_SHAPE = "box"
    ARTIFACT_PREFIX = "artifact_"
    STEP_COLOR = "#431D93"
    STEP_SHAPE = "ellipse"
    STEP_PREFIX = "step_"
    FONT = "Roboto"

    @abstractmethod
    def visualize(
        self, object: PipelineRunView, *args: Any, **kwargs: Any
    ) -> graphviz.Digraph:
        """Creates a pipeline lineage diagram using graphviz."""
        logger.warning(
            "This integration is not completed yet. Results might be unexpected."
        )

        dot = graphviz.Digraph(comment=object.name)

        # link the steps together
        for step in object.steps:
            # add each step as a node
            dot.node(
                self.STEP_PREFIX + str(step.id),
                step.entrypoint_name,
                shape=self.STEP_SHAPE,
            )
            # for each parent of a step, add an edge

            for artifact_name, artifact in step.outputs.items():
                dot.node(
                    self.ARTIFACT_PREFIX + str(artifact.id),
                    f"{artifact_name} \n" f"({artifact._data_type})",
                    shape=self.ARTIFACT_SHAPE,
                )
                dot.edge(
                    self.STEP_PREFIX + str(step.id),
                    self.ARTIFACT_PREFIX + str(artifact.id),
                )

            for artifact_name, artifact in step.inputs.items():
                dot.edge(
                    self.ARTIFACT_PREFIX + str(artifact.id),
                    self.STEP_PREFIX + str(step.id),
                )

        with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f:
            dot.render(filename=f.name, format="png", view=True, cleanup=True)
        return dot
visualize(self, object, *args, **kwargs)

Creates a pipeline lineage diagram using graphviz.

Source code in zenml/integrations/graphviz/visualizers/pipeline_run_dag_visualizer.py
@abstractmethod
def visualize(
    self, object: PipelineRunView, *args: Any, **kwargs: Any
) -> graphviz.Digraph:
    """Creates a pipeline lineage diagram using graphviz."""
    logger.warning(
        "This integration is not completed yet. Results might be unexpected."
    )

    dot = graphviz.Digraph(comment=object.name)

    # link the steps together
    for step in object.steps:
        # add each step as a node
        dot.node(
            self.STEP_PREFIX + str(step.id),
            step.entrypoint_name,
            shape=self.STEP_SHAPE,
        )
        # for each parent of a step, add an edge

        for artifact_name, artifact in step.outputs.items():
            dot.node(
                self.ARTIFACT_PREFIX + str(artifact.id),
                f"{artifact_name} \n" f"({artifact._data_type})",
                shape=self.ARTIFACT_SHAPE,
            )
            dot.edge(
                self.STEP_PREFIX + str(step.id),
                self.ARTIFACT_PREFIX + str(artifact.id),
            )

        for artifact_name, artifact in step.inputs.items():
            dot.edge(
                self.ARTIFACT_PREFIX + str(artifact.id),
                self.STEP_PREFIX + str(step.id),
            )

    with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f:
        dot.render(filename=f.name, format="png", view=True, cleanup=True)
    return dot

huggingface special

HuggingfaceIntegration (Integration)

Definition of Huggingface integration for ZenML.

Source code in zenml/integrations/huggingface/__init__.py
class HuggingfaceIntegration(Integration):
    """Definition of Huggingface integration for ZenML."""

    NAME = HUGGINGFACE
    REQUIREMENTS = ["transformers", "datasets"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.huggingface import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/huggingface/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.huggingface import materializers  # noqa

materializers special

huggingface_datasets_materializer
HFDatasetMaterializer (BaseMaterializer)

Materializer to read data to and from huggingface datasets.

Source code in zenml/integrations/huggingface/materializers/huggingface_datasets_materializer.py
class HFDatasetMaterializer(BaseMaterializer):
    """Materializer to read data to and from huggingface datasets."""

    ASSOCIATED_TYPES = (Dataset, DatasetDict)
    ASSOCIATED_ARTIFACT_TYPES = (DataArtifact,)

    def handle_input(self, data_type: Type[Any]) -> Dataset:
        """Reads Dataset"""
        super().handle_input(data_type)

        return load_from_disk(
            os.path.join(self.artifact.uri, DEFAULT_DATASET_DIR)
        )

    def handle_return(self, ds: Type[Any]) -> None:
        """Writes a Dataset to the specified dir.
        Args:
            Dataset: The Dataset to write.
        """
        super().handle_return(ds)
        temp_dir = TemporaryDirectory()
        ds.save_to_disk(temp_dir.name)
        fileio_utils.copy_dir(
            temp_dir.name, os.path.join(self.artifact.uri, DEFAULT_DATASET_DIR)
        )
handle_input(self, data_type)

Reads Dataset

Source code in zenml/integrations/huggingface/materializers/huggingface_datasets_materializer.py
def handle_input(self, data_type: Type[Any]) -> Dataset:
    """Reads Dataset"""
    super().handle_input(data_type)

    return load_from_disk(
        os.path.join(self.artifact.uri, DEFAULT_DATASET_DIR)
    )
handle_return(self, ds)

Writes a Dataset to the specified dir.

Parameters:

Name Type Description Default
Dataset

The Dataset to write.

required
Source code in zenml/integrations/huggingface/materializers/huggingface_datasets_materializer.py
def handle_return(self, ds: Type[Any]) -> None:
    """Writes a Dataset to the specified dir.
    Args:
        Dataset: The Dataset to write.
    """
    super().handle_return(ds)
    temp_dir = TemporaryDirectory()
    ds.save_to_disk(temp_dir.name)
    fileio_utils.copy_dir(
        temp_dir.name, os.path.join(self.artifact.uri, DEFAULT_DATASET_DIR)
    )
huggingface_pt_model_materializer
HFPTModelMaterializer (BaseMaterializer)

Materializer to read torch model to and from huggingface pretrained model.

Source code in zenml/integrations/huggingface/materializers/huggingface_pt_model_materializer.py
class HFPTModelMaterializer(BaseMaterializer):
    """Materializer to read torch model to and from huggingface pretrained model."""

    ASSOCIATED_TYPES = (PreTrainedModel,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> PreTrainedModel:
        """Reads HFModel"""
        super().handle_input(data_type)

        config = AutoConfig.from_pretrained(
            os.path.join(self.artifact.uri, DEFAULT_PT_MODEL_DIR)
        )
        architecture = config.architectures[0]
        model_cls = getattr(
            importlib.import_module("transformers"), architecture
        )
        return model_cls.from_pretrained(
            os.path.join(self.artifact.uri, DEFAULT_PT_MODEL_DIR)
        )

    def handle_return(self, model: Type[Any]) -> None:
        """Writes a Model to the specified dir.
        Args:
            PreTrainedModel: The Torch Model to write.
        """
        super().handle_return(model)
        temp_dir = TemporaryDirectory()
        model.save_pretrained(temp_dir.name)
        fileio_utils.copy_dir(
            temp_dir.name,
            os.path.join(self.artifact.uri, DEFAULT_PT_MODEL_DIR),
        )
handle_input(self, data_type)

Reads HFModel

Source code in zenml/integrations/huggingface/materializers/huggingface_pt_model_materializer.py
def handle_input(self, data_type: Type[Any]) -> PreTrainedModel:
    """Reads HFModel"""
    super().handle_input(data_type)

    config = AutoConfig.from_pretrained(
        os.path.join(self.artifact.uri, DEFAULT_PT_MODEL_DIR)
    )
    architecture = config.architectures[0]
    model_cls = getattr(
        importlib.import_module("transformers"), architecture
    )
    return model_cls.from_pretrained(
        os.path.join(self.artifact.uri, DEFAULT_PT_MODEL_DIR)
    )
handle_return(self, model)

Writes a Model to the specified dir.

Parameters:

Name Type Description Default
PreTrainedModel

The Torch Model to write.

required
Source code in zenml/integrations/huggingface/materializers/huggingface_pt_model_materializer.py
def handle_return(self, model: Type[Any]) -> None:
    """Writes a Model to the specified dir.
    Args:
        PreTrainedModel: The Torch Model to write.
    """
    super().handle_return(model)
    temp_dir = TemporaryDirectory()
    model.save_pretrained(temp_dir.name)
    fileio_utils.copy_dir(
        temp_dir.name,
        os.path.join(self.artifact.uri, DEFAULT_PT_MODEL_DIR),
    )
huggingface_tf_model_materializer
HFTFModelMaterializer (BaseMaterializer)

Materializer to read tensorflow model to and from huggingface pretrained model.

Source code in zenml/integrations/huggingface/materializers/huggingface_tf_model_materializer.py
class HFTFModelMaterializer(BaseMaterializer):
    """Materializer to read tensorflow model to and from huggingface pretrained model."""

    ASSOCIATED_TYPES = (TFPreTrainedModel,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> TFPreTrainedModel:
        """Reads HFModel"""
        super().handle_input(data_type)

        config = AutoConfig.from_pretrained(
            os.path.join(self.artifact.uri, DEFAULT_TF_MODEL_DIR)
        )
        architecture = "TF" + config.architectures[0]
        model_cls = getattr(
            importlib.import_module("transformers"), architecture
        )
        return model_cls.from_pretrained(
            os.path.join(self.artifact.uri, DEFAULT_TF_MODEL_DIR)
        )

    def handle_return(self, model: Type[Any]) -> None:
        """Writes a Model to the specified dir.
        Args:
            TFPreTrainedModel: The TF Model to write.
        """
        super().handle_return(model)
        temp_dir = TemporaryDirectory()
        model.save_pretrained(temp_dir.name)
        fileio_utils.copy_dir(
            temp_dir.name,
            os.path.join(self.artifact.uri, DEFAULT_TF_MODEL_DIR),
        )
handle_input(self, data_type)

Reads HFModel

Source code in zenml/integrations/huggingface/materializers/huggingface_tf_model_materializer.py
def handle_input(self, data_type: Type[Any]) -> TFPreTrainedModel:
    """Reads HFModel"""
    super().handle_input(data_type)

    config = AutoConfig.from_pretrained(
        os.path.join(self.artifact.uri, DEFAULT_TF_MODEL_DIR)
    )
    architecture = "TF" + config.architectures[0]
    model_cls = getattr(
        importlib.import_module("transformers"), architecture
    )
    return model_cls.from_pretrained(
        os.path.join(self.artifact.uri, DEFAULT_TF_MODEL_DIR)
    )
handle_return(self, model)

Writes a Model to the specified dir.

Parameters:

Name Type Description Default
TFPreTrainedModel

The TF Model to write.

required
Source code in zenml/integrations/huggingface/materializers/huggingface_tf_model_materializer.py
def handle_return(self, model: Type[Any]) -> None:
    """Writes a Model to the specified dir.
    Args:
        TFPreTrainedModel: The TF Model to write.
    """
    super().handle_return(model)
    temp_dir = TemporaryDirectory()
    model.save_pretrained(temp_dir.name)
    fileio_utils.copy_dir(
        temp_dir.name,
        os.path.join(self.artifact.uri, DEFAULT_TF_MODEL_DIR),
    )
huggingface_tokenizer_materializer
HFTokenizerMaterializer (BaseMaterializer)

Materializer to read tokenizer to and from huggingface tokenizer.

Source code in zenml/integrations/huggingface/materializers/huggingface_tokenizer_materializer.py
class HFTokenizerMaterializer(BaseMaterializer):
    """Materializer to read tokenizer to and from huggingface tokenizer."""

    ASSOCIATED_TYPES = (PreTrainedTokenizerBase,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> PreTrainedTokenizerBase:
        """Reads Tokenizer"""
        super().handle_input(data_type)

        return AutoTokenizer.from_pretrained(
            os.path.join(self.artifact.uri, DEFAULT_TOKENIZER_DIR)
        )

    def handle_return(self, tokenizer: Type[Any]) -> None:
        """Writes a Tokenizer to the specified dir.
        Args:
            PreTrainedTokenizerBase: The HFTokenizer to write.
        """
        super().handle_return(tokenizer)
        temp_dir = TemporaryDirectory()
        tokenizer.save_pretrained(temp_dir.name)
        fileio_utils.copy_dir(
            temp_dir.name,
            os.path.join(self.artifact.uri, DEFAULT_TOKENIZER_DIR),
        )
handle_input(self, data_type)

Reads Tokenizer

Source code in zenml/integrations/huggingface/materializers/huggingface_tokenizer_materializer.py
def handle_input(self, data_type: Type[Any]) -> PreTrainedTokenizerBase:
    """Reads Tokenizer"""
    super().handle_input(data_type)

    return AutoTokenizer.from_pretrained(
        os.path.join(self.artifact.uri, DEFAULT_TOKENIZER_DIR)
    )
handle_return(self, tokenizer)

Writes a Tokenizer to the specified dir.

Parameters:

Name Type Description Default
PreTrainedTokenizerBase

The HFTokenizer to write.

required
Source code in zenml/integrations/huggingface/materializers/huggingface_tokenizer_materializer.py
def handle_return(self, tokenizer: Type[Any]) -> None:
    """Writes a Tokenizer to the specified dir.
    Args:
        PreTrainedTokenizerBase: The HFTokenizer to write.
    """
    super().handle_return(tokenizer)
    temp_dir = TemporaryDirectory()
    tokenizer.save_pretrained(temp_dir.name)
    fileio_utils.copy_dir(
        temp_dir.name,
        os.path.join(self.artifact.uri, DEFAULT_TOKENIZER_DIR),
    )

integration

Integration

Base class for integration in ZenML

Source code in zenml/integrations/integration.py
class Integration(metaclass=IntegrationMeta):
    """Base class for integration in ZenML"""

    NAME = "base_integration"

    REQUIREMENTS: List[str] = []

    SYSTEM_REQUIREMENTS: Dict[str, str] = {}

    @classmethod
    def check_installation(cls) -> bool:
        """Method to check whether the required packages are installed"""
        try:
            for requirement, command in cls.SYSTEM_REQUIREMENTS.items():
                result = shutil.which(command)

                if result is None:
                    logger.debug(
                        "Unable to find the required packages for %s on your "
                        "system. Please install the packages on your system "
                        "and try again.",
                        requirement,
                    )
                    return False

            for r in cls.REQUIREMENTS:
                pkg_resources.get_distribution(r)
            logger.debug(
                f"Integration {cls.NAME} is installed correctly with "
                f"requirements {cls.REQUIREMENTS}."
            )
            return True
        except pkg_resources.DistributionNotFound as e:
            logger.debug(
                f"Unable to find required package '{e.req}' for "
                f"integration {cls.NAME}."
            )
            return False
        except pkg_resources.VersionConflict as e:
            logger.debug(
                f"VersionConflict error when loading installation {cls.NAME}: "
                f"{str(e)}"
            )
            return False

    @classmethod
    def activate(cls) -> None:
        """Abstract method to activate the integration."""

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Abstract method to declare new stack component flavors."""
activate() classmethod

Abstract method to activate the integration.

Source code in zenml/integrations/integration.py
@classmethod
def activate(cls) -> None:
    """Abstract method to activate the integration."""
check_installation() classmethod

Method to check whether the required packages are installed

Source code in zenml/integrations/integration.py
@classmethod
def check_installation(cls) -> bool:
    """Method to check whether the required packages are installed"""
    try:
        for requirement, command in cls.SYSTEM_REQUIREMENTS.items():
            result = shutil.which(command)

            if result is None:
                logger.debug(
                    "Unable to find the required packages for %s on your "
                    "system. Please install the packages on your system "
                    "and try again.",
                    requirement,
                )
                return False

        for r in cls.REQUIREMENTS:
            pkg_resources.get_distribution(r)
        logger.debug(
            f"Integration {cls.NAME} is installed correctly with "
            f"requirements {cls.REQUIREMENTS}."
        )
        return True
    except pkg_resources.DistributionNotFound as e:
        logger.debug(
            f"Unable to find required package '{e.req}' for "
            f"integration {cls.NAME}."
        )
        return False
    except pkg_resources.VersionConflict as e:
        logger.debug(
            f"VersionConflict error when loading installation {cls.NAME}: "
            f"{str(e)}"
        )
        return False
flavors() classmethod

Abstract method to declare new stack component flavors.

Source code in zenml/integrations/integration.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Abstract method to declare new stack component flavors."""

IntegrationMeta (type)

Metaclass responsible for registering different Integration subclasses

Source code in zenml/integrations/integration.py
class IntegrationMeta(type):
    """Metaclass responsible for registering different Integration
    subclasses"""

    def __new__(
        mcs, name: str, bases: Tuple[Type[Any], ...], dct: Dict[str, Any]
    ) -> "IntegrationMeta":
        """Hook into creation of an Integration class."""
        cls = cast(Type["Integration"], super().__new__(mcs, name, bases, dct))
        if name != "Integration":
            integration_registry.register_integration(cls.NAME, cls)
        return cls
__new__(mcs, name, bases, dct) special staticmethod

Hook into creation of an Integration class.

Source code in zenml/integrations/integration.py
def __new__(
    mcs, name: str, bases: Tuple[Type[Any], ...], dct: Dict[str, Any]
) -> "IntegrationMeta":
    """Hook into creation of an Integration class."""
    cls = cast(Type["Integration"], super().__new__(mcs, name, bases, dct))
    if name != "Integration":
        integration_registry.register_integration(cls.NAME, cls)
    return cls

kubeflow special

The Kubeflow integration sub-module powers an alternative to the local orchestrator. You can enable it by registering the Kubeflow orchestrator with the CLI tool.

KubeflowIntegration (Integration)

Definition of Kubeflow Integration for ZenML.

Source code in zenml/integrations/kubeflow/__init__.py
class KubeflowIntegration(Integration):
    """Definition of Kubeflow Integration for ZenML."""

    NAME = KUBEFLOW
    REQUIREMENTS = ["kfp==1.8.9"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the Kubeflow integration."""
        return [
            FlavorWrapper(
                name=KUBEFLOW_METADATA_STORE_FLAVOR,
                source="zenml.integrations.kubeflow.metadata_stores.KubeflowMetadataStore",
                type=StackComponentType.METADATA_STORE,
                integration=cls.NAME,
            ),
            FlavorWrapper(
                name=KUBEFLOW_ORCHESTRATOR_FLAVOR,
                source="zenml.integrations.kubeflow.orchestrators.KubeflowOrchestrator",
                type=StackComponentType.ORCHESTRATOR,
                integration=cls.NAME,
            ),
        ]
flavors() classmethod

Declare the stack component flavors for the Kubeflow integration.

Source code in zenml/integrations/kubeflow/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the Kubeflow integration."""
    return [
        FlavorWrapper(
            name=KUBEFLOW_METADATA_STORE_FLAVOR,
            source="zenml.integrations.kubeflow.metadata_stores.KubeflowMetadataStore",
            type=StackComponentType.METADATA_STORE,
            integration=cls.NAME,
        ),
        FlavorWrapper(
            name=KUBEFLOW_ORCHESTRATOR_FLAVOR,
            source="zenml.integrations.kubeflow.orchestrators.KubeflowOrchestrator",
            type=StackComponentType.ORCHESTRATOR,
            integration=cls.NAME,
        ),
    ]

metadata_stores special

kubeflow_metadata_store
KubeflowMetadataStore (BaseMetadataStore) pydantic-model

Kubeflow GRPC backend for ZenML metadata store.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
class KubeflowMetadataStore(BaseMetadataStore):
    """Kubeflow GRPC backend for ZenML metadata store."""

    upgrade_migration_enabled: bool = False
    host: str = "127.0.0.1"
    port: int = DEFAULT_KFP_METADATA_GRPC_PORT

    # Class Configuration
    FLAVOR: ClassVar[str] = KUBEFLOW_METADATA_STORE_FLAVOR

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates that the stack contains a KFP orchestrator."""

        def _ensure_kfp_orchestrator(stack: Stack) -> Tuple[bool, str]:
            return (
                stack.orchestrator.FLAVOR == KUBEFLOW,
                "The Kubeflow metadata store can only be used with a Kubeflow "
                "orchestrator.",
            )

        return StackValidator(
            custom_validation_function=_ensure_kfp_orchestrator
        )

    def get_tfx_metadata_config(
        self,
    ) -> Union[
        metadata_store_pb2.ConnectionConfig,
        metadata_store_pb2.MetadataStoreClientConfig,
    ]:
        """Return tfx metadata config for the kubeflow metadata store."""
        connection_config = metadata_store_pb2.MetadataStoreClientConfig()
        if inside_kfp_pod():
            connection_config.host = os.environ["METADATA_GRPC_SERVICE_HOST"]
            connection_config.port = int(
                os.environ["METADATA_GRPC_SERVICE_PORT"]
            )
        else:
            if not self.is_running:
                raise RuntimeError(
                    "The KFP metadata daemon is not running. Please run the "
                    "following command to start it first:\n\n"
                    "    'zenml metadata-store up'\n"
                )
            connection_config.host = self.host
            connection_config.port = self.port
        return connection_config

    @property
    def kfp_orchestrator(self) -> KubeflowOrchestrator:
        """Returns the Kubeflow orchestrator in the active stack."""
        repo = Repository(skip_repository_check=True)  # type: ignore[call-arg]
        return cast(KubeflowOrchestrator, repo.active_stack.orchestrator)

    @property
    def kubernetes_context(self) -> str:
        """Returns the kubernetes context to the cluster where the Kubeflow
        Pipelines services are running."""
        kubernetes_context = self.kfp_orchestrator.kubernetes_context

        # will never happen, but mypy doesn't know that
        assert kubernetes_context is not None
        return kubernetes_context

    @property
    def root_directory(self) -> str:
        """Returns path to the root directory for all files concerning
        this KFP metadata store.

        Note: the root directory for the KFP metadata store is relative to the
        root directory of the KFP orchestrator, because it is a sub-component
        of it.
        """
        return os.path.join(
            self.kfp_orchestrator.root_directory,
            "metadata-store",
            str(self.uuid),
        )

    @property
    def _pid_file_path(self) -> str:
        """Returns path to the daemon PID file."""
        return os.path.join(self.root_directory, "kubeflow_daemon.pid")

    @property
    def _log_file(self) -> str:
        """Path of the daemon log file."""
        return os.path.join(self.root_directory, "kubeflow_daemon.log")

    @property
    def is_provisioned(self) -> bool:
        """If the component provisioned resources to run locally."""
        return fileio.exists(self.root_directory)

    @property
    def is_running(self) -> bool:
        """If the component is running locally."""
        if sys.platform != "win32":
            from zenml.utils.daemon import check_if_daemon_is_running

            if not check_if_daemon_is_running(self._pid_file_path):
                return False
        else:
            # Daemon functionality is not supported on Windows, so the PID
            # file won't exist. This if clause exists just for mypy to not
            # complain about missing functions
            pass

        return True

    def provision(self) -> None:
        """Provisions resources to run the component locally."""
        logger.info("Provisioning local Kubeflow Pipelines deployment...")
        fileio.makedirs(self.root_directory)

    def deprovision(self) -> None:
        """Deprovisions all local resources of the component."""

        if fileio.exists(self._log_file):
            fileio.remove(self._log_file)

        logger.info("Local kubeflow pipelines deployment deprovisioned.")

    def resume(self) -> None:
        """Resumes the local k3d cluster."""
        if self.is_running:
            logger.info("Local kubeflow pipelines deployment already running.")
            return

        self.start_kfp_metadata_daemon()
        self.wait_until_metadata_store_ready()

    def suspend(self) -> None:
        """Suspends the local k3d cluster."""
        if not self.is_running:
            logger.info("Local kubeflow pipelines deployment not running.")
            return

        self.stop_kfp_metadata_daemon()

    def start_kfp_metadata_daemon(self) -> None:
        """Starts a daemon process that forwards ports so the Kubeflow Pipelines
        Metadata MySQL database is accessible on the localhost."""

        command = [
            "kubectl",
            "--context",
            self.kubernetes_context,
            "--namespace",
            "kubeflow",
            "port-forward",
            "svc/metadata-grpc-service",
            f"{self.port}:8080",
        ]

        if sys.platform == "win32":
            logger.warning(
                "Daemon functionality not supported on Windows. "
                "In order to access the Kubeflow Pipelines Metadata locally, "
                "please run '%s' in a separate command line shell.",
                self.port,
                " ".join(command),
            )
        elif not networking_utils.port_available(self.port):
            raise ProvisioningError(
                f"Unable to port-forward Kubeflow Pipelines Metadata to local "
                f"port {self.port} because the port is occupied. In order to "
                f"access the Kubeflow Pipelines Metadata locally, please "
                f"change the metadata store configuration to use an available "
                f"port or stop the other process currently using the port."
            )
        else:
            from zenml.utils import daemon

            def _daemon_function() -> None:
                """Forwards the port of the Kubeflow Pipelines Metadata pod ."""
                subprocess.check_call(command)

            daemon.run_as_daemon(
                _daemon_function,
                pid_file=self._pid_file_path,
                log_file=self._log_file,
            )
            logger.info(
                "Started Kubeflow Pipelines Metadata daemon (check the daemon"
                "logs at %s in case you're not able to access the pipeline"
                "metadata).",
                self._log_file,
            )

    def stop_kfp_metadata_daemon(self) -> None:
        """Stops the KFP Metadata daemon process if it is running."""
        if fileio.exists(self._pid_file_path):
            if sys.platform == "win32":
                # Daemon functionality is not supported on Windows, so the PID
                # file won't exist. This if clause exists just for mypy to not
                # complain about missing functions
                pass
            else:
                from zenml.utils import daemon

                daemon.stop_daemon(self._pid_file_path)
                fileio.remove(self._pid_file_path)

    def wait_until_metadata_store_ready(
        self, timeout: int = DEFAULT_KFP_METADATA_DAEMON_TIMEOUT
    ) -> None:
        """Waits until the metadata store connection is ready, an irrecoverable
        error occurs or the timeout expires."""
        logger.info(
            "Waiting for the Kubeflow metadata store to be ready (this might "
            "take a few minutes)."
        )
        while True:
            try:
                # it doesn't matter what we call here as long as it exercises
                # the MLMD connection
                self.get_pipelines()
                break
            except Exception as e:
                logger.info(
                    "The Kubeflow metadata store is not ready yet. Waiting for "
                    "10 seconds..."
                )
                if timeout <= 0:
                    raise RuntimeError(
                        f"An unexpected error was encountered while waiting for the "
                        f"Kubeflow metadata store to be functional: {str(e)}"
                    ) from e
                timeout -= 10
                time.sleep(10)

        logger.info("The Kubeflow metadata store is functional.")
is_provisioned: bool property readonly

If the component provisioned resources to run locally.

is_running: bool property readonly

If the component is running locally.

kfp_orchestrator: KubeflowOrchestrator property readonly

Returns the Kubeflow orchestrator in the active stack.

kubernetes_context: str property readonly

Returns the kubernetes context to the cluster where the Kubeflow Pipelines services are running.

root_directory: str property readonly

Returns path to the root directory for all files concerning this KFP metadata store.

Note: the root directory for the KFP metadata store is relative to the root directory of the KFP orchestrator, because it is a sub-component of it.

validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates that the stack contains a KFP orchestrator.

deprovision(self)

Deprovisions all local resources of the component.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def deprovision(self) -> None:
    """Deprovisions all local resources of the component."""

    if fileio.exists(self._log_file):
        fileio.remove(self._log_file)

    logger.info("Local kubeflow pipelines deployment deprovisioned.")
get_tfx_metadata_config(self)

Return tfx metadata config for the kubeflow metadata store.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def get_tfx_metadata_config(
    self,
) -> Union[
    metadata_store_pb2.ConnectionConfig,
    metadata_store_pb2.MetadataStoreClientConfig,
]:
    """Return tfx metadata config for the kubeflow metadata store."""
    connection_config = metadata_store_pb2.MetadataStoreClientConfig()
    if inside_kfp_pod():
        connection_config.host = os.environ["METADATA_GRPC_SERVICE_HOST"]
        connection_config.port = int(
            os.environ["METADATA_GRPC_SERVICE_PORT"]
        )
    else:
        if not self.is_running:
            raise RuntimeError(
                "The KFP metadata daemon is not running. Please run the "
                "following command to start it first:\n\n"
                "    'zenml metadata-store up'\n"
            )
        connection_config.host = self.host
        connection_config.port = self.port
    return connection_config
provision(self)

Provisions resources to run the component locally.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def provision(self) -> None:
    """Provisions resources to run the component locally."""
    logger.info("Provisioning local Kubeflow Pipelines deployment...")
    fileio.makedirs(self.root_directory)
resume(self)

Resumes the local k3d cluster.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def resume(self) -> None:
    """Resumes the local k3d cluster."""
    if self.is_running:
        logger.info("Local kubeflow pipelines deployment already running.")
        return

    self.start_kfp_metadata_daemon()
    self.wait_until_metadata_store_ready()
start_kfp_metadata_daemon(self)

Starts a daemon process that forwards ports so the Kubeflow Pipelines Metadata MySQL database is accessible on the localhost.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def start_kfp_metadata_daemon(self) -> None:
    """Starts a daemon process that forwards ports so the Kubeflow Pipelines
    Metadata MySQL database is accessible on the localhost."""

    command = [
        "kubectl",
        "--context",
        self.kubernetes_context,
        "--namespace",
        "kubeflow",
        "port-forward",
        "svc/metadata-grpc-service",
        f"{self.port}:8080",
    ]

    if sys.platform == "win32":
        logger.warning(
            "Daemon functionality not supported on Windows. "
            "In order to access the Kubeflow Pipelines Metadata locally, "
            "please run '%s' in a separate command line shell.",
            self.port,
            " ".join(command),
        )
    elif not networking_utils.port_available(self.port):
        raise ProvisioningError(
            f"Unable to port-forward Kubeflow Pipelines Metadata to local "
            f"port {self.port} because the port is occupied. In order to "
            f"access the Kubeflow Pipelines Metadata locally, please "
            f"change the metadata store configuration to use an available "
            f"port or stop the other process currently using the port."
        )
    else:
        from zenml.utils import daemon

        def _daemon_function() -> None:
            """Forwards the port of the Kubeflow Pipelines Metadata pod ."""
            subprocess.check_call(command)

        daemon.run_as_daemon(
            _daemon_function,
            pid_file=self._pid_file_path,
            log_file=self._log_file,
        )
        logger.info(
            "Started Kubeflow Pipelines Metadata daemon (check the daemon"
            "logs at %s in case you're not able to access the pipeline"
            "metadata).",
            self._log_file,
        )
stop_kfp_metadata_daemon(self)

Stops the KFP Metadata daemon process if it is running.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def stop_kfp_metadata_daemon(self) -> None:
    """Stops the KFP Metadata daemon process if it is running."""
    if fileio.exists(self._pid_file_path):
        if sys.platform == "win32":
            # Daemon functionality is not supported on Windows, so the PID
            # file won't exist. This if clause exists just for mypy to not
            # complain about missing functions
            pass
        else:
            from zenml.utils import daemon

            daemon.stop_daemon(self._pid_file_path)
            fileio.remove(self._pid_file_path)
suspend(self)

Suspends the local k3d cluster.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def suspend(self) -> None:
    """Suspends the local k3d cluster."""
    if not self.is_running:
        logger.info("Local kubeflow pipelines deployment not running.")
        return

    self.stop_kfp_metadata_daemon()
wait_until_metadata_store_ready(self, timeout=60)

Waits until the metadata store connection is ready, an irrecoverable error occurs or the timeout expires.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def wait_until_metadata_store_ready(
    self, timeout: int = DEFAULT_KFP_METADATA_DAEMON_TIMEOUT
) -> None:
    """Waits until the metadata store connection is ready, an irrecoverable
    error occurs or the timeout expires."""
    logger.info(
        "Waiting for the Kubeflow metadata store to be ready (this might "
        "take a few minutes)."
    )
    while True:
        try:
            # it doesn't matter what we call here as long as it exercises
            # the MLMD connection
            self.get_pipelines()
            break
        except Exception as e:
            logger.info(
                "The Kubeflow metadata store is not ready yet. Waiting for "
                "10 seconds..."
            )
            if timeout <= 0:
                raise RuntimeError(
                    f"An unexpected error was encountered while waiting for the "
                    f"Kubeflow metadata store to be functional: {str(e)}"
                ) from e
            timeout -= 10
            time.sleep(10)

    logger.info("The Kubeflow metadata store is functional.")
inside_kfp_pod()

Returns if the current python process is running inside a KFP Pod.

Source code in zenml/integrations/kubeflow/metadata_stores/kubeflow_metadata_store.py
def inside_kfp_pod() -> bool:
    """Returns if the current python process is running inside a KFP Pod."""
    if "KFP_POD_NAME" not in os.environ:
        return False

    try:
        k8s_config.load_incluster_config()
        return True
    except k8s_config.ConfigException:
        return False

orchestrators special

kubeflow_entrypoint_configuration
KubeflowEntrypointConfiguration (StepEntrypointConfiguration)

Entrypoint configuration for running steps on kubeflow.

This class writes a markdown file that will be displayed in the KFP UI.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
class KubeflowEntrypointConfiguration(StepEntrypointConfiguration):
    """Entrypoint configuration for running steps on kubeflow.

    This class writes a markdown file that will be displayed in the KFP UI.
    """

    @classmethod
    def get_custom_entrypoint_options(cls) -> Set[str]:
        """Kubeflow specific entrypoint options.

        The metadata ui path option expects a path where the markdown file
        that will be displayed in the kubeflow UI should be written. The same
        path needs to be added as an output artifact called
        `mlpipeline-ui-metadata` for the corresponding `kfp.dsl.ContainerOp`.
        """
        return {METADATA_UI_PATH_OPTION}

    @classmethod
    def get_custom_entrypoint_arguments(
        cls, step: BaseStep, *args: Any, **kwargs: Any
    ) -> List[str]:
        """Sets the metadata ui path argument to the value passed in via the
        keyword args.
        """
        return [f"--{METADATA_UI_PATH_OPTION}", kwargs[METADATA_UI_PATH_OPTION]]

    def get_run_name(self, pipeline_name: str) -> str:
        """Returns the Kubeflow pipeline run name."""
        k8s_config.load_incluster_config()
        run_id = os.environ["KFP_RUN_ID"]
        return kfp.Client().get_run(run_id).run.name  # type: ignore[no-any-return]

    def post_run(
        self,
        pipeline_name: str,
        step_name: str,
        pipeline_node: Pb2PipelineNode,
        execution_info: Optional[data_types.ExecutionInfo] = None,
    ) -> None:
        """Writes a markdown file that will display information about the step
        execution and input/output artifacts in the KFP UI."""
        if execution_info:
            utils.dump_ui_metadata(
                node=pipeline_node,
                execution_info=execution_info,
                metadata_ui_path=self.entrypoint_args[METADATA_UI_PATH_OPTION],
            )
get_custom_entrypoint_arguments(step, *args, **kwargs) classmethod

Sets the metadata ui path argument to the value passed in via the keyword args.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
@classmethod
def get_custom_entrypoint_arguments(
    cls, step: BaseStep, *args: Any, **kwargs: Any
) -> List[str]:
    """Sets the metadata ui path argument to the value passed in via the
    keyword args.
    """
    return [f"--{METADATA_UI_PATH_OPTION}", kwargs[METADATA_UI_PATH_OPTION]]
get_custom_entrypoint_options() classmethod

Kubeflow specific entrypoint options.

The metadata ui path option expects a path where the markdown file that will be displayed in the kubeflow UI should be written. The same path needs to be added as an output artifact called mlpipeline-ui-metadata for the corresponding kfp.dsl.ContainerOp.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
@classmethod
def get_custom_entrypoint_options(cls) -> Set[str]:
    """Kubeflow specific entrypoint options.

    The metadata ui path option expects a path where the markdown file
    that will be displayed in the kubeflow UI should be written. The same
    path needs to be added as an output artifact called
    `mlpipeline-ui-metadata` for the corresponding `kfp.dsl.ContainerOp`.
    """
    return {METADATA_UI_PATH_OPTION}
get_run_name(self, pipeline_name)

Returns the Kubeflow pipeline run name.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
def get_run_name(self, pipeline_name: str) -> str:
    """Returns the Kubeflow pipeline run name."""
    k8s_config.load_incluster_config()
    run_id = os.environ["KFP_RUN_ID"]
    return kfp.Client().get_run(run_id).run.name  # type: ignore[no-any-return]
post_run(self, pipeline_name, step_name, pipeline_node, execution_info=None)

Writes a markdown file that will display information about the step execution and input/output artifacts in the KFP UI.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
def post_run(
    self,
    pipeline_name: str,
    step_name: str,
    pipeline_node: Pb2PipelineNode,
    execution_info: Optional[data_types.ExecutionInfo] = None,
) -> None:
    """Writes a markdown file that will display information about the step
    execution and input/output artifacts in the KFP UI."""
    if execution_info:
        utils.dump_ui_metadata(
            node=pipeline_node,
            execution_info=execution_info,
            metadata_ui_path=self.entrypoint_args[METADATA_UI_PATH_OPTION],
        )
kubeflow_orchestrator
KubeflowOrchestrator (BaseOrchestrator) pydantic-model

Orchestrator responsible for running pipelines using Kubeflow.

Attributes:

Name Type Description
custom_docker_base_image_name Optional[str]

Name of a docker image that should be used as the base for the image that will be run on KFP pods. If no custom image is given, a basic image of the active ZenML version will be used. Note: This image needs to have ZenML installed, otherwise the pipeline execution will fail. For that reason, you might want to extend the ZenML docker images found here: https://hub.docker.com/r/zenmldocker/zenml/

kubeflow_pipelines_ui_port int

A local port to which the KFP UI will be forwarded.

kubeflow_hostname Optional[str]

The hostname to use to talk to the Kubeflow Pipelines API. If not set, the hostname will be derived from the Kubernetes API proxy.

kubernetes_context Optional[str]

Optional name of a kubernetes context to run pipelines in. If not set, the current active context will be used. You can find the active context by running kubectl config current-context.

synchronous bool

If True, running a pipeline using this orchestrator will block until all steps finished running on KFP.

skip_local_validations bool

If True, the local validations will be skipped.

skip_cluster_provisioning bool

If True, the k3d cluster provisioning will be skipped.

skip_ui_daemon_provisioning bool

If True, provisioning the KFP UI daemon will be skipped.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
class KubeflowOrchestrator(BaseOrchestrator):
    """Orchestrator responsible for running pipelines using Kubeflow.

    Attributes:
        custom_docker_base_image_name: Name of a docker image that should be
            used as the base for the image that will be run on KFP pods. If no
            custom image is given, a basic image of the active ZenML version
            will be used. **Note**: This image needs to have ZenML installed,
            otherwise the pipeline execution will fail. For that reason, you
            might want to extend the ZenML docker images found here:
            https://hub.docker.com/r/zenmldocker/zenml/
        kubeflow_pipelines_ui_port: A local port to which the KFP UI will be
            forwarded.
        kubeflow_hostname: The hostname to use to talk to the Kubeflow Pipelines
            API. If not set, the hostname will be derived from the Kubernetes
            API proxy.
        kubernetes_context: Optional name of a kubernetes context to run
            pipelines in. If not set, the current active context will be used.
            You can find the active context by running `kubectl config
            current-context`.
        synchronous: If `True`, running a pipeline using this orchestrator will
            block until all steps finished running on KFP.
        skip_local_validations: If `True`, the local validations will be
            skipped.
        skip_cluster_provisioning: If `True`, the k3d cluster provisioning will
            be skipped.
        skip_ui_daemon_provisioning: If `True`, provisioning the KFP UI daemon
            will be skipped.
    """

    custom_docker_base_image_name: Optional[str] = None
    kubeflow_pipelines_ui_port: int = DEFAULT_KFP_UI_PORT
    kubeflow_hostname: Optional[str] = None
    kubernetes_context: Optional[str] = None
    synchronous: bool = False
    skip_local_validations: bool = False
    skip_cluster_provisioning: bool = False
    skip_ui_daemon_provisioning: bool = False

    # Class Configuration
    FLAVOR: ClassVar[str] = KUBEFLOW_ORCHESTRATOR_FLAVOR

    @staticmethod
    def _get_k3d_cluster_name(uuid: UUID) -> str:
        """Returns the k3d cluster name corresponding to the orchestrator
        UUID."""
        # k3d only allows cluster names with up to 32 characters; use the
        # first 8 chars of the orchestrator UUID as identifier
        return f"zenml-kubeflow-{str(uuid)[:8]}"

    @staticmethod
    def _get_k3d_kubernetes_context(uuid: UUID) -> str:
        """Returns the name of the kubernetes context associated with the k3d
        cluster managed locally by ZenML corresponding to the orchestrator
        UUID."""
        return f"k3d-{KubeflowOrchestrator._get_k3d_cluster_name(uuid)}"

    @root_validator(skip_on_failure=True)
    def set_default_kubernetes_context(
        cls, values: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Pydantic root_validator that sets the default `kubernetes_context`
        value to the value that is used to create the locally managed k3d
        cluster, if not explicitly set.

        Args:
            values: Values passed to the object constructor

        Returns:
            Values passed to the Pydantic constructor
        """
        if not values.get("kubernetes_context"):
            # not likely, due to Pydantic validation, but mypy complains
            assert "uuid" in values
            values["kubernetes_context"] = cls._get_k3d_kubernetes_context(
                values["uuid"]
            )

        return values

    def get_kubernetes_contexts(self) -> Tuple[List[str], str]:
        """Get the list of configured Kubernetes contexts and the active
        context.

        Raises:
            RuntimeError: if the Kubernetes configuration cannot be loaded
        """
        try:
            contexts, active_context = k8s_config.list_kube_config_contexts()
        except k8s_config.config_exception.ConfigException as e:
            raise RuntimeError(
                "Could not load the Kubernetes configuration"
            ) from e

        context_names = [c["name"] for c in contexts]
        active_context_name = active_context["name"]
        return context_names, active_context_name

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates that the stack contains a container registry and that
        requirements are met for local components."""

        def _validate_local_requirements(stack: Stack) -> Tuple[bool, str]:

            container_registry = stack.container_registry

            # should not happen, because the stack validation takes care of
            # this, but just in case
            assert container_registry is not None

            contexts, active_context = self.get_kubernetes_contexts()

            if self.kubernetes_context not in contexts:
                if not self.is_local:
                    return False, (
                        f"Could not find a Kubernetes context named "
                        f"'{self.kubernetes_context}' in the local Kubernetes "
                        f"configuration. Please make sure that the Kubernetes "
                        f"cluster is running and that the kubeconfig file is "
                        f"configured correctly. To list all configured "
                        f"contexts, run:\n\n"
                        f"  `kubectl config get-contexts`\n"
                    )
            elif self.kubernetes_context != active_context:
                logger.warning(
                    f"The Kubernetes context '{self.kubernetes_context}' "
                    f"configured for the Kubeflow orchestrator is not the "
                    f"same as the active context in the local Kubernetes "
                    f"configuration. If this is not deliberate, you should "
                    f"update the orchestrator's `kubernetes_context` field by "
                    f"running:\n\n"
                    f"  `zenml orchestrator update {self.name} "
                    f"--kubernetes_context={active_context}`\n"
                    f"To list all configured contexts, run:\n\n"
                    f"  `kubectl config get-contexts`\n"
                    f"To set the active context to be the same as the one "
                    f"configured in the Kubeflow orchestrator and silence "
                    f"this warning, run:\n\n"
                    f"  `kubectl config use-context "
                    f"{self.kubernetes_context}`\n"
                )

            silence_local_validations_msg = (
                f"To silence this warning, set the "
                f"`skip_local_validations` attribute to True in the "
                f"orchestrator configuration by running:\n\n"
                f"  'zenml orchestrator update {self.name} "
                f"--skip_local_validations=True'\n"
            )

            if not self.skip_local_validations and not self.is_local:

                # if the orchestrator is not running in a local k3d cluster,
                # we cannot have any other local components in our stack,
                # because we cannot mount the local path into the container.
                # This may result in problems when running the pipeline, because
                # the local components will not be available inside the
                # Kubeflow containers.

                # go through all stack components and identify those that
                # advertise a local path where they persist information that
                # they need to be available when running pipelines.
                for stack_comp in stack.components.values():
                    local_path = stack_comp.local_path
                    if not local_path:
                        continue
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a remote Kubernetes cluster designated "
                        f"by the '{self.kubernetes_context}' configuration "
                        f"context, but the '{stack_comp.name}' "
                        f"{stack_comp.TYPE.value} is a local stack component "
                        f"and will not be available in the Kubeflow pipeline "
                        f"step.\nPlease ensure that you always use non-local "
                        f"stack components with a remote Kubeflow orchestrator, "
                        f"otherwise you may run into pipeline execution "
                        f"problems. You should use a flavor of "
                        f"{stack_comp.TYPE.value} other than "
                        f"'{stack_comp.FLAVOR}'.\n"
                        + silence_local_validations_msg
                    )

                # if the orchestrator is remote, the container registry must
                # also be remote.
                if container_registry.is_local:
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a remote Kubernetes cluster designated "
                        f"by the '{self.kubernetes_context}' configuration "
                        f"context, but the '{container_registry.name}' "
                        f"container registry URI '{container_registry.uri}' "
                        f"points to a local container registry. Please ensure "
                        f"that you always use non-local stack components with "
                        f"a remote Kubeflow orchestrator, otherwise you will "
                        f"run into problems. You should use a flavor of "
                        f"container registry other than "
                        f"'{container_registry.FLAVOR}'.\n"
                        + silence_local_validations_msg
                    )

            if not self.skip_local_validations and self.is_local:

                # if the orchestrator is local, the container registry must
                # also be local.
                if not container_registry.is_local:
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a local k3d Kubernetes cluster "
                        f"designated by the '{self.kubernetes_context}' "
                        f"configuration context, but the container registry "
                        f"URI '{container_registry.uri}' doesn't match the "
                        f"expected format 'localhost:$PORT'. "
                        f"The local Kubeflow orchestrator only works with a "
                        f"local container registry because it cannot "
                        f"currently authenticate to external container "
                        f"registries. You should use a flavor of container "
                        f"registry other than '{container_registry.FLAVOR}'.\n"
                        + silence_local_validations_msg
                    )

            return True, ""

        return StackValidator(
            required_components={StackComponentType.CONTAINER_REGISTRY},
            custom_validation_function=_validate_local_requirements,
        )

    def get_docker_image_name(self, pipeline_name: str) -> str:
        """Returns the full docker image name including registry and tag."""

        base_image_name = f"zenml-kubeflow:{pipeline_name}"
        container_registry = Repository().active_stack.container_registry

        if container_registry:
            registry_uri = container_registry.uri.rstrip("/")
            return f"{registry_uri}/{base_image_name}"
        else:
            return base_image_name

    @property
    def is_local(self) -> bool:
        """Returns `True` if the KFP orchestrator is running locally (i.e. in
        the local k3d cluster managed by ZenML).
        """
        return self.kubernetes_context == self._get_k3d_kubernetes_context(
            self.uuid
        )

    @property
    def root_directory(self) -> str:
        """Returns path to the root directory for all files concerning
        this orchestrator."""
        return os.path.join(
            zenml.io.utils.get_global_config_directory(),
            "kubeflow",
            str(self.uuid),
        )

    @property
    def pipeline_directory(self) -> str:
        """Returns path to a directory in which the kubeflow pipeline files
        are stored."""
        return os.path.join(self.root_directory, "pipelines")

    def prepare_pipeline_deployment(
        self,
        pipeline: "BasePipeline",
        stack: "Stack",
        runtime_configuration: "RuntimeConfiguration",
    ) -> None:
        """Builds a docker image for the current environment and uploads it to
        a container registry if configured.
        """
        from zenml.utils import docker_utils

        image_name = self.get_docker_image_name(pipeline.name)

        requirements = {*stack.requirements(), *pipeline.requirements}

        logger.debug("Kubeflow docker container requirements: %s", requirements)

        docker_utils.build_docker_image(
            build_context_path=get_source_root_path(),
            image_name=image_name,
            dockerignore_path=pipeline.dockerignore_file,
            requirements=requirements,
            base_image=self.custom_docker_base_image_name,
            environment_vars=self._get_environment_vars_from_secrets(
                pipeline.secrets
            ),
        )

        assert stack.container_registry  # should never happen due to validation
        stack.container_registry.push_image(image_name)

        # Store the docker image digest in the runtime configuration so it gets
        # tracked in the ZenStore
        image_digest = docker_utils.get_image_digest(image_name) or image_name
        runtime_configuration["docker_image"] = image_digest

    @staticmethod
    def _configure_container_op(container_op: dsl.ContainerOp) -> None:
        """Performs a few important changes in place to the configuration of the
        container op.
        Configures persistent mounted volumes for each stack component that
        writes to a local path.
        Adds some labels to the container_op and applies some functions to ir.

        Args:
            container_op: The kubeflow container operation to configure.
        """
        # Path to a metadata file that will be displayed in the KFP UI
        # This metadata file needs to be in a mounted emptyDir to avoid
        # sporadic failures with the (not mature) PNS executor
        # See these links for more information about limitations of PNS +
        # security context:
        # https://www.kubeflow.org/docs/components/pipelines/installation/localcluster-deployment/#deploying-kubeflow-pipelines
        # https://argoproj.github.io/argo-workflows/empty-dir/
        # KFP will switch to the Emissary executor (soon), when this emptyDir
        # mount will not be necessary anymore, but for now it's still in alpha
        # status (https://www.kubeflow.org/docs/components/pipelines/installation/choose-executor/#emissary-executor)
        volumes: Dict[str, k8s_client.V1Volume] = {
            "/outputs": k8s_client.V1Volume(
                name="outputs", empty_dir=k8s_client.V1EmptyDirVolumeSource()
            ),
        }

        stack = Repository().active_stack
        global_cfg_dir = get_global_config_directory()

        # go through all stack components and identify those that advertise
        # a local path where they persist information that they need to be
        # available when running pipelines. For those that do, mount them
        # into the Kubeflow container.
        has_local_repos = False
        for stack_comp in stack.components.values():
            local_path = stack_comp.local_path
            if not local_path:
                continue
            # double-check this convention, just in case it wasn't respected
            # as documented in `StackComponent.local_path`
            if not local_path.startswith(global_cfg_dir):
                raise ValueError(
                    f"Local path {local_path} for component {stack_comp.name} "
                    f"is not in the global config directory ({global_cfg_dir})."
                )
            has_local_repos = True
            host_path = k8s_client.V1HostPathVolumeSource(
                path=local_path, type="Directory"
            )
            volume_name = f"{stack_comp.TYPE.value}-{stack_comp.name}"
            volumes[local_path] = k8s_client.V1Volume(
                name=re.sub(r"[^0-9a-zA-Z-]+", "-", volume_name)
                .strip("-")
                .lower(),
                host_path=host_path,
            )
            logger.debug(
                "Adding host path volume for %s %s (path: %s) "
                "in kubeflow pipelines container.",
                stack_comp.TYPE.value,
                stack_comp.name,
                local_path,
            )
        container_op.add_pvolumes(volumes)

        if has_local_repos:
            if sys.platform == "win32":
                # File permissions are not checked on Windows. This if clause
                # prevents mypy from complaining about unused 'type: ignore'
                # statements
                pass
            else:
                # Run KFP containers in the context of the local UID/GID
                # to ensure that the artifact and metadata stores can be shared
                # with the local pipeline runs.
                container_op.container.security_context = (
                    k8s_client.V1SecurityContext(
                        run_as_user=os.getuid(),
                        run_as_group=os.getgid(),
                    )
                )
                logger.debug(
                    "Setting security context UID and GID to local user/group "
                    "in kubeflow pipelines container."
                )

        # Add environment variables for Azure Blob Storage to pod in case they
        # are set locally
        # TODO [ENG-699]: remove this as soon as we implement credential
        #  handling
        for key in [
            "AZURE_STORAGE_ACCOUNT_KEY",
            "AZURE_STORAGE_ACCOUNT_NAME",
            "AZURE_STORAGE_CONNECTION_STRING",
            "AZURE_STORAGE_SAS_TOKEN",
        ]:
            value = os.getenv(key)
            if value:
                container_op.container.add_env_variable(
                    k8s_client.V1EnvVar(name=key, value=value)
                )

        # Add some pod labels to the container_op
        for k, v in KFP_POD_LABELS.items():
            container_op.add_pod_label(k, v)

        # Mounts configmap containing Metadata gRPC server configuration.
        container_op.apply(utils.mount_config_map_op("metadata-grpc-configmap"))

    def prepare_or_run_pipeline(
        self,
        sorted_steps: List[BaseStep],
        pipeline: "BasePipeline",
        pb2_pipeline: Pb2Pipeline,
        stack: "Stack",
        runtime_configuration: "RuntimeConfiguration",
    ) -> Any:
        """
        Creates a kfp yaml file as intermediary representation of the
        pipeline which is then deployed to the kubeflow pipelines instance.

        How it works:
        -------------
        Before this method is called the `prepare_pipeline_deployment()`
        method builds a docker image that contains the code for the
        pipeline, all steps the context around these files.

        Based on this docker image a callable is created which builds
        container_ops for each step (`_construct_kfp_pipeline`).
        To do this the entrypoint of the docker image is configured to
        run the correct step within the docker image. The dependencies
        between these container_ops are then also configured onto each
        container_op by pointing at the downstream steps.

        This callable is then compiled into a kfp yaml file that is used as
        the intermediary representation of the kubeflow pipeline.

        This file, together with some metadata, runtime configurations is
        then uploaded into the kubeflow pipelines cluster for execution.
        """

        # First check whether the code running in a notebook
        if Environment.in_notebook():
            raise RuntimeError(
                "The Kubeflow orchestrator cannot run pipelines in a notebook "
                "environment. The reason is that it is non-trivial to create "
                "a Docker image of a notebook. Please consider refactoring "
                "your notebook cells into separate scripts in a Python module "
                "and run the code outside of a notebook when using this "
                "orchestrator."
            )

        image_name = self.get_docker_image_name(pipeline.name)
        image_name = get_image_digest(image_name) or image_name

        # Create a callable for future compilation into a dsl.Pipeline.
        def _construct_kfp_pipeline() -> None:
            """Create a container_op for each step which contains the name
            of the docker image and configures the entrypoint of the docker
            image to run the step.

            Additionally, this gives each container_op information about its
            direct downstream steps.

            If this callable is passed to the `_create_and_write_workflow()`
            method of a KFPCompiler all dsl.ContainerOp instances will be
            automatically added to a singular dsl.Pipeline instance.
            """

            # Dictionary of container_ops index by the associated step name
            step_name_to_container_op: Dict[str, dsl.ContainerOp] = {}

            for step in sorted_steps:
                # The command will be needed to eventually call the python step
                # within the docker container
                command = (
                    KubeflowEntrypointConfiguration.get_entrypoint_command()
                )

                # The arguments are passed to configure the entrypoint of the
                # docker container when the step is called.
                metadata_ui_path = "/outputs/mlpipeline-ui-metadata.json"
                arguments = (
                    KubeflowEntrypointConfiguration.get_entrypoint_arguments(
                        step=step,
                        pb2_pipeline=pb2_pipeline,
                        **{METADATA_UI_PATH_OPTION: metadata_ui_path},
                    )
                )

                # Create a container_op - the kubeflow equivalent of a step. It
                # contains the name of the step, the name of the docker image,
                # the command to use to run the step entrypoint
                # (e.g. `python -m zenml.entrypoints.step_entrypoint`)
                # and the arguments to be passed along with the command. Find
                # out more about how these arguments are parsed and used
                # in the base entrypoint `run()` method.
                container_op = dsl.ContainerOp(
                    name=step.name,
                    image=image_name,
                    command=command,
                    arguments=arguments,
                    output_artifact_paths={
                        "mlpipeline-ui-metadata": metadata_ui_path,
                    },
                )

                # Mounts persistent volumes, configmaps and adds labels to the
                # container op
                self._configure_container_op(container_op=container_op)

                # Find the upstream container ops of the current step and
                # configure the current container op to run after them
                upstream_step_names = self.get_upstream_step_names(
                    step=step, pb2_pipeline=pb2_pipeline
                )
                for upstream_step_name in upstream_step_names:
                    upstream_container_op = step_name_to_container_op[
                        upstream_step_name
                    ]
                    container_op.after(upstream_container_op)

                # Update dictionary of container ops with the current one
                step_name_to_container_op[step.name] = container_op

        # Get a filepath to use to save the finished yaml to
        assert runtime_configuration.run_name
        fileio.makedirs(self.pipeline_directory)
        pipeline_file_path = os.path.join(
            self.pipeline_directory, f"{runtime_configuration.run_name}.yaml"
        )

        # write the argo pipeline yaml
        KFPCompiler()._create_and_write_workflow(
            pipeline_func=_construct_kfp_pipeline,
            pipeline_name=pipeline.name,
            package_path=pipeline_file_path,
        )

        # using the kfp client uploads the pipeline to kubeflow pipelines and
        # runs it there
        self._upload_and_run_pipeline(
            pipeline_name=pipeline.name,
            pipeline_file_path=pipeline_file_path,
            runtime_configuration=runtime_configuration,
            enable_cache=pipeline.enable_cache,
        )

    def _upload_and_run_pipeline(
        self,
        pipeline_name: str,
        pipeline_file_path: str,
        runtime_configuration: "RuntimeConfiguration",
        enable_cache: bool,
    ) -> None:
        """Tries to upload and run a KFP pipeline.

        Args:
            pipeline_name: Name of the pipeline.
            pipeline_file_path: Path to the pipeline definition file.
            runtime_configuration: Runtime configuration of the pipeline run.
            enable_cache: Whether caching is enabled for this pipeline run.
        """
        try:
            logger.info(
                "Running in kubernetes context '%s'.",
                self.kubernetes_context,
            )

            # upload the pipeline to Kubeflow and start it
            client = kfp.Client(
                host=self.kubeflow_hostname,
                kube_context=self.kubernetes_context,
            )
            if runtime_configuration.schedule:
                try:
                    experiment = client.get_experiment(pipeline_name)
                    logger.info(
                        "A recurring run has already been created with this "
                        "pipeline. Creating new recurring run now.."
                    )
                except (ValueError, ApiException):
                    experiment = client.create_experiment(pipeline_name)
                    logger.info(
                        "Creating a new recurring run for pipeline '%s'.. ",
                        pipeline_name,
                    )
                logger.info(
                    "You can see all recurring runs under the '%s' experiment.'",
                    pipeline_name,
                )

                schedule = runtime_configuration.schedule
                result = client.create_recurring_run(
                    experiment_id=experiment.id,
                    job_name=runtime_configuration.run_name,
                    pipeline_package_path=pipeline_file_path,
                    enable_caching=enable_cache,
                    start_time=schedule.utc_start_time,
                    end_time=schedule.utc_end_time,
                    interval_second=schedule.interval_second.seconds,
                    no_catchup=not schedule.catchup,
                )

                logger.info("Started recurring run with ID '%s'.", result.id)
            else:
                logger.info(
                    "No schedule detected. Creating a one-off pipeline run.."
                )
                result = client.create_run_from_pipeline_package(
                    pipeline_file_path,
                    arguments={},
                    run_name=runtime_configuration.run_name,
                    enable_caching=enable_cache,
                )
                logger.info(
                    "Started one-off pipeline run with ID '%s'.", result.run_id
                )

                if self.synchronous:
                    # TODO [ENG-698]: Allow configuration of the timeout as a
                    #  runtime option
                    client.wait_for_run_completion(
                        run_id=result.run_id, timeout=1200
                    )
        except urllib3.exceptions.HTTPError as error:
            logger.warning(
                f"Failed to upload Kubeflow pipeline: %s. "
                f"Please make sure your kubernetes config is present and the "
                f"{self.kubernetes_context} kubernetes context is configured "
                f"correctly.",
                error,
            )

    @property
    def _pid_file_path(self) -> str:
        """Returns path to the daemon PID file."""
        return os.path.join(self.root_directory, "kubeflow_daemon.pid")

    @property
    def log_file(self) -> str:
        """Path of the daemon log file."""
        return os.path.join(self.root_directory, "kubeflow_daemon.log")

    @property
    def _k3d_cluster_name(self) -> str:
        """Returns the K3D cluster name."""
        return self._get_k3d_cluster_name(self.uuid)

    def _get_k3d_registry_name(self, port: int) -> str:
        """Returns the K3D registry name."""
        return f"k3d-zenml-kubeflow-registry.localhost:{port}"

    @property
    def _k3d_registry_config_path(self) -> str:
        """Returns the path to the K3D registry config yaml."""
        return os.path.join(self.root_directory, "k3d_registry.yaml")

    def _get_kfp_ui_daemon_port(self) -> int:
        """Port to use for the KFP UI daemon."""
        port = self.kubeflow_pipelines_ui_port
        if port == DEFAULT_KFP_UI_PORT and not networking_utils.port_available(
            port
        ):
            # if the user didn't specify a specific port and the default
            # port is occupied, fallback to a random open port
            port = networking_utils.find_available_port()
        return port

    def list_manual_setup_steps(
        self, container_registry_name: str, container_registry_path: str
    ) -> None:
        """Logs manual steps needed to setup the Kubeflow local orchestrator."""
        global_config_dir_path = zenml.io.utils.get_global_config_directory()
        kubeflow_commands = [
            f"> k3d cluster create CLUSTER_NAME --image {local_deployment_utils.K3S_IMAGE_NAME} --registry-create {container_registry_name} --registry-config {container_registry_path} --volume {global_config_dir_path}:{global_config_dir_path}\n",
            f"> kubectl --context CLUSTER_NAME apply -k github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref={KFP_VERSION}&timeout=1m",
            "> kubectl --context CLUSTER_NAME wait --timeout=60s --for condition=established crd/applications.app.k8s.io",
            f"> kubectl --context CLUSTER_NAME apply -k github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref={KFP_VERSION}&timeout=1m",
            f"> kubectl --namespace kubeflow port-forward svc/ml-pipeline-ui {self.kubeflow_pipelines_ui_port}:80",
        ]

        logger.error("Unable to spin up local Kubeflow Pipelines deployment.")
        logger.info(
            "If you wish to spin up this Kubeflow local orchestrator manually, "
            "please enter the following commands (substituting where appropriate):\n"
        )
        logger.info("\n".join(kubeflow_commands))

    @property
    def is_provisioned(self) -> bool:
        """Returns if a local k3d cluster for this orchestrator exists."""
        if not local_deployment_utils.check_prerequisites(
            skip_k3d=self.skip_cluster_provisioning or not self.is_local,
            skip_kubectl=self.skip_cluster_provisioning
            and self.skip_ui_daemon_provisioning,
        ):
            # if any prerequisites are missing there is certainly no
            # local deployment running
            return False

        return self.is_cluster_provisioned

    @property
    def is_running(self) -> bool:
        """Returns if the local k3d cluster and the UI daemon for this
        orchestrator are both running."""
        return (
            self.is_provisioned
            and self.is_cluster_running
            and self.is_daemon_running
        )

    @property
    def is_suspended(self) -> bool:
        """Returns if the local k3d cluster and the UI daemon for this
        orchestrator are both stopped."""
        return (
            self.is_provisioned
            and (self.skip_cluster_provisioning or not self.is_cluster_running)
            and (self.skip_ui_daemon_provisioning or not self.is_daemon_running)
        )

    @property
    def is_cluster_provisioned(self) -> bool:
        """Returns if the local k3d cluster for this orchestrator is provisioned.

        For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations,
        this always returns True.
        """
        if self.skip_cluster_provisioning or not self.is_local:
            return True
        return local_deployment_utils.k3d_cluster_exists(
            cluster_name=self._k3d_cluster_name
        )

    @property
    def is_cluster_running(self) -> bool:
        """Returns if the local k3d cluster for this orchestrator is running.

        For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations,
        this always returns True.
        """
        if self.skip_cluster_provisioning or not self.is_local:
            return True
        return local_deployment_utils.k3d_cluster_running(
            cluster_name=self._k3d_cluster_name
        )

    @property
    def is_daemon_running(self) -> bool:
        """Returns if the local Kubeflow UI daemon for this orchestrator is
        running."""
        if self.skip_ui_daemon_provisioning:
            return True

        if sys.platform != "win32":
            from zenml.utils.daemon import check_if_daemon_is_running

            return check_if_daemon_is_running(self._pid_file_path)
        else:
            return True

    def provision(self) -> None:
        """Provisions a local Kubeflow Pipelines deployment."""
        if self.skip_cluster_provisioning:
            return

        if self.is_running:
            logger.info(
                "Found already existing local Kubeflow Pipelines deployment. "
                "If there are any issues with the existing deployment, please "
                "run 'zenml stack down --yes' to delete it."
            )
            return

        if not local_deployment_utils.check_prerequisites():
            raise ProvisioningError(
                "Unable to provision local Kubeflow Pipelines deployment: "
                "Please install 'k3d' and 'kubectl' and try again."
            )

        container_registry = Repository().active_stack.container_registry

        # should not happen, because the stack validation takes care of this,
        # but just in case
        assert container_registry is not None

        fileio.makedirs(self.root_directory)

        if not self.is_local:
            # don't provision any resources if using a remote KFP installation
            return

        logger.info("Provisioning local Kubeflow Pipelines deployment...")

        container_registry_port = int(container_registry.uri.split(":")[-1])
        container_registry_name = self._get_k3d_registry_name(
            port=container_registry_port
        )
        local_deployment_utils.write_local_registry_yaml(
            yaml_path=self._k3d_registry_config_path,
            registry_name=container_registry_name,
            registry_uri=container_registry.uri,
        )

        try:
            local_deployment_utils.create_k3d_cluster(
                cluster_name=self._k3d_cluster_name,
                registry_name=container_registry_name,
                registry_config_path=self._k3d_registry_config_path,
            )
            kubernetes_context = self.kubernetes_context

            # will never happen, but mypy doesn't know that
            assert kubernetes_context is not None

            local_deployment_utils.deploy_kubeflow_pipelines(
                kubernetes_context=kubernetes_context
            )

            artifact_store = Repository().active_stack.artifact_store
            if isinstance(artifact_store, LocalArtifactStore):
                local_deployment_utils.add_hostpath_to_kubeflow_pipelines(
                    kubernetes_context=kubernetes_context,
                    local_path=artifact_store.path,
                )
        except Exception as e:
            logger.error(e)
            self.list_manual_setup_steps(
                container_registry_name, self._k3d_registry_config_path
            )
            self.deprovision()

    def deprovision(self) -> None:
        """Deprovisions a local Kubeflow Pipelines deployment."""
        if self.skip_cluster_provisioning:
            return

        if not self.skip_ui_daemon_provisioning and self.is_daemon_running:
            local_deployment_utils.stop_kfp_ui_daemon(
                pid_file_path=self._pid_file_path
            )

        if self.is_local:
            # don't deprovision any resources if using a remote KFP installation
            local_deployment_utils.delete_k3d_cluster(
                cluster_name=self._k3d_cluster_name
            )

            logger.info("Local kubeflow pipelines deployment deprovisioned.")

        if fileio.exists(self.log_file):
            fileio.remove(self.log_file)

    def resume(self) -> None:
        """Resumes the local k3d cluster."""
        if self.is_running:
            logger.info("Local kubeflow pipelines deployment already running.")
            return

        if not self.is_provisioned:
            raise ProvisioningError(
                "Unable to resume local kubeflow pipelines deployment: No "
                "resources provisioned for local deployment."
            )

        kubernetes_context = self.kubernetes_context

        # will never happen, but mypy doesn't know that
        assert kubernetes_context is not None

        if (
            not self.skip_cluster_provisioning
            and self.is_local
            and not self.is_cluster_running
        ):
            # don't resume any resources if using a remote KFP installation
            local_deployment_utils.start_k3d_cluster(
                cluster_name=self._k3d_cluster_name
            )

            local_deployment_utils.wait_until_kubeflow_pipelines_ready(
                kubernetes_context=kubernetes_context
            )

        if not self.is_daemon_running:
            local_deployment_utils.start_kfp_ui_daemon(
                pid_file_path=self._pid_file_path,
                log_file_path=self.log_file,
                port=self._get_kfp_ui_daemon_port(),
                kubernetes_context=kubernetes_context,
            )

    def suspend(self) -> None:
        """Suspends the local k3d cluster."""
        if not self.is_provisioned:
            logger.info("Local kubeflow pipelines deployment not provisioned.")
            return

        if not self.skip_ui_daemon_provisioning and self.is_daemon_running:
            local_deployment_utils.stop_kfp_ui_daemon(
                pid_file_path=self._pid_file_path
            )

        if (
            not self.skip_cluster_provisioning
            and self.is_local
            and self.is_cluster_running
        ):
            # don't suspend any resources if using a remote KFP installation
            local_deployment_utils.stop_k3d_cluster(
                cluster_name=self._k3d_cluster_name
            )

    def _get_environment_vars_from_secrets(
        self, secrets: List[str]
    ) -> Dict[str, str]:
        """Get key-value pairs from list of secrets provided by the user.

        Args:
            secrets: List of secrets provided by the user.

        Returns:
            A dictionary of key-value pairs.

        Raises:
            ProvisioningError: If the stack has no secrets manager."""
        environment_vars: Dict[str, str] = {}
        secret_manager = Repository().active_stack.secrets_manager
        if secrets and secret_manager:
            for secret in secrets:
                secret_schema = secret_manager.get_secret(secret)
                environment_vars.update(secret_schema.content)
        elif secrets and not secret_manager:
            raise ProvisioningError(
                "Unable to provision local Kubeflow Pipelines deployment: "
                f"You passed in the following secrets: { ', '.join(secrets) }, "
                "however, no secrets manager is registered for the current "
                "stack."
            )
        else:
            # No secrets provided by the user.
            pass
        return environment_vars
is_cluster_provisioned: bool property readonly

Returns if the local k3d cluster for this orchestrator is provisioned.

For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations, this always returns True.

is_cluster_running: bool property readonly

Returns if the local k3d cluster for this orchestrator is running.

For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations, this always returns True.

is_daemon_running: bool property readonly

Returns if the local Kubeflow UI daemon for this orchestrator is running.

is_local: bool property readonly

Returns True if the KFP orchestrator is running locally (i.e. in the local k3d cluster managed by ZenML).

is_provisioned: bool property readonly

Returns if a local k3d cluster for this orchestrator exists.

is_running: bool property readonly

Returns if the local k3d cluster and the UI daemon for this orchestrator are both running.

is_suspended: bool property readonly

Returns if the local k3d cluster and the UI daemon for this orchestrator are both stopped.

log_file: str property readonly

Path of the daemon log file.

pipeline_directory: str property readonly

Returns path to a directory in which the kubeflow pipeline files are stored.

root_directory: str property readonly

Returns path to the root directory for all files concerning this orchestrator.

validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates that the stack contains a container registry and that requirements are met for local components.

deprovision(self)

Deprovisions a local Kubeflow Pipelines deployment.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def deprovision(self) -> None:
    """Deprovisions a local Kubeflow Pipelines deployment."""
    if self.skip_cluster_provisioning:
        return

    if not self.skip_ui_daemon_provisioning and self.is_daemon_running:
        local_deployment_utils.stop_kfp_ui_daemon(
            pid_file_path=self._pid_file_path
        )

    if self.is_local:
        # don't deprovision any resources if using a remote KFP installation
        local_deployment_utils.delete_k3d_cluster(
            cluster_name=self._k3d_cluster_name
        )

        logger.info("Local kubeflow pipelines deployment deprovisioned.")

    if fileio.exists(self.log_file):
        fileio.remove(self.log_file)
get_docker_image_name(self, pipeline_name)

Returns the full docker image name including registry and tag.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def get_docker_image_name(self, pipeline_name: str) -> str:
    """Returns the full docker image name including registry and tag."""

    base_image_name = f"zenml-kubeflow:{pipeline_name}"
    container_registry = Repository().active_stack.container_registry

    if container_registry:
        registry_uri = container_registry.uri.rstrip("/")
        return f"{registry_uri}/{base_image_name}"
    else:
        return base_image_name
get_kubernetes_contexts(self)

Get the list of configured Kubernetes contexts and the active context.

Exceptions:

Type Description
RuntimeError

if the Kubernetes configuration cannot be loaded

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def get_kubernetes_contexts(self) -> Tuple[List[str], str]:
    """Get the list of configured Kubernetes contexts and the active
    context.

    Raises:
        RuntimeError: if the Kubernetes configuration cannot be loaded
    """
    try:
        contexts, active_context = k8s_config.list_kube_config_contexts()
    except k8s_config.config_exception.ConfigException as e:
        raise RuntimeError(
            "Could not load the Kubernetes configuration"
        ) from e

    context_names = [c["name"] for c in contexts]
    active_context_name = active_context["name"]
    return context_names, active_context_name
list_manual_setup_steps(self, container_registry_name, container_registry_path)

Logs manual steps needed to setup the Kubeflow local orchestrator.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def list_manual_setup_steps(
    self, container_registry_name: str, container_registry_path: str
) -> None:
    """Logs manual steps needed to setup the Kubeflow local orchestrator."""
    global_config_dir_path = zenml.io.utils.get_global_config_directory()
    kubeflow_commands = [
        f"> k3d cluster create CLUSTER_NAME --image {local_deployment_utils.K3S_IMAGE_NAME} --registry-create {container_registry_name} --registry-config {container_registry_path} --volume {global_config_dir_path}:{global_config_dir_path}\n",
        f"> kubectl --context CLUSTER_NAME apply -k github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref={KFP_VERSION}&timeout=1m",
        "> kubectl --context CLUSTER_NAME wait --timeout=60s --for condition=established crd/applications.app.k8s.io",
        f"> kubectl --context CLUSTER_NAME apply -k github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref={KFP_VERSION}&timeout=1m",
        f"> kubectl --namespace kubeflow port-forward svc/ml-pipeline-ui {self.kubeflow_pipelines_ui_port}:80",
    ]

    logger.error("Unable to spin up local Kubeflow Pipelines deployment.")
    logger.info(
        "If you wish to spin up this Kubeflow local orchestrator manually, "
        "please enter the following commands (substituting where appropriate):\n"
    )
    logger.info("\n".join(kubeflow_commands))
prepare_or_run_pipeline(self, sorted_steps, pipeline, pb2_pipeline, stack, runtime_configuration)

Creates a kfp yaml file as intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.

How it works:

Before this method is called the prepare_pipeline_deployment() method builds a docker image that contains the code for the pipeline, all steps the context around these files.

Based on this docker image a callable is created which builds container_ops for each step (_construct_kfp_pipeline). To do this the entrypoint of the docker image is configured to run the correct step within the docker image. The dependencies between these container_ops are then also configured onto each container_op by pointing at the downstream steps.

This callable is then compiled into a kfp yaml file that is used as the intermediary representation of the kubeflow pipeline.

This file, together with some metadata, runtime configurations is then uploaded into the kubeflow pipelines cluster for execution.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def prepare_or_run_pipeline(
    self,
    sorted_steps: List[BaseStep],
    pipeline: "BasePipeline",
    pb2_pipeline: Pb2Pipeline,
    stack: "Stack",
    runtime_configuration: "RuntimeConfiguration",
) -> Any:
    """
    Creates a kfp yaml file as intermediary representation of the
    pipeline which is then deployed to the kubeflow pipelines instance.

    How it works:
    -------------
    Before this method is called the `prepare_pipeline_deployment()`
    method builds a docker image that contains the code for the
    pipeline, all steps the context around these files.

    Based on this docker image a callable is created which builds
    container_ops for each step (`_construct_kfp_pipeline`).
    To do this the entrypoint of the docker image is configured to
    run the correct step within the docker image. The dependencies
    between these container_ops are then also configured onto each
    container_op by pointing at the downstream steps.

    This callable is then compiled into a kfp yaml file that is used as
    the intermediary representation of the kubeflow pipeline.

    This file, together with some metadata, runtime configurations is
    then uploaded into the kubeflow pipelines cluster for execution.
    """

    # First check whether the code running in a notebook
    if Environment.in_notebook():
        raise RuntimeError(
            "The Kubeflow orchestrator cannot run pipelines in a notebook "
            "environment. The reason is that it is non-trivial to create "
            "a Docker image of a notebook. Please consider refactoring "
            "your notebook cells into separate scripts in a Python module "
            "and run the code outside of a notebook when using this "
            "orchestrator."
        )

    image_name = self.get_docker_image_name(pipeline.name)
    image_name = get_image_digest(image_name) or image_name

    # Create a callable for future compilation into a dsl.Pipeline.
    def _construct_kfp_pipeline() -> None:
        """Create a container_op for each step which contains the name
        of the docker image and configures the entrypoint of the docker
        image to run the step.

        Additionally, this gives each container_op information about its
        direct downstream steps.

        If this callable is passed to the `_create_and_write_workflow()`
        method of a KFPCompiler all dsl.ContainerOp instances will be
        automatically added to a singular dsl.Pipeline instance.
        """

        # Dictionary of container_ops index by the associated step name
        step_name_to_container_op: Dict[str, dsl.ContainerOp] = {}

        for step in sorted_steps:
            # The command will be needed to eventually call the python step
            # within the docker container
            command = (
                KubeflowEntrypointConfiguration.get_entrypoint_command()
            )

            # The arguments are passed to configure the entrypoint of the
            # docker container when the step is called.
            metadata_ui_path = "/outputs/mlpipeline-ui-metadata.json"
            arguments = (
                KubeflowEntrypointConfiguration.get_entrypoint_arguments(
                    step=step,
                    pb2_pipeline=pb2_pipeline,
                    **{METADATA_UI_PATH_OPTION: metadata_ui_path},
                )
            )

            # Create a container_op - the kubeflow equivalent of a step. It
            # contains the name of the step, the name of the docker image,
            # the command to use to run the step entrypoint
            # (e.g. `python -m zenml.entrypoints.step_entrypoint`)
            # and the arguments to be passed along with the command. Find
            # out more about how these arguments are parsed and used
            # in the base entrypoint `run()` method.
            container_op = dsl.ContainerOp(
                name=step.name,
                image=image_name,
                command=command,
                arguments=arguments,
                output_artifact_paths={
                    "mlpipeline-ui-metadata": metadata_ui_path,
                },
            )

            # Mounts persistent volumes, configmaps and adds labels to the
            # container op
            self._configure_container_op(container_op=container_op)

            # Find the upstream container ops of the current step and
            # configure the current container op to run after them
            upstream_step_names = self.get_upstream_step_names(
                step=step, pb2_pipeline=pb2_pipeline
            )
            for upstream_step_name in upstream_step_names:
                upstream_container_op = step_name_to_container_op[
                    upstream_step_name
                ]
                container_op.after(upstream_container_op)

            # Update dictionary of container ops with the current one
            step_name_to_container_op[step.name] = container_op

    # Get a filepath to use to save the finished yaml to
    assert runtime_configuration.run_name
    fileio.makedirs(self.pipeline_directory)
    pipeline_file_path = os.path.join(
        self.pipeline_directory, f"{runtime_configuration.run_name}.yaml"
    )

    # write the argo pipeline yaml
    KFPCompiler()._create_and_write_workflow(
        pipeline_func=_construct_kfp_pipeline,
        pipeline_name=pipeline.name,
        package_path=pipeline_file_path,
    )

    # using the kfp client uploads the pipeline to kubeflow pipelines and
    # runs it there
    self._upload_and_run_pipeline(
        pipeline_name=pipeline.name,
        pipeline_file_path=pipeline_file_path,
        runtime_configuration=runtime_configuration,
        enable_cache=pipeline.enable_cache,
    )
prepare_pipeline_deployment(self, pipeline, stack, runtime_configuration)

Builds a docker image for the current environment and uploads it to a container registry if configured.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def prepare_pipeline_deployment(
    self,
    pipeline: "BasePipeline",
    stack: "Stack",
    runtime_configuration: "RuntimeConfiguration",
) -> None:
    """Builds a docker image for the current environment and uploads it to
    a container registry if configured.
    """
    from zenml.utils import docker_utils

    image_name = self.get_docker_image_name(pipeline.name)

    requirements = {*stack.requirements(), *pipeline.requirements}

    logger.debug("Kubeflow docker container requirements: %s", requirements)

    docker_utils.build_docker_image(
        build_context_path=get_source_root_path(),
        image_name=image_name,
        dockerignore_path=pipeline.dockerignore_file,
        requirements=requirements,
        base_image=self.custom_docker_base_image_name,
        environment_vars=self._get_environment_vars_from_secrets(
            pipeline.secrets
        ),
    )

    assert stack.container_registry  # should never happen due to validation
    stack.container_registry.push_image(image_name)

    # Store the docker image digest in the runtime configuration so it gets
    # tracked in the ZenStore
    image_digest = docker_utils.get_image_digest(image_name) or image_name
    runtime_configuration["docker_image"] = image_digest
provision(self)

Provisions a local Kubeflow Pipelines deployment.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def provision(self) -> None:
    """Provisions a local Kubeflow Pipelines deployment."""
    if self.skip_cluster_provisioning:
        return

    if self.is_running:
        logger.info(
            "Found already existing local Kubeflow Pipelines deployment. "
            "If there are any issues with the existing deployment, please "
            "run 'zenml stack down --yes' to delete it."
        )
        return

    if not local_deployment_utils.check_prerequisites():
        raise ProvisioningError(
            "Unable to provision local Kubeflow Pipelines deployment: "
            "Please install 'k3d' and 'kubectl' and try again."
        )

    container_registry = Repository().active_stack.container_registry

    # should not happen, because the stack validation takes care of this,
    # but just in case
    assert container_registry is not None

    fileio.makedirs(self.root_directory)

    if not self.is_local:
        # don't provision any resources if using a remote KFP installation
        return

    logger.info("Provisioning local Kubeflow Pipelines deployment...")

    container_registry_port = int(container_registry.uri.split(":")[-1])
    container_registry_name = self._get_k3d_registry_name(
        port=container_registry_port
    )
    local_deployment_utils.write_local_registry_yaml(
        yaml_path=self._k3d_registry_config_path,
        registry_name=container_registry_name,
        registry_uri=container_registry.uri,
    )

    try:
        local_deployment_utils.create_k3d_cluster(
            cluster_name=self._k3d_cluster_name,
            registry_name=container_registry_name,
            registry_config_path=self._k3d_registry_config_path,
        )
        kubernetes_context = self.kubernetes_context

        # will never happen, but mypy doesn't know that
        assert kubernetes_context is not None

        local_deployment_utils.deploy_kubeflow_pipelines(
            kubernetes_context=kubernetes_context
        )

        artifact_store = Repository().active_stack.artifact_store
        if isinstance(artifact_store, LocalArtifactStore):
            local_deployment_utils.add_hostpath_to_kubeflow_pipelines(
                kubernetes_context=kubernetes_context,
                local_path=artifact_store.path,
            )
    except Exception as e:
        logger.error(e)
        self.list_manual_setup_steps(
            container_registry_name, self._k3d_registry_config_path
        )
        self.deprovision()
resume(self)

Resumes the local k3d cluster.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def resume(self) -> None:
    """Resumes the local k3d cluster."""
    if self.is_running:
        logger.info("Local kubeflow pipelines deployment already running.")
        return

    if not self.is_provisioned:
        raise ProvisioningError(
            "Unable to resume local kubeflow pipelines deployment: No "
            "resources provisioned for local deployment."
        )

    kubernetes_context = self.kubernetes_context

    # will never happen, but mypy doesn't know that
    assert kubernetes_context is not None

    if (
        not self.skip_cluster_provisioning
        and self.is_local
        and not self.is_cluster_running
    ):
        # don't resume any resources if using a remote KFP installation
        local_deployment_utils.start_k3d_cluster(
            cluster_name=self._k3d_cluster_name
        )

        local_deployment_utils.wait_until_kubeflow_pipelines_ready(
            kubernetes_context=kubernetes_context
        )

    if not self.is_daemon_running:
        local_deployment_utils.start_kfp_ui_daemon(
            pid_file_path=self._pid_file_path,
            log_file_path=self.log_file,
            port=self._get_kfp_ui_daemon_port(),
            kubernetes_context=kubernetes_context,
        )
set_default_kubernetes_context(values) classmethod

Pydantic root_validator that sets the default kubernetes_context value to the value that is used to create the locally managed k3d cluster, if not explicitly set.

Parameters:

Name Type Description Default
values Dict[str, Any]

Values passed to the object constructor

required

Returns:

Type Description
Dict[str, Any]

Values passed to the Pydantic constructor

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
@root_validator(skip_on_failure=True)
def set_default_kubernetes_context(
    cls, values: Dict[str, Any]
) -> Dict[str, Any]:
    """Pydantic root_validator that sets the default `kubernetes_context`
    value to the value that is used to create the locally managed k3d
    cluster, if not explicitly set.

    Args:
        values: Values passed to the object constructor

    Returns:
        Values passed to the Pydantic constructor
    """
    if not values.get("kubernetes_context"):
        # not likely, due to Pydantic validation, but mypy complains
        assert "uuid" in values
        values["kubernetes_context"] = cls._get_k3d_kubernetes_context(
            values["uuid"]
        )

    return values
suspend(self)

Suspends the local k3d cluster.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def suspend(self) -> None:
    """Suspends the local k3d cluster."""
    if not self.is_provisioned:
        logger.info("Local kubeflow pipelines deployment not provisioned.")
        return

    if not self.skip_ui_daemon_provisioning and self.is_daemon_running:
        local_deployment_utils.stop_kfp_ui_daemon(
            pid_file_path=self._pid_file_path
        )

    if (
        not self.skip_cluster_provisioning
        and self.is_local
        and self.is_cluster_running
    ):
        # don't suspend any resources if using a remote KFP installation
        local_deployment_utils.stop_k3d_cluster(
            cluster_name=self._k3d_cluster_name
        )
local_deployment_utils
add_hostpath_to_kubeflow_pipelines(kubernetes_context, local_path)

Patches the Kubeflow Pipelines deployment to mount a local folder as a hostpath for visualization purposes.

This function reconfigures the Kubeflow pipelines deployment to use a shared local folder to support loading the Tensorboard viewer and other pipeline visualization results from a local artifact store, as described here:

https://github.com/kubeflow/pipelines/blob/master/docs/config/volume-support.md

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context on which Kubeflow Pipelines should be patched.

required
local_path str

The path to the local folder to mount as a hostpath.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def add_hostpath_to_kubeflow_pipelines(
    kubernetes_context: str, local_path: str
) -> None:
    """Patches the Kubeflow Pipelines deployment to mount a local folder as
    a hostpath for visualization purposes.

    This function reconfigures the Kubeflow pipelines deployment to use a
    shared local folder to support loading the Tensorboard viewer and other
    pipeline visualization results from a local artifact store, as described
    here:

    https://github.com/kubeflow/pipelines/blob/master/docs/config/volume-support.md

    Args:
        kubernetes_context: The kubernetes context on which Kubeflow Pipelines
            should be patched.
        local_path: The path to the local folder to mount as a hostpath.
    """
    logger.info("Patching Kubeflow Pipelines to mount a local folder.")

    pod_template = {
        "spec": {
            "serviceAccountName": "kubeflow-pipelines-viewer",
            "containers": [
                {
                    "volumeMounts": [
                        {
                            "mountPath": local_path,
                            "name": "local-artifact-store",
                        }
                    ]
                }
            ],
            "volumes": [
                {
                    "hostPath": {
                        "path": local_path,
                        "type": "Directory",
                    },
                    "name": "local-artifact-store",
                }
            ],
        }
    }
    pod_template_json = json.dumps(pod_template, indent=2)
    config_map_data = {"data": {"viewer-pod-template.json": pod_template_json}}
    config_map_data_json = json.dumps(config_map_data, indent=2)

    logger.debug(
        "Adding host path volume for local path `%s` to kubeflow pipeline"
        "viewer pod template configuration.",
        local_path,
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "-n",
            "kubeflow",
            "patch",
            "configmap/ml-pipeline-ui-configmap",
            "--type",
            "merge",
            "-p",
            config_map_data_json,
        ]
    )

    deployment_patch = {
        "spec": {
            "template": {
                "spec": {
                    "containers": [
                        {
                            "name": "ml-pipeline-ui",
                            "volumeMounts": [
                                {
                                    "mountPath": local_path,
                                    "name": "local-artifact-store",
                                }
                            ],
                        }
                    ],
                    "volumes": [
                        {
                            "hostPath": {
                                "path": local_path,
                                "type": "Directory",
                            },
                            "name": "local-artifact-store",
                        }
                    ],
                }
            }
        }
    }
    deployment_patch_json = json.dumps(deployment_patch, indent=2)

    logger.debug(
        "Adding host path volume for local path `%s` to the kubeflow UI",
        local_path,
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "-n",
            "kubeflow",
            "patch",
            "deployment/ml-pipeline-ui",
            "--type",
            "strategic",
            "-p",
            deployment_patch_json,
        ]
    )
    wait_until_kubeflow_pipelines_ready(kubernetes_context=kubernetes_context)

    logger.info("Finished patching Kubeflow Pipelines setup.")
check_prerequisites(skip_k3d=False, skip_kubectl=False)

Checks whether all prerequisites for a local kubeflow pipelines deployment are installed.

Parameters:

Name Type Description Default
skip_k3d bool

Whether to skip the check for the k3d command.

False
skip_kubectl bool

Whether to skip the check for the kubectl command.

False

Returns:

Type Description
bool

Whether all prerequisites are installed.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def check_prerequisites(
    skip_k3d: bool = False, skip_kubectl: bool = False
) -> bool:
    """Checks whether all prerequisites for a local kubeflow pipelines
    deployment are installed.

    Args:
        skip_k3d: Whether to skip the check for the k3d command.
        skip_kubectl: Whether to skip the check for the kubectl command.

    Returns:
        Whether all prerequisites are installed.
    """
    k3d_installed = skip_k3d or shutil.which("k3d") is not None
    kubectl_installed = skip_kubectl or shutil.which("kubectl") is not None
    logger.debug(
        "Local kubeflow deployment prerequisites: K3D - %s, Kubectl - %s",
        k3d_installed,
        kubectl_installed,
    )
    return k3d_installed and kubectl_installed
create_k3d_cluster(cluster_name, registry_name, registry_config_path)

Creates a K3D cluster.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to create.

required
registry_name str

Name of the registry to create for this cluster.

required
registry_config_path str

Path to the registry config file.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def create_k3d_cluster(
    cluster_name: str, registry_name: str, registry_config_path: str
) -> None:
    """Creates a K3D cluster.

    Args:
        cluster_name: Name of the cluster to create.
        registry_name: Name of the registry to create for this cluster.
        registry_config_path: Path to the registry config file.
    """
    logger.info("Creating local K3D cluster '%s'.", cluster_name)
    global_config_dir_path = zenml.io.utils.get_global_config_directory()
    subprocess.check_call(
        [
            "k3d",
            "cluster",
            "create",
            cluster_name,
            "--image",
            K3S_IMAGE_NAME,
            "--registry-create",
            registry_name,
            "--registry-config",
            registry_config_path,
            "--volume",
            f"{global_config_dir_path}:{global_config_dir_path}",
        ]
    )
    logger.info("Finished K3D cluster creation.")
delete_k3d_cluster(cluster_name)

Deletes a K3D cluster with the given name.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def delete_k3d_cluster(cluster_name: str) -> None:
    """Deletes a K3D cluster with the given name."""
    subprocess.check_call(["k3d", "cluster", "delete", cluster_name])
    logger.info("Deleted local k3d cluster '%s'.", cluster_name)
deploy_kubeflow_pipelines(kubernetes_context)

Deploys Kubeflow Pipelines.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context on which Kubeflow Pipelines should be deployed.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def deploy_kubeflow_pipelines(kubernetes_context: str) -> None:
    """Deploys Kubeflow Pipelines.

    Args:
        kubernetes_context: The kubernetes context on which Kubeflow Pipelines
            should be deployed.
    """
    logger.info("Deploying Kubeflow Pipelines.")
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "apply",
            "-k",
            f"github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref={KFP_VERSION}&timeout=5m",
        ]
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "wait",
            "--timeout=60s",
            "--for",
            "condition=established",
            "crd/applications.app.k8s.io",
        ]
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "apply",
            "-k",
            f"github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref={KFP_VERSION}&timeout=5m",
        ]
    )

    wait_until_kubeflow_pipelines_ready(kubernetes_context=kubernetes_context)
    logger.info("Finished Kubeflow Pipelines setup.")
k3d_cluster_exists(cluster_name)

Checks whether there exists a K3D cluster with the given name.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def k3d_cluster_exists(cluster_name: str) -> bool:
    """Checks whether there exists a K3D cluster with the given name."""
    output = subprocess.check_output(
        ["k3d", "cluster", "list", "--output", "json"]
    )
    clusters = json.loads(output)
    for cluster in clusters:
        if cluster["name"] == cluster_name:
            return True
    return False
k3d_cluster_running(cluster_name)

Checks whether the K3D cluster with the given name is running.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def k3d_cluster_running(cluster_name: str) -> bool:
    """Checks whether the K3D cluster with the given name is running."""
    output = subprocess.check_output(
        ["k3d", "cluster", "list", "--output", "json"]
    )
    clusters = json.loads(output)
    for cluster in clusters:
        if cluster["name"] == cluster_name:
            server_count: int = cluster["serversCount"]
            servers_running: int = cluster["serversRunning"]
            return servers_running == server_count
    return False
kubeflow_pipelines_ready(kubernetes_context)

Returns whether all Kubeflow Pipelines pods are ready.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context in which the pods should be checked.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def kubeflow_pipelines_ready(kubernetes_context: str) -> bool:
    """Returns whether all Kubeflow Pipelines pods are ready.

    Args:
        kubernetes_context: The kubernetes context in which the pods
            should be checked.
    """
    try:
        subprocess.check_call(
            [
                "kubectl",
                "--context",
                kubernetes_context,
                "--namespace",
                "kubeflow",
                "wait",
                "--for",
                "condition=ready",
                "--timeout=0s",
                "pods",
                "-l",
                "application-crd-id=kubeflow-pipelines",
            ],
            stdout=subprocess.DEVNULL,
            stderr=subprocess.DEVNULL,
        )
        return True
    except subprocess.CalledProcessError:
        return False
start_k3d_cluster(cluster_name)

Starts a K3D cluster with the given name.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def start_k3d_cluster(cluster_name: str) -> None:
    """Starts a K3D cluster with the given name."""
    subprocess.check_call(["k3d", "cluster", "start", cluster_name])
    logger.info("Started local k3d cluster '%s'.", cluster_name)
start_kfp_ui_daemon(pid_file_path, log_file_path, port, kubernetes_context)

Starts a daemon process that forwards ports so the Kubeflow Pipelines UI is accessible in the browser.

Parameters:

Name Type Description Default
pid_file_path str

Path where the file with the daemons process ID should be written.

required
log_file_path str

Path to a file where the daemon logs should be written.

required
port int

Port on which the UI should be accessible.

required
kubernetes_context str

The kubernetes context for the cluster where Kubeflow Pipelines is running.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def start_kfp_ui_daemon(
    pid_file_path: str,
    log_file_path: str,
    port: int,
    kubernetes_context: str,
) -> None:
    """Starts a daemon process that forwards ports so the Kubeflow Pipelines
    UI is accessible in the browser.

    Args:
        pid_file_path: Path where the file with the daemons process ID should
            be written.
        log_file_path: Path to a file where the daemon logs should be written.
        port: Port on which the UI should be accessible.
        kubernetes_context: The kubernetes context for the cluster where
            Kubeflow Pipelines is running.
    """
    command = [
        "kubectl",
        "--context",
        kubernetes_context,
        "--namespace",
        "kubeflow",
        "port-forward",
        "svc/ml-pipeline-ui",
        f"{port}:80",
    ]

    if not networking_utils.port_available(port):
        modified_command = command.copy()
        modified_command[-1] = "PORT:80"
        logger.warning(
            "Unable to port-forward Kubeflow Pipelines UI to local port %d "
            "because the port is occupied. In order to access the Kubeflow "
            "Pipelines UI at http://localhost:PORT/, please run '%s' in a "
            "separate command line shell (replace PORT with a free port of "
            "your choice).",
            port,
            " ".join(modified_command),
        )
    elif sys.platform == "win32":
        logger.warning(
            "Daemon functionality not supported on Windows. "
            "In order to access the Kubeflow Pipelines UI at "
            "http://localhost:%d/, please run '%s' in a separate command "
            "line shell.",
            port,
            " ".join(command),
        )
    else:
        from zenml.utils import daemon

        def _daemon_function() -> None:
            """Port-forwards the Kubeflow Pipelines UI pod."""
            subprocess.check_call(command)

        daemon.run_as_daemon(
            _daemon_function, pid_file=pid_file_path, log_file=log_file_path
        )
        logger.info(
            "Started Kubeflow Pipelines UI daemon (check the daemon logs at %s "
            "in case you're not able to view the UI). The Kubeflow Pipelines "
            "UI should now be accessible at http://localhost:%d/.",
            log_file_path,
            port,
        )
stop_k3d_cluster(cluster_name)

Stops a K3D cluster with the given name.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def stop_k3d_cluster(cluster_name: str) -> None:
    """Stops a K3D cluster with the given name."""
    subprocess.check_call(["k3d", "cluster", "stop", cluster_name])
    logger.info("Stopped local k3d cluster '%s'.", cluster_name)
stop_kfp_ui_daemon(pid_file_path)

Stops the KFP UI daemon process if it is running.

Parameters:

Name Type Description Default
pid_file_path str

Path to the file with the daemons process ID.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def stop_kfp_ui_daemon(pid_file_path: str) -> None:
    """Stops the KFP UI daemon process if it is running.

    Args:
        pid_file_path: Path to the file with the daemons process ID.
    """
    if fileio.exists(pid_file_path):
        if sys.platform == "win32":
            # Daemon functionality is not supported on Windows, so the PID
            # file won't exist. This if clause exists just for mypy to not
            # complain about missing functions
            pass
        else:
            from zenml.utils import daemon

            daemon.stop_daemon(pid_file_path)
            fileio.remove(pid_file_path)
            logger.info("Stopped Kubeflow Pipelines UI daemon.")
wait_until_kubeflow_pipelines_ready(kubernetes_context)

Waits until all Kubeflow Pipelines pods are ready.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context in which the pods should be checked.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def wait_until_kubeflow_pipelines_ready(kubernetes_context: str) -> None:
    """Waits until all Kubeflow Pipelines pods are ready.

    Args:
        kubernetes_context: The kubernetes context in which the pods
            should be checked.
    """
    logger.info(
        "Waiting for all Kubeflow Pipelines pods to be ready (this might "
        "take a few minutes)."
    )
    while True:
        logger.info("Current pod status:")
        subprocess.check_call(
            [
                "kubectl",
                "--context",
                kubernetes_context,
                "--namespace",
                "kubeflow",
                "get",
                "pods",
            ]
        )
        if kubeflow_pipelines_ready(kubernetes_context=kubernetes_context):
            break

        logger.info("One or more pods not ready yet, waiting for 30 seconds...")
        time.sleep(30)
write_local_registry_yaml(yaml_path, registry_name, registry_uri)

Writes a K3D registry config file.

Parameters:

Name Type Description Default
yaml_path str

Path where the config file should be written to.

required
registry_name str

Name of the registry.

required
registry_uri str

URI of the registry.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def write_local_registry_yaml(
    yaml_path: str, registry_name: str, registry_uri: str
) -> None:
    """Writes a K3D registry config file.

    Args:
        yaml_path: Path where the config file should be written to.
        registry_name: Name of the registry.
        registry_uri: URI of the registry.
    """
    yaml_content = {
        "mirrors": {registry_uri: {"endpoint": [f"http://{registry_name}"]}}
    }
    yaml_utils.write_yaml(yaml_path, yaml_content)
utils
dump_ui_metadata(node, execution_info, metadata_ui_path)

Dump KFP UI metadata json file for visualization purpose.

For general components we just render a simple Markdown file for exec_properties/inputs/outputs.

Parameters:

Name Type Description Default
node PipelineNode

associated TFX node.

required
execution_info ExecutionInfo

runtime execution info for this component, including materialized inputs/outputs/execution properties and id.

required
metadata_ui_path str

path to dump ui metadata.

required
Source code in zenml/integrations/kubeflow/orchestrators/utils.py
def dump_ui_metadata(
    node: PipelineNode,
    execution_info: data_types.ExecutionInfo,
    metadata_ui_path: str,
) -> None:
    """Dump KFP UI metadata json file for visualization purpose.

    For general components we just render a simple Markdown file for
      exec_properties/inputs/outputs.

    Args:
      node: associated TFX node.
      execution_info: runtime execution info for this component, including
        materialized inputs/outputs/execution properties and id.
      metadata_ui_path: path to dump ui metadata.
    """
    exec_properties_list = [
        "**{}**: {}".format(
            _sanitize_underscore(name), _sanitize_underscore(exec_property)
        )
        for name, exec_property in execution_info.exec_properties.items()
    ]
    src_str_exec_properties = "# Execution properties:\n{}".format(
        "\n\n".join(exec_properties_list) or "No execution property."
    )

    def _dump_input_populated_artifacts(
        node_inputs: MutableMapping[str, InputSpec],
        name_to_artifacts: Dict[str, List[artifact.Artifact]],
    ) -> List[str]:
        """Dump artifacts markdown string for inputs.

        Args:
          node_inputs: maps from input name to input sepc proto.
          name_to_artifacts: maps from input key to list of populated artifacts.

        Returns:
          A list of dumped markdown string, each of which represents a channel.
        """
        rendered_list = []
        for name, spec in node_inputs.items():
            # Need to look for materialized artifacts in the execution decision.
            rendered_artifacts = "".join(
                [
                    _render_artifact_as_mdstr(single_artifact)
                    for single_artifact in name_to_artifacts.get(name, [])
                ]
            )
            # There must be at least a channel in a input, and all channels in
            # a input share the same artifact type.
            artifact_type = spec.channels[0].artifact_query.type.name
            rendered_list.append(
                "## {name}\n\n**Type**: {channel_type}\n\n{artifacts}".format(
                    name=_sanitize_underscore(name),
                    channel_type=_sanitize_underscore(artifact_type),
                    artifacts=rendered_artifacts,
                )
            )

        return rendered_list

    def _dump_output_populated_artifacts(
        node_outputs: MutableMapping[str, OutputSpec],
        name_to_artifacts: Dict[str, List[artifact.Artifact]],
    ) -> List[str]:
        """Dump artifacts markdown string for outputs.

        Args:
          node_outputs: maps from output name to output sepc proto.
          name_to_artifacts: maps from output key to list of populated
          artifacts.

        Returns:
          A list of dumped markdown string, each of which represents a channel.
        """
        rendered_list = []
        for name, spec in node_outputs.items():
            # Need to look for materialized artifacts in the execution decision.
            rendered_artifacts = "".join(
                [
                    _render_artifact_as_mdstr(single_artifact)
                    for single_artifact in name_to_artifacts.get(name, [])
                ]
            )
            # There must be at least a channel in a input, and all channels
            # in a input share the same artifact type.
            artifact_type = spec.artifact_spec.type.name
            rendered_list.append(
                "## {name}\n\n**Type**: {channel_type}\n\n{artifacts}".format(
                    name=_sanitize_underscore(name),
                    channel_type=_sanitize_underscore(artifact_type),
                    artifacts=rendered_artifacts,
                )
            )

        return rendered_list

    src_str_inputs = "# Inputs:\n{}".format(
        "".join(
            _dump_input_populated_artifacts(
                node_inputs=node.inputs.inputs,
                name_to_artifacts=execution_info.input_dict or {},
            )
        )
        or "No input."
    )

    src_str_outputs = "# Outputs:\n{}".format(
        "".join(
            _dump_output_populated_artifacts(
                node_outputs=node.outputs.outputs,
                name_to_artifacts=execution_info.output_dict or {},
            )
        )
        or "No output."
    )

    outputs = [
        {
            "storage": "inline",
            "source": "{exec_properties}\n\n{inputs}\n\n{outputs}".format(
                exec_properties=src_str_exec_properties,
                inputs=src_str_inputs,
                outputs=src_str_outputs,
            ),
            "type": "markdown",
        }
    ]
    # Add Tensorboard view for ModelRun outputs.
    for name, spec in node.outputs.outputs.items():
        if (
            spec.artifact_spec.type.name
            == standard_artifacts.ModelRun.TYPE_NAME
            or spec.artifact_spec.type.name == ModelArtifact.TYPE_NAME
        ):
            output_model = execution_info.output_dict[name][0]
            source = output_model.uri

            # For local artifact repository, use a path that is relative to
            # the point where the local artifact folder is mounted as a volume
            artifact_store = Repository().active_stack.artifact_store
            if isinstance(artifact_store, LocalArtifactStore):
                source = os.path.relpath(source, artifact_store.path)
                source = f"volume://local-artifact-store/{source}"
            # Add Tensorboard view.
            tensorboard_output = {
                "type": "tensorboard",
                "source": source,
            }
            outputs.append(tensorboard_output)

    metadata_dict = {"outputs": outputs}

    with open(metadata_ui_path, "w") as f:
        json.dump(metadata_dict, f)
mount_config_map_op(config_map_name)

Mounts all key-value pairs found in the named Kubernetes ConfigMap. All key-value pairs in the ConfigMap are mounted as environment variables.

Parameters:

Name Type Description Default
config_map_name str

The name of the ConfigMap resource.

required

Returns:

Type Description
Callable[[kfp.dsl._container_op.ContainerOp], NoneType]

An OpFunc for mounting the ConfigMap.

Source code in zenml/integrations/kubeflow/orchestrators/utils.py
def mount_config_map_op(
    config_map_name: str,
) -> Callable[[dsl.ContainerOp], None]:
    """Mounts all key-value pairs found in the named Kubernetes ConfigMap.
    All key-value pairs in the ConfigMap are mounted as environment variables.
    Args:
      config_map_name: The name of the ConfigMap resource.
    Returns:
      An OpFunc for mounting the ConfigMap.
    """

    def mount_config_map(container_op: dsl.ContainerOp) -> None:
        """Mounts all key-value pairs found in the Kubernetes ConfigMap."""
        config_map_ref = k8s_client.V1ConfigMapEnvSource(
            name=config_map_name, optional=True
        )
        container_op.container.add_env_from(
            k8s_client.V1EnvFromSource(config_map_ref=config_map_ref)
        )

    return mount_config_map

lightgbm special

LightGBMIntegration (Integration)

Definition of lightgbm integration for ZenML.

Source code in zenml/integrations/lightgbm/__init__.py
class LightGBMIntegration(Integration):
    """Definition of lightgbm integration for ZenML."""

    NAME = LIGHTGBM
    REQUIREMENTS = ["lightgbm>=1.0.0"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.lightgbm import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/lightgbm/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.lightgbm import materializers  # noqa

materializers special

lightgbm_booster_materializer
LightGBMBoosterMaterializer (BaseMaterializer)

Materializer to read data to and from lightgbm.Booster.

Source code in zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
class LightGBMBoosterMaterializer(BaseMaterializer):
    """Materializer to read data to and from lightgbm.Booster."""

    ASSOCIATED_TYPES = (lgb.Booster,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> lgb.Booster:
        """Reads a lightgbm Booster model from a serialized JSON file."""
        super().handle_input(data_type)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        booster = lgb.Booster(model_file=temp_file)

        # Cleanup and return
        fileio.rmtree(temp_dir)
        return booster

    def handle_return(self, booster: lgb.Booster) -> None:
        """Creates a JSON serialization for a lightgbm Booster model.

        Args:
            booster: A lightgbm Booster model.
        """
        super().handle_return(booster)

        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Make a temporary phantom artifact
        with tempfile.NamedTemporaryFile(
            mode="w", suffix=".txt", delete=False
        ) as f:
            booster.save_model(f.name)
            # Copy it into artifact store
            fileio.copy(f.name, filepath)

        # Close and remove the temporary file
        f.close()
        fileio.remove(f.name)
handle_input(self, data_type)

Reads a lightgbm Booster model from a serialized JSON file.

Source code in zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
def handle_input(self, data_type: Type[Any]) -> lgb.Booster:
    """Reads a lightgbm Booster model from a serialized JSON file."""
    super().handle_input(data_type)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    booster = lgb.Booster(model_file=temp_file)

    # Cleanup and return
    fileio.rmtree(temp_dir)
    return booster
handle_return(self, booster)

Creates a JSON serialization for a lightgbm Booster model.

Parameters:

Name Type Description Default
booster Booster

A lightgbm Booster model.

required
Source code in zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
def handle_return(self, booster: lgb.Booster) -> None:
    """Creates a JSON serialization for a lightgbm Booster model.

    Args:
        booster: A lightgbm Booster model.
    """
    super().handle_return(booster)

    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Make a temporary phantom artifact
    with tempfile.NamedTemporaryFile(
        mode="w", suffix=".txt", delete=False
    ) as f:
        booster.save_model(f.name)
        # Copy it into artifact store
        fileio.copy(f.name, filepath)

    # Close and remove the temporary file
    f.close()
    fileio.remove(f.name)
lightgbm_dataset_materializer
LightGBMDatasetMaterializer (BaseMaterializer)

Materializer to read data to and from lightgbm.Dataset

Source code in zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
class LightGBMDatasetMaterializer(BaseMaterializer):
    """Materializer to read data to and from lightgbm.Dataset"""

    ASSOCIATED_TYPES = (lgb.Dataset,)
    ASSOCIATED_ARTIFACT_TYPES = (DataArtifact,)

    def handle_input(self, data_type: Type[Any]) -> lgb.Dataset:
        """Reads a lightgbm.Dataset binary file and loads it."""
        super().handle_input(data_type)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        matrix = lgb.Dataset(temp_file, free_raw_data=False)

        # No clean up this time because matrix is lazy loaded
        return matrix

    def handle_return(self, matrix: lgb.Dataset) -> None:
        """Creates a binary serialization for a lightgbm.Dataset object.

        Args:
            matrix: A lightgbm.Dataset object.
        """
        super().handle_return(matrix)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Make a temporary phantom artifact
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
        matrix.save_binary(temp_file)

        # Copy it into artifact store
        fileio.copy(temp_file, filepath)
        fileio.rmtree(temp_dir)
handle_input(self, data_type)

Reads a lightgbm.Dataset binary file and loads it.

Source code in zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
def handle_input(self, data_type: Type[Any]) -> lgb.Dataset:
    """Reads a lightgbm.Dataset binary file and loads it."""
    super().handle_input(data_type)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    matrix = lgb.Dataset(temp_file, free_raw_data=False)

    # No clean up this time because matrix is lazy loaded
    return matrix
handle_return(self, matrix)

Creates a binary serialization for a lightgbm.Dataset object.

Parameters:

Name Type Description Default
matrix Dataset

A lightgbm.Dataset object.

required
Source code in zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
def handle_return(self, matrix: lgb.Dataset) -> None:
    """Creates a binary serialization for a lightgbm.Dataset object.

    Args:
        matrix: A lightgbm.Dataset object.
    """
    super().handle_return(matrix)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Make a temporary phantom artifact
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
    matrix.save_binary(temp_file)

    # Copy it into artifact store
    fileio.copy(temp_file, filepath)
    fileio.rmtree(temp_dir)

mlflow special

The mlflow integrations currently enables you to use mlflow tracking as a convenient way to visualize your experiment runs within the mlflow ui

MlflowIntegration (Integration)

Definition of MLflow integration for ZenML.

Source code in zenml/integrations/mlflow/__init__.py
class MlflowIntegration(Integration):
    """Definition of MLflow integration for ZenML."""

    NAME = MLFLOW
    REQUIREMENTS = [
        "mlflow>=1.2.0",
        "mlserver>=0.5.3",
        "mlserver-mlflow>=0.5.3",
    ]

    @classmethod
    def activate(cls) -> None:
        """Activate the MLflow integration."""
        from zenml.integrations.mlflow import services  # noqa

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the MLflow integration"""
        return [
            FlavorWrapper(
                name=MLFLOW_MODEL_DEPLOYER_FLAVOR,
                source="zenml.integrations.mlflow.model_deployers.MLFlowModelDeployer",
                type=StackComponentType.MODEL_DEPLOYER,
                integration=cls.NAME,
            ),
            FlavorWrapper(
                name=MLFLOW_MODEL_EXPERIMENT_TRACKER_FLAVOR,
                source="zenml.integrations.mlflow.experiment_trackers.MLFlowExperimentTracker",
                type=StackComponentType.EXPERIMENT_TRACKER,
                integration=cls.NAME,
            ),
        ]
activate() classmethod

Activate the MLflow integration.

Source code in zenml/integrations/mlflow/__init__.py
@classmethod
def activate(cls) -> None:
    """Activate the MLflow integration."""
    from zenml.integrations.mlflow import services  # noqa
flavors() classmethod

Declare the stack component flavors for the MLflow integration

Source code in zenml/integrations/mlflow/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the MLflow integration"""
    return [
        FlavorWrapper(
            name=MLFLOW_MODEL_DEPLOYER_FLAVOR,
            source="zenml.integrations.mlflow.model_deployers.MLFlowModelDeployer",
            type=StackComponentType.MODEL_DEPLOYER,
            integration=cls.NAME,
        ),
        FlavorWrapper(
            name=MLFLOW_MODEL_EXPERIMENT_TRACKER_FLAVOR,
            source="zenml.integrations.mlflow.experiment_trackers.MLFlowExperimentTracker",
            type=StackComponentType.EXPERIMENT_TRACKER,
            integration=cls.NAME,
        ),
    ]

experiment_trackers special

mlflow_experiment_tracker
MLFlowExperimentTracker (BaseExperimentTracker) pydantic-model

Stores Mlflow configuration options.

ZenML should take care of configuring MLflow for you, but should you still need access to the configuration inside your step you can do it using a step context:

from zenml.steps import StepContext

@enable_mlflow
@step
def my_step(context: StepContext, ...)
    context.stack.experiment_tracker  # get the tracking_uri etc. from here

Attributes:

Name Type Description
tracking_uri Optional[str]

The uri of the mlflow tracking server. If no uri is set, your stack must contain a LocalArtifactStore and ZenML will point MLflow to a subdirectory of your artifact store instead.

tracking_username Optional[str]

Username for authenticating with the MLflow tracking server. When a remote tracking uri is specified, either tracking_token or tracking_username and tracking_password must be specified.

tracking_password Optional[str]

Password for authenticating with the MLflow tracking server. When a remote tracking uri is specified, either tracking_token or tracking_username and tracking_password must be specified.

tracking_token Optional[str]

Token for authenticating with the MLflow tracking server. When a remote tracking uri is specified, either tracking_token or tracking_username and tracking_password must be specified.

tracking_insecure_tls bool

Skips verification of TLS connection to the MLflow tracking server if set to True.

Source code in zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py
class MLFlowExperimentTracker(BaseExperimentTracker):
    """Stores Mlflow configuration options.

    ZenML should take care of configuring MLflow for you, but should you still
    need access to the configuration inside your step you can do it using a
    step context:
    ```python
    from zenml.steps import StepContext

    @enable_mlflow
    @step
    def my_step(context: StepContext, ...)
        context.stack.experiment_tracker  # get the tracking_uri etc. from here
    ```

    Attributes:
        tracking_uri: The uri of the mlflow tracking server. If no uri is set,
            your stack must contain a `LocalArtifactStore` and ZenML will
            point MLflow to a subdirectory of your artifact store instead.
        tracking_username: Username for authenticating with the MLflow
            tracking server. When a remote tracking uri is specified,
            either `tracking_token` or `tracking_username` and
            `tracking_password` must be specified.
        tracking_password: Password for authenticating with the MLflow
            tracking server. When a remote tracking uri is specified,
            either `tracking_token` or `tracking_username` and
            `tracking_password` must be specified.
        tracking_token: Token for authenticating with the MLflow
            tracking server. When a remote tracking uri is specified,
            either `tracking_token` or `tracking_username` and
            `tracking_password` must be specified.
        tracking_insecure_tls: Skips verification of TLS connection to the
            MLflow tracking server if set to `True`.
    """

    tracking_uri: Optional[str] = None
    tracking_username: Optional[str] = None
    tracking_password: Optional[str] = None
    tracking_token: Optional[str] = None
    tracking_insecure_tls: bool = False

    # Class Configuration
    FLAVOR: ClassVar[str] = MLFLOW_MODEL_EXPERIMENT_TRACKER_FLAVOR

    @validator("tracking_uri")
    def _ensure_valid_tracking_uri(
        cls, tracking_uri: Optional[str] = None
    ) -> Optional[str]:
        """Ensures that the tracking uri is a valid mlflow tracking uri."""
        if tracking_uri:
            valid_schemes = DATABASE_ENGINES + ["http", "https", "file"]
            if not any(
                tracking_uri.startswith(scheme) for scheme in valid_schemes
            ):
                raise ValueError(
                    f"MLflow tracking uri does not start with one of the valid "
                    f"schemes {valid_schemes}. See "
                    f"https://www.mlflow.org/docs/latest/tracking.html#where-runs-are-recorded "
                    f"for more information."
                )
        return tracking_uri

    @root_validator(skip_on_failure=True)
    def _ensure_authentication_if_necessary(
        cls, values: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Ensures that credentials or a token for authentication exist when
        running MLflow tracking with a remote backend."""
        tracking_uri = values.get("tracking_uri")

        if tracking_uri and cls.is_remote_tracking_uri(tracking_uri):
            # we need either username + password or a token to authenticate to
            # the remote backend
            basic_auth = values.get("tracking_username") and values.get(
                "tracking_password"
            )
            token_auth = values.get("tracking_token")

            if not (basic_auth or token_auth):
                raise ValueError(
                    f"MLflow experiment tracking with a remote backend "
                    f"{tracking_uri} is only possible when specifying either "
                    f"username and password or an authentication token in your "
                    f"stack component. To update your component, run the "
                    f"following command: `zenml experiment-tracker update "
                    f"{values['name']} --tracking_username=MY_USERNAME "
                    f"--tracking_password=MY_PASSWORD "
                    f"--tracking_token=MY_TOKEN` and specify either your "
                    f"username and password or token."
                )

        return values

    @staticmethod
    def is_remote_tracking_uri(tracking_uri: str) -> bool:
        """Checks whether the given tracking uri is remote or not."""
        return any(
            tracking_uri.startswith(prefix)
            for prefix in ["http://", "https://"]
        )

    @staticmethod
    def _local_mlflow_backend() -> str:
        """Returns the local MLflow backend inside the ZenML artifact
        repository directory

        Returns:
            The MLflow tracking URI for the local MLflow backend.
        """
        repo = Repository(skip_repository_check=True)  # type: ignore[call-arg]
        artifact_store = repo.active_stack.artifact_store
        local_mlflow_backend_uri = os.path.join(artifact_store.path, "mlruns")
        if not os.path.exists(local_mlflow_backend_uri):
            os.makedirs(local_mlflow_backend_uri)
        return "file:" + local_mlflow_backend_uri

    def get_tracking_uri(self) -> str:
        """Returns the configured tracking URI or a local fallback."""
        return self.tracking_uri or self._local_mlflow_backend()

    def configure_mlflow(self) -> None:
        """Configures the MLflow tracking URI and any additional credentials."""
        mlflow.set_tracking_uri(self.get_tracking_uri())

        if self.tracking_username:
            os.environ[MLFLOW_TRACKING_USERNAME] = self.tracking_username
        if self.tracking_password:
            os.environ[MLFLOW_TRACKING_PASSWORD] = self.tracking_password
        if self.tracking_token:
            os.environ[MLFLOW_TRACKING_TOKEN] = self.tracking_token
        os.environ[MLFLOW_TRACKING_INSECURE_TLS] = (
            "true" if self.tracking_insecure_tls else "false"
        )

    def prepare_step_run(self) -> None:
        """Sets the MLflow tracking uri and credentials."""
        self.configure_mlflow()

    def cleanup_step_run(self) -> None:
        """Resets the MLflow tracking uri."""
        mlflow.set_tracking_uri("")

    @property
    def validator(self) -> Optional["StackValidator"]:
        """Validates that the stack has a `LocalArtifactStore` if no tracking
        uri was specified."""
        if self.tracking_uri:
            # user specified a tracking uri, do nothing
            return None
        else:
            # try to fall back to a tracking uri inside the zenml artifact
            # store. this only works in case of a local artifact store, so we
            # make sure to prevent stack with other artifact stores for now
            return StackValidator(
                custom_validation_function=lambda stack: (
                    isinstance(stack.artifact_store, LocalArtifactStore),
                    "MLflow experiment tracker without a specified tracking "
                    "uri only works with a local artifact store.",
                )
            )

    @property
    def active_experiment(self) -> Optional[Experiment]:
        """Returns the currently active MLflow experiment."""
        step_env = Environment().step_environment

        if not step_env:
            # we're not inside a step
            return None

        mlflow.set_experiment(experiment_name=step_env.pipeline_name)
        return mlflow.get_experiment_by_name(step_env.pipeline_name)

    @property
    def active_run(self) -> Optional[mlflow.ActiveRun]:
        """Returns the currently active MLflow run."""
        step_env = Environment().step_environment

        if not self.active_experiment or not step_env:
            return None

        experiment_id = self.active_experiment.experiment_id

        # TODO [ENG-458]: find a solution to avoid race-conditions while
        #  creating the same MLflow run from parallel steps
        runs = mlflow.search_runs(
            experiment_ids=[experiment_id],
            filter_string=f'tags.mlflow.runName = "{step_env.pipeline_run_id}"',
            output_format="list",
        )

        run_id = runs[0].info.run_id if runs else None

        current_active_run = mlflow.active_run()
        if current_active_run and current_active_run.info.run_id == run_id:
            return current_active_run

        return mlflow.start_run(
            run_id=run_id,
            run_name=step_env.pipeline_run_id,
            experiment_id=experiment_id,
        )
active_experiment: Optional[mlflow.entities.experiment.Experiment] property readonly

Returns the currently active MLflow experiment.

active_run: Optional[mlflow.tracking.fluent.ActiveRun] property readonly

Returns the currently active MLflow run.

validator: Optional[StackValidator] property readonly

Validates that the stack has a LocalArtifactStore if no tracking uri was specified.

cleanup_step_run(self)

Resets the MLflow tracking uri.

Source code in zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py
def cleanup_step_run(self) -> None:
    """Resets the MLflow tracking uri."""
    mlflow.set_tracking_uri("")
configure_mlflow(self)

Configures the MLflow tracking URI and any additional credentials.

Source code in zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py
def configure_mlflow(self) -> None:
    """Configures the MLflow tracking URI and any additional credentials."""
    mlflow.set_tracking_uri(self.get_tracking_uri())

    if self.tracking_username:
        os.environ[MLFLOW_TRACKING_USERNAME] = self.tracking_username
    if self.tracking_password:
        os.environ[MLFLOW_TRACKING_PASSWORD] = self.tracking_password
    if self.tracking_token:
        os.environ[MLFLOW_TRACKING_TOKEN] = self.tracking_token
    os.environ[MLFLOW_TRACKING_INSECURE_TLS] = (
        "true" if self.tracking_insecure_tls else "false"
    )
get_tracking_uri(self)

Returns the configured tracking URI or a local fallback.

Source code in zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py
def get_tracking_uri(self) -> str:
    """Returns the configured tracking URI or a local fallback."""
    return self.tracking_uri or self._local_mlflow_backend()
is_remote_tracking_uri(tracking_uri) staticmethod

Checks whether the given tracking uri is remote or not.

Source code in zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py
@staticmethod
def is_remote_tracking_uri(tracking_uri: str) -> bool:
    """Checks whether the given tracking uri is remote or not."""
    return any(
        tracking_uri.startswith(prefix)
        for prefix in ["http://", "https://"]
    )
prepare_step_run(self)

Sets the MLflow tracking uri and credentials.

Source code in zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py
def prepare_step_run(self) -> None:
    """Sets the MLflow tracking uri and credentials."""
    self.configure_mlflow()

mlflow_step_decorator

enable_mlflow(_step=None)

Decorator to enable mlflow for a step function.

Apply this decorator to a ZenML pipeline step to enable MLflow experiment tracking. The MLflow tracking configuration (tracking URI, experiment name, run name) will be automatically configured before the step code is executed, so the step can simply use the mlflow module to log metrics and artifacts, like so:

@enable_mlflow
@step
def tf_evaluator(
    x_test: np.ndarray,
    y_test: np.ndarray,
    model: tf.keras.Model,
) -> float:
    _, test_acc = model.evaluate(x_test, y_test, verbose=2)
    mlflow.log_metric("val_accuracy", test_acc)
    return test_acc

All MLflow artifacts and metrics logged from all the steps in a pipeline run are by default grouped under a single experiment named after the pipeline. To log MLflow artifacts and metrics from a step in a separate MLflow experiment, pass a custom experiment_name argument value to the decorator.

Parameters:

Name Type Description Default
_step Optional[~S]

The decorated step class.

None

Returns:

Type Description
Union[~S, Callable[[~S], ~S]]

The inner decorator which enhaces the input step class with mlflow tracking functionality

Source code in zenml/integrations/mlflow/mlflow_step_decorator.py
def enable_mlflow(
    _step: Optional[S] = None,
) -> Union[S, Callable[[S], S]]:
    """Decorator to enable mlflow for a step function.

    Apply this decorator to a ZenML pipeline step to enable MLflow experiment
    tracking. The MLflow tracking configuration (tracking URI, experiment name,
    run name) will be automatically configured before the step code is executed,
    so the step can simply use the `mlflow` module to log metrics and artifacts,
    like so:

    ```python
    @enable_mlflow
    @step
    def tf_evaluator(
        x_test: np.ndarray,
        y_test: np.ndarray,
        model: tf.keras.Model,
    ) -> float:
        _, test_acc = model.evaluate(x_test, y_test, verbose=2)
        mlflow.log_metric("val_accuracy", test_acc)
        return test_acc
    ```

    All MLflow artifacts and metrics logged from all the steps in a pipeline
    run are by default grouped under a single experiment named after the
    pipeline. To log MLflow artifacts and metrics from a step in a separate
    MLflow experiment, pass a custom `experiment_name` argument value to the
    decorator.

    Args:
        _step: The decorated step class.

    Returns:
        The inner decorator which enhaces the input step class with mlflow
        tracking functionality
    """

    def inner_decorator(_step: S) -> S:

        logger.debug(
            "Applying 'enable_mlflow' decorator to step %s", _step.__name__
        )
        if not issubclass(_step, BaseStep):
            raise RuntimeError(
                "The `enable_mlflow` decorator can only be applied to a ZenML "
                "`step` decorated function or a BaseStep subclass."
            )
        source_fn = getattr(_step, STEP_INNER_FUNC_NAME)
        return cast(
            S,
            type(  # noqa
                _step.__name__,
                (_step,),
                {
                    STEP_INNER_FUNC_NAME: staticmethod(
                        mlflow_step_entrypoint()(source_fn)
                    ),
                    "__module__": _step.__module__,
                },
            ),
        )

    if _step is None:
        return inner_decorator
    else:
        return inner_decorator(_step)
mlflow_step_entrypoint()

Decorator for a step entrypoint to enable mlflow.

Returns:

Type Description
Callable[[~F], ~F]

the input function enhanced with mlflow profiling functionality

Source code in zenml/integrations/mlflow/mlflow_step_decorator.py
def mlflow_step_entrypoint() -> Callable[[F], F]:
    """Decorator for a step entrypoint to enable mlflow.

    Returns:
        the input function enhanced with mlflow profiling functionality
    """

    def inner_decorator(func: F) -> F:

        logger.debug(
            "Applying 'mlflow_step_entrypoint' decorator to step entrypoint %s",
            func.__name__,
        )

        @functools.wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:  # noqa
            logger.debug(
                "Setting up MLflow backend before running step entrypoint %s",
                func.__name__,
            )
            experiment_tracker = Repository(  # type: ignore[call-arg]
                skip_repository_check=True
            ).active_stack.experiment_tracker

            if not isinstance(experiment_tracker, MLFlowExperimentTracker):
                raise get_missing_mlflow_experiment_tracker_error()

            active_run = experiment_tracker.active_run
            if not active_run:
                raise RuntimeError("No active mlflow run configured.")

            with active_run:
                return func(*args, **kwargs)

        return cast(F, wrapper)

    return inner_decorator

mlflow_utils

get_missing_mlflow_experiment_tracker_error()

Returns a detailed error that describes how to add an MLflow experiment tracker component to your stack.

Source code in zenml/integrations/mlflow/mlflow_utils.py
def get_missing_mlflow_experiment_tracker_error() -> ValueError:
    """Returns a detailed error that describes how to add an MLflow experiment
    tracker component to your stack."""
    return ValueError(
        "The active stack needs to have a MLflow experiment tracker "
        "component registered to be able to track experiments using "
        "MLflow. You can create a new stack with a MLflow experiment "
        "tracker component or update your existing stack to add this "
        "component, e.g.:\n\n"
        "  'zenml experiment-tracker register mlflow_tracker "
        "--type=mlflow'\n"
        "  'zenml stack register stack-name -e mlflow_tracker ...'\n"
    )
get_tracking_uri()

Gets the MLflow tracking URI from the active experiment tracking stack component.

Returns:

Type Description
str

MLflow tracking URI.

Exceptions:

Type Description
ValueError

If the active stack contains no MLflow experiment tracking component.

Source code in zenml/integrations/mlflow/mlflow_utils.py
def get_tracking_uri() -> str:
    """Gets the MLflow tracking URI from the active experiment tracking stack
    component.

    Returns:
        MLflow tracking URI.

    Raises:
        ValueError: If the active stack contains no MLflow experiment tracking
            component.
    """
    tracker = Repository().active_stack.experiment_tracker
    if tracker is None or not isinstance(tracker, MLFlowExperimentTracker):
        raise get_missing_mlflow_experiment_tracker_error()

    return tracker.get_tracking_uri()

model_deployers special

mlflow_model_deployer
MLFlowModelDeployer (BaseModelDeployer) pydantic-model

MLflow implementation of the BaseModelDeployer

Attributes:

Name Type Description
service_path str

the path where the local MLflow deployment service

Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
class MLFlowModelDeployer(BaseModelDeployer):
    """MLflow implementation of the BaseModelDeployer

    Attributes:
        service_path: the path where the local MLflow deployment service
        configuration, PID and log files are stored.
    """

    service_path: str = ""

    # Class Configuration
    FLAVOR: ClassVar[str] = MLFLOW_MODEL_DEPLOYER_FLAVOR

    @root_validator(skip_on_failure=True)
    def set_service_path(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Sets the service_path attribute value according to the component
        UUID."""
        if values.get("service_path"):
            return values

        # not likely to happen, due to Pydantic validation, but mypy complains
        assert "uuid" in values

        values["service_path"] = cls.get_service_path(values["uuid"])
        return values

    @staticmethod
    def get_service_path(uuid: uuid.UUID) -> str:
        """Get the path the path where the local MLflow deployment service
        configuration, PID and log files are stored.

        Args:
            uuid: The UUID of the MLflow model deployer.

        Returns:
            The service path.
        """
        service_path = os.path.join(
            get_global_config_directory(),
            LOCAL_STORES_DIRECTORY_NAME,
            str(uuid),
        )
        create_dir_recursive_if_not_exists(service_path)
        return service_path

    @property
    def local_path(self) -> str:
        """
        Returns the path to the root directory where all configurations for
        MLflow deployment daemon processes are stored.

        Returns:
            The path to the local service root directory.
        """
        return self.service_path

    @staticmethod
    def get_model_server_info(  # type: ignore[override]
        service_instance: "MLFlowDeploymentService",
    ) -> Dict[str, Optional[str]]:
        """Return implementation specific information that might be relevant
        to the user.

        Args:
            service_instance: Instance of a SeldonDeploymentService
        """

        return {
            "PREDICTION_URL": service_instance.endpoint.prediction_url,
            "MODEL_URI": service_instance.config.model_uri,
            "MODEL_NAME": service_instance.config.model_name,
            "SERVICE_PATH": service_instance.status.runtime_path,
            "DAEMON_PID": str(service_instance.status.pid),
        }

    @staticmethod
    def get_active_model_deployer() -> "MLFlowModelDeployer":
        """
        Returns the MLFlowModelDeployer component of the active stack.

        Args:
            None

        Returns:
            The MLFlowModelDeployer component of the active stack.
        """
        model_deployer = Repository(  # type: ignore[call-arg]
            skip_repository_check=True
        ).active_stack.model_deployer

        if not model_deployer or not isinstance(
            model_deployer, MLFlowModelDeployer
        ):
            raise TypeError(
                f"The active stack needs to have an MLflow model deployer "
                f"component registered to be able to deploy models with MLflow. "
                f"You can create a new stack with an MLflow model "
                f"deployer component or update your existing stack to add this "
                f"component, e.g.:\n\n"
                f"  'zenml model-deployer register mlflow --flavor={MLFLOW_MODEL_DEPLOYER_FLAVOR}'\n"
                f"  'zenml stack create stack-name -d mlflow ...'\n"
            )
        return model_deployer

    def deploy_model(
        self,
        config: ServiceConfig,
        replace: bool = False,
        timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT,
    ) -> BaseService:
        """Create a new MLflow deployment service or update an existing one to
        serve the supplied model and deployment configuration.

        This method has two modes of operation, depending on the `replace`
        argument value:

          * if `replace` is False, calling this method will create a new MLflow
            deployment server to reflect the model and other configuration
            parameters specified in the supplied MLflow service `config`.

          * if `replace` is True, this method will first attempt to find an
            existing MLflow deployment service that is *equivalent* to the
            supplied configuration parameters. Two or more MLflow deployment
            services are considered equivalent if they have the same
            `pipeline_name`, `pipeline_step_name` and `model_name` configuration
            parameters. To put it differently, two MLflow deployment services
            are equivalent if they serve versions of the same model deployed by
            the same pipeline step. If an equivalent MLflow deployment is found,
            it will be updated in place to reflect the new configuration
            parameters.

        Callers should set `replace` to True if they want a continuous model
        deployment workflow that doesn't spin up a new MLflow deployment
        server for each new model version. If multiple equivalent MLflow
        deployment servers are found, one is selected at random to be updated
        and the others are deleted.

        Args:
            config: the configuration of the model to be deployed with MLflow.
            replace: set this flag to True to find and update an equivalent
                MLflow deployment server with the new model instead of
                creating and starting a new deployment server.
            timeout: the timeout in seconds to wait for the MLflow server
                to be provisioned and successfully started or updated. If set
                to 0, the method will return immediately after the MLflow
                server is provisioned, without waiting for it to fully start.

        Returns:
            The ZenML MLflow deployment service object that can be used to
            interact with the MLflow model server.

        Raises:
            RuntimeError: if `timeout` is set to a positive value that is
                exceeded while waiting for the MLflow deployment server
                to start, or if an operational failure is encountered before
                it reaches a ready state.
        """
        config = cast(MLFlowDeploymentConfig, config)
        service = None

        # if replace is True, remove all existing services
        if replace is True:
            existing_services = self.find_model_server(
                pipeline_name=config.pipeline_name,
                pipeline_step_name=config.pipeline_step_name,
                model_name=config.model_name,
            )

            for existing_service in existing_services:
                if service is None:
                    # keep the most recently created service
                    service = cast(MLFlowDeploymentService, existing_service)
                try:
                    # delete the older services and don't wait for them to
                    # be deprovisioned
                    self._clean_up_existing_service(
                        existing_service=cast(
                            MLFlowDeploymentService, existing_service
                        ),
                        timeout=timeout,
                        force=True,
                    )
                except RuntimeError:
                    # ignore errors encountered while stopping old services
                    pass
        if service:
            logger.info(
                f"Updating an existing MLflow deployment service: {service}"
            )

            # set the root runtime path with the stack component's UUID
            config.root_runtime_path = self.local_path
            service.stop(timeout=timeout, force=True)
            service.update(config)
            service.start(timeout=timeout)
        else:
            # create a new MLFlowDeploymentService instance
            service = self._create_new_service(timeout, config)
            logger.info(f"Created a new MLflow deployment service: {service}")

        return cast(BaseService, service)

    def _clean_up_existing_service(
        self,
        timeout: int,
        force: bool,
        existing_service: MLFlowDeploymentService,
    ) -> None:
        # stop the older service
        existing_service.stop(timeout=timeout, force=force)

        # delete the old configuration file
        service_directory_path = existing_service.status.runtime_path or ""
        shutil.rmtree(service_directory_path)

    # the step will receive a config from the user that mentions the number
    # of workers etc.the step implementation will create a new config using
    # all values from the user and add values like pipeline name, model_uri
    def _create_new_service(
        self, timeout: int, config: MLFlowDeploymentConfig
    ) -> MLFlowDeploymentService:
        """Creates a new MLFlowDeploymentService."""

        # set the root runtime path with the stack component's UUID
        config.root_runtime_path = self.local_path
        # create a new service for the new model
        service = MLFlowDeploymentService(config)
        service.start(timeout=timeout)

        return service

    def find_model_server(
        self,
        running: bool = False,
        service_uuid: Optional[UUID] = None,
        pipeline_name: Optional[str] = None,
        pipeline_run_id: Optional[str] = None,
        pipeline_step_name: Optional[str] = None,
        model_name: Optional[str] = None,
        model_uri: Optional[str] = None,
        model_type: Optional[str] = None,
    ) -> List[BaseService]:
        """Method to find one or more model servers that match the
        given criteria.

        Args:
            running: If true, only running services will be returned.
            service_uuid: The UUID of the service that was originally used
                to deploy the model.
            pipeline_name: Name of the pipeline that the deployed model was part
            of.
            pipeline_run_id: ID of the pipeline run which the deployed model
                was part of.
            pipeline_step_name: The name of the pipeline model deployment step
                that deployed the model.
            model_name: Name of the deployed model.
            model_uri: URI of the deployed model.
            model_type: Type/format of the deployed model. Not used in this
                MLflow case.

        Returns:
            One or more Service objects representing model servers that match
            the input search criteria.
        """

        services = []
        config = MLFlowDeploymentConfig(
            model_name=model_name or "",
            model_uri=model_uri or "",
            pipeline_name=pipeline_name or "",
            pipeline_run_id=pipeline_run_id or "",
            pipeline_step_name=pipeline_step_name or "",
        )

        # find all services that match the input criteria
        for root, _, files in os.walk(self.local_path):
            if service_uuid and Path(root).name != str(service_uuid):
                continue
            for file in files:
                if file == SERVICE_DAEMON_CONFIG_FILE_NAME:
                    service_config_path = os.path.join(root, file)
                    logger.debug(
                        "Loading service daemon configuration from %s",
                        service_config_path,
                    )
                    existing_service_config = None
                    with open(service_config_path, "r") as f:
                        existing_service_config = f.read()
                    existing_service = ServiceRegistry().load_service_from_json(
                        existing_service_config
                    )
                    if not isinstance(
                        existing_service, MLFlowDeploymentService
                    ):
                        raise TypeError(
                            f"Expected service type MLFlowDeploymentService but got "
                            f"{type(existing_service)} instead"
                        )
                    existing_service.update_status()
                    if self._matches_search_criteria(existing_service, config):
                        if not running or existing_service.is_running:
                            services.append(cast(BaseService, existing_service))

        return services

    def _matches_search_criteria(
        self,
        existing_service: MLFlowDeploymentService,
        config: MLFlowDeploymentConfig,
    ) -> bool:
        """Returns true if a service matches the input criteria. If any of
        the values in the input criteria are None, they are ignored. This
        allows listing services just by common pipeline names or step names,
        etc.

        Args:
            existing_service: The materialized Service instance derived from
                the config of the older (existing) service
            config: The MLFlowDeploymentConfig object passed to the
                deploy_model function holding parameters of the new service
                to be created.
        """

        existing_service_config = existing_service.config

        # check if the existing service matches the input criteria
        if (
            (
                not config.pipeline_name
                or existing_service_config.pipeline_name == config.pipeline_name
            )
            and (
                not config.model_name
                or existing_service_config.model_name == config.model_name
            )
            and (
                not config.pipeline_step_name
                or existing_service_config.pipeline_step_name
                == config.pipeline_step_name
            )
            and (
                not config.pipeline_run_id
                or existing_service_config.pipeline_run_id
                == config.pipeline_run_id
            )
        ):
            return True

        return False

    def stop_model_server(
        self,
        uuid: UUID,
        timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT,
        force: bool = False,
    ) -> None:
        """Method to stop a model server.

        Args:
            uuid: UUID of the model server to stop.
            timeout: Timeout in seconds to wait for the service to stop.
            force: If True, force the service to stop.
        """
        # get list of all services
        existing_services = self.find_model_server(service_uuid=uuid)

        # if the service exists, stop it
        if existing_services:
            existing_services[0].stop(timeout=timeout, force=force)

    def start_model_server(
        self, uuid: UUID, timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT
    ) -> None:
        """Method to start a model server.

        Args:
            uuid: UUID of the model server to start.
        """
        # get list of all services
        existing_services = self.find_model_server(service_uuid=uuid)

        # if the service exists, start it
        if existing_services:
            existing_services[0].start(timeout=timeout)

    def delete_model_server(
        self,
        uuid: UUID,
        timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT,
        force: bool = False,
    ) -> None:
        """Method to delete all configuration of a model server.

        Args:
            uuid: UUID of the model server to delete.
        """
        # get list of all services
        existing_services = self.find_model_server(service_uuid=uuid)

        # if the service exists, clean it up
        if existing_services:
            service = cast(MLFlowDeploymentService, existing_services[0])
            self._clean_up_existing_service(
                existing_service=service, timeout=timeout, force=force
            )
local_path: str property readonly

Returns the path to the root directory where all configurations for MLflow deployment daemon processes are stored.

Returns:

Type Description
str

The path to the local service root directory.

delete_model_server(self, uuid, timeout=10, force=False)

Method to delete all configuration of a model server.

Parameters:

Name Type Description Default
uuid UUID

UUID of the model server to delete.

required
Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
def delete_model_server(
    self,
    uuid: UUID,
    timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT,
    force: bool = False,
) -> None:
    """Method to delete all configuration of a model server.

    Args:
        uuid: UUID of the model server to delete.
    """
    # get list of all services
    existing_services = self.find_model_server(service_uuid=uuid)

    # if the service exists, clean it up
    if existing_services:
        service = cast(MLFlowDeploymentService, existing_services[0])
        self._clean_up_existing_service(
            existing_service=service, timeout=timeout, force=force
        )
deploy_model(self, config, replace=False, timeout=10)

Create a new MLflow deployment service or update an existing one to serve the supplied model and deployment configuration.

This method has two modes of operation, depending on the replace argument value:

  • if replace is False, calling this method will create a new MLflow deployment server to reflect the model and other configuration parameters specified in the supplied MLflow service config.

  • if replace is True, this method will first attempt to find an existing MLflow deployment service that is equivalent to the supplied configuration parameters. Two or more MLflow deployment services are considered equivalent if they have the same pipeline_name, pipeline_step_name and model_name configuration parameters. To put it differently, two MLflow deployment services are equivalent if they serve versions of the same model deployed by the same pipeline step. If an equivalent MLflow deployment is found, it will be updated in place to reflect the new configuration parameters.

Callers should set replace to True if they want a continuous model deployment workflow that doesn't spin up a new MLflow deployment server for each new model version. If multiple equivalent MLflow deployment servers are found, one is selected at random to be updated and the others are deleted.

Parameters:

Name Type Description Default
config ServiceConfig

the configuration of the model to be deployed with MLflow.

required
replace bool

set this flag to True to find and update an equivalent MLflow deployment server with the new model instead of creating and starting a new deployment server.

False
timeout int

the timeout in seconds to wait for the MLflow server to be provisioned and successfully started or updated. If set to 0, the method will return immediately after the MLflow server is provisioned, without waiting for it to fully start.

10

Returns:

Type Description
BaseService

The ZenML MLflow deployment service object that can be used to interact with the MLflow model server.

Exceptions:

Type Description
RuntimeError

if timeout is set to a positive value that is exceeded while waiting for the MLflow deployment server to start, or if an operational failure is encountered before it reaches a ready state.

Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
def deploy_model(
    self,
    config: ServiceConfig,
    replace: bool = False,
    timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT,
) -> BaseService:
    """Create a new MLflow deployment service or update an existing one to
    serve the supplied model and deployment configuration.

    This method has two modes of operation, depending on the `replace`
    argument value:

      * if `replace` is False, calling this method will create a new MLflow
        deployment server to reflect the model and other configuration
        parameters specified in the supplied MLflow service `config`.

      * if `replace` is True, this method will first attempt to find an
        existing MLflow deployment service that is *equivalent* to the
        supplied configuration parameters. Two or more MLflow deployment
        services are considered equivalent if they have the same
        `pipeline_name`, `pipeline_step_name` and `model_name` configuration
        parameters. To put it differently, two MLflow deployment services
        are equivalent if they serve versions of the same model deployed by
        the same pipeline step. If an equivalent MLflow deployment is found,
        it will be updated in place to reflect the new configuration
        parameters.

    Callers should set `replace` to True if they want a continuous model
    deployment workflow that doesn't spin up a new MLflow deployment
    server for each new model version. If multiple equivalent MLflow
    deployment servers are found, one is selected at random to be updated
    and the others are deleted.

    Args:
        config: the configuration of the model to be deployed with MLflow.
        replace: set this flag to True to find and update an equivalent
            MLflow deployment server with the new model instead of
            creating and starting a new deployment server.
        timeout: the timeout in seconds to wait for the MLflow server
            to be provisioned and successfully started or updated. If set
            to 0, the method will return immediately after the MLflow
            server is provisioned, without waiting for it to fully start.

    Returns:
        The ZenML MLflow deployment service object that can be used to
        interact with the MLflow model server.

    Raises:
        RuntimeError: if `timeout` is set to a positive value that is
            exceeded while waiting for the MLflow deployment server
            to start, or if an operational failure is encountered before
            it reaches a ready state.
    """
    config = cast(MLFlowDeploymentConfig, config)
    service = None

    # if replace is True, remove all existing services
    if replace is True:
        existing_services = self.find_model_server(
            pipeline_name=config.pipeline_name,
            pipeline_step_name=config.pipeline_step_name,
            model_name=config.model_name,
        )

        for existing_service in existing_services:
            if service is None:
                # keep the most recently created service
                service = cast(MLFlowDeploymentService, existing_service)
            try:
                # delete the older services and don't wait for them to
                # be deprovisioned
                self._clean_up_existing_service(
                    existing_service=cast(
                        MLFlowDeploymentService, existing_service
                    ),
                    timeout=timeout,
                    force=True,
                )
            except RuntimeError:
                # ignore errors encountered while stopping old services
                pass
    if service:
        logger.info(
            f"Updating an existing MLflow deployment service: {service}"
        )

        # set the root runtime path with the stack component's UUID
        config.root_runtime_path = self.local_path
        service.stop(timeout=timeout, force=True)
        service.update(config)
        service.start(timeout=timeout)
    else:
        # create a new MLFlowDeploymentService instance
        service = self._create_new_service(timeout, config)
        logger.info(f"Created a new MLflow deployment service: {service}")

    return cast(BaseService, service)
find_model_server(self, running=False, service_uuid=None, pipeline_name=None, pipeline_run_id=None, pipeline_step_name=None, model_name=None, model_uri=None, model_type=None)

Method to find one or more model servers that match the given criteria.

Parameters:

Name Type Description Default
running bool

If true, only running services will be returned.

False
service_uuid Optional[uuid.UUID]

The UUID of the service that was originally used to deploy the model.

None
pipeline_name Optional[str]

Name of the pipeline that the deployed model was part

None
pipeline_run_id Optional[str]

ID of the pipeline run which the deployed model was part of.

None
pipeline_step_name Optional[str]

The name of the pipeline model deployment step that deployed the model.

None
model_name Optional[str]

Name of the deployed model.

None
model_uri Optional[str]

URI of the deployed model.

None
model_type Optional[str]

Type/format of the deployed model. Not used in this MLflow case.

None

Returns:

Type Description
List[zenml.services.service.BaseService]

One or more Service objects representing model servers that match the input search criteria.

Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
def find_model_server(
    self,
    running: bool = False,
    service_uuid: Optional[UUID] = None,
    pipeline_name: Optional[str] = None,
    pipeline_run_id: Optional[str] = None,
    pipeline_step_name: Optional[str] = None,
    model_name: Optional[str] = None,
    model_uri: Optional[str] = None,
    model_type: Optional[str] = None,
) -> List[BaseService]:
    """Method to find one or more model servers that match the
    given criteria.

    Args:
        running: If true, only running services will be returned.
        service_uuid: The UUID of the service that was originally used
            to deploy the model.
        pipeline_name: Name of the pipeline that the deployed model was part
        of.
        pipeline_run_id: ID of the pipeline run which the deployed model
            was part of.
        pipeline_step_name: The name of the pipeline model deployment step
            that deployed the model.
        model_name: Name of the deployed model.
        model_uri: URI of the deployed model.
        model_type: Type/format of the deployed model. Not used in this
            MLflow case.

    Returns:
        One or more Service objects representing model servers that match
        the input search criteria.
    """

    services = []
    config = MLFlowDeploymentConfig(
        model_name=model_name or "",
        model_uri=model_uri or "",
        pipeline_name=pipeline_name or "",
        pipeline_run_id=pipeline_run_id or "",
        pipeline_step_name=pipeline_step_name or "",
    )

    # find all services that match the input criteria
    for root, _, files in os.walk(self.local_path):
        if service_uuid and Path(root).name != str(service_uuid):
            continue
        for file in files:
            if file == SERVICE_DAEMON_CONFIG_FILE_NAME:
                service_config_path = os.path.join(root, file)
                logger.debug(
                    "Loading service daemon configuration from %s",
                    service_config_path,
                )
                existing_service_config = None
                with open(service_config_path, "r") as f:
                    existing_service_config = f.read()
                existing_service = ServiceRegistry().load_service_from_json(
                    existing_service_config
                )
                if not isinstance(
                    existing_service, MLFlowDeploymentService
                ):
                    raise TypeError(
                        f"Expected service type MLFlowDeploymentService but got "
                        f"{type(existing_service)} instead"
                    )
                existing_service.update_status()
                if self._matches_search_criteria(existing_service, config):
                    if not running or existing_service.is_running:
                        services.append(cast(BaseService, existing_service))

    return services
get_active_model_deployer() staticmethod

Returns the MLFlowModelDeployer component of the active stack.

Returns:

Type Description
MLFlowModelDeployer

The MLFlowModelDeployer component of the active stack.

Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
@staticmethod
def get_active_model_deployer() -> "MLFlowModelDeployer":
    """
    Returns the MLFlowModelDeployer component of the active stack.

    Args:
        None

    Returns:
        The MLFlowModelDeployer component of the active stack.
    """
    model_deployer = Repository(  # type: ignore[call-arg]
        skip_repository_check=True
    ).active_stack.model_deployer

    if not model_deployer or not isinstance(
        model_deployer, MLFlowModelDeployer
    ):
        raise TypeError(
            f"The active stack needs to have an MLflow model deployer "
            f"component registered to be able to deploy models with MLflow. "
            f"You can create a new stack with an MLflow model "
            f"deployer component or update your existing stack to add this "
            f"component, e.g.:\n\n"
            f"  'zenml model-deployer register mlflow --flavor={MLFLOW_MODEL_DEPLOYER_FLAVOR}'\n"
            f"  'zenml stack create stack-name -d mlflow ...'\n"
        )
    return model_deployer
get_model_server_info(service_instance) staticmethod

Return implementation specific information that might be relevant to the user.

Parameters:

Name Type Description Default
service_instance MLFlowDeploymentService

Instance of a SeldonDeploymentService

required
Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
@staticmethod
def get_model_server_info(  # type: ignore[override]
    service_instance: "MLFlowDeploymentService",
) -> Dict[str, Optional[str]]:
    """Return implementation specific information that might be relevant
    to the user.

    Args:
        service_instance: Instance of a SeldonDeploymentService
    """

    return {
        "PREDICTION_URL": service_instance.endpoint.prediction_url,
        "MODEL_URI": service_instance.config.model_uri,
        "MODEL_NAME": service_instance.config.model_name,
        "SERVICE_PATH": service_instance.status.runtime_path,
        "DAEMON_PID": str(service_instance.status.pid),
    }
get_service_path(uuid) staticmethod

Get the path the path where the local MLflow deployment service configuration, PID and log files are stored.

Parameters:

Name Type Description Default
uuid UUID

The UUID of the MLflow model deployer.

required

Returns:

Type Description
str

The service path.

Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
@staticmethod
def get_service_path(uuid: uuid.UUID) -> str:
    """Get the path the path where the local MLflow deployment service
    configuration, PID and log files are stored.

    Args:
        uuid: The UUID of the MLflow model deployer.

    Returns:
        The service path.
    """
    service_path = os.path.join(
        get_global_config_directory(),
        LOCAL_STORES_DIRECTORY_NAME,
        str(uuid),
    )
    create_dir_recursive_if_not_exists(service_path)
    return service_path
set_service_path(values) classmethod

Sets the service_path attribute value according to the component UUID.

Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
@root_validator(skip_on_failure=True)
def set_service_path(cls, values: Dict[str, Any]) -> Dict[str, Any]:
    """Sets the service_path attribute value according to the component
    UUID."""
    if values.get("service_path"):
        return values

    # not likely to happen, due to Pydantic validation, but mypy complains
    assert "uuid" in values

    values["service_path"] = cls.get_service_path(values["uuid"])
    return values
start_model_server(self, uuid, timeout=10)

Method to start a model server.

Parameters:

Name Type Description Default
uuid UUID

UUID of the model server to start.

required
Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
def start_model_server(
    self, uuid: UUID, timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT
) -> None:
    """Method to start a model server.

    Args:
        uuid: UUID of the model server to start.
    """
    # get list of all services
    existing_services = self.find_model_server(service_uuid=uuid)

    # if the service exists, start it
    if existing_services:
        existing_services[0].start(timeout=timeout)
stop_model_server(self, uuid, timeout=10, force=False)

Method to stop a model server.

Parameters:

Name Type Description Default
uuid UUID

UUID of the model server to stop.

required
timeout int

Timeout in seconds to wait for the service to stop.

10
force bool

If True, force the service to stop.

False
Source code in zenml/integrations/mlflow/model_deployers/mlflow_model_deployer.py
def stop_model_server(
    self,
    uuid: UUID,
    timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT,
    force: bool = False,
) -> None:
    """Method to stop a model server.

    Args:
        uuid: UUID of the model server to stop.
        timeout: Timeout in seconds to wait for the service to stop.
        force: If True, force the service to stop.
    """
    # get list of all services
    existing_services = self.find_model_server(service_uuid=uuid)

    # if the service exists, stop it
    if existing_services:
        existing_services[0].stop(timeout=timeout, force=force)

services special

mlflow_deployment
MLFlowDeploymentConfig (LocalDaemonServiceConfig) pydantic-model

MLflow model deployment configuration.

Attributes:

Name Type Description
model_uri str

URI of the MLflow model to serve

model_name str

the name of the model

workers int

number of workers to use for the prediction service

mlserver bool

set to True to use the MLflow MLServer backend (see https://github.com/SeldonIO/MLServer). If False, the MLflow built-in scoring server will be used.

Source code in zenml/integrations/mlflow/services/mlflow_deployment.py
class MLFlowDeploymentConfig(LocalDaemonServiceConfig):
    """MLflow model deployment configuration.

    Attributes:
        model_uri: URI of the MLflow model to serve
        model_name: the name of the model
        workers: number of workers to use for the prediction service
        mlserver: set to True to use the MLflow MLServer backend (see
            https://github.com/SeldonIO/MLServer). If False, the
            MLflow built-in scoring server will be used.
    """

    model_uri: str
    model_name: str
    workers: int = 1
    mlserver: bool = False
MLFlowDeploymentEndpoint (LocalDaemonServiceEndpoint) pydantic-model

A service endpoint exposed by the MLflow deployment daemon.

Attributes:

Name Type Description
config MLFlowDeploymentEndpointConfig

service endpoint configuration

monitor HTTPEndpointHealthMonitor

optional service endpoint health monitor

Source code in zenml/integrations/mlflow/services/mlflow_deployment.py
class MLFlowDeploymentEndpoint(LocalDaemonServiceEndpoint):
    """A service endpoint exposed by the MLflow deployment daemon.

    Attributes:
        config: service endpoint configuration
        monitor: optional service endpoint health monitor
    """

    config: MLFlowDeploymentEndpointConfig
    monitor: HTTPEndpointHealthMonitor

    @property
    def prediction_url(self) -> Optional[str]:
        uri = self.status.uri
        if not uri:
            return None
        return f"{uri}{self.config.prediction_url_path}"
MLFlowDeploymentEndpointConfig (LocalDaemonServiceEndpointConfig) pydantic-model

MLflow daemon service endpoint configuration.

Attributes:

Name Type Description
prediction_url_path str

URI subpath for prediction requests

Source code in zenml/integrations/mlflow/services/mlflow_deployment.py
class MLFlowDeploymentEndpointConfig(LocalDaemonServiceEndpointConfig):
    """MLflow daemon service endpoint configuration.

    Attributes:
        prediction_url_path: URI subpath for prediction requests
    """

    prediction_url_path: str
MLFlowDeploymentService (LocalDaemonService) pydantic-model

MLFlow deployment service that can be used to start a local prediction server for MLflow models.

Attributes:

Name Type Description
SERVICE_TYPE ClassVar[zenml.services.service_type.ServiceType]

a service type descriptor with information describing the MLflow deployment service class

config MLFlowDeploymentConfig

service configuration

endpoint MLFlowDeploymentEndpoint

optional service endpoint

Source code in zenml/integrations/mlflow/services/mlflow_deployment.py
class MLFlowDeploymentService(LocalDaemonService):
    """MLFlow deployment service that can be used to start a local prediction
    server for MLflow models.

    Attributes:
        SERVICE_TYPE: a service type descriptor with information describing
            the MLflow deployment service class
        config: service configuration
        endpoint: optional service endpoint
    """

    SERVICE_TYPE = ServiceType(
        name="mlflow-deployment",
        type="model-serving",
        flavor="mlflow",
        description="MLflow prediction service",
    )

    config: MLFlowDeploymentConfig
    endpoint: MLFlowDeploymentEndpoint

    def __init__(
        self,
        config: Union[MLFlowDeploymentConfig, Dict[str, Any]],
        **attrs: Any,
    ) -> None:
        # ensure that the endpoint is created before the service is initialized
        # TODO [ENG-700]: implement a service factory or builder for MLflow
        #   deployment services
        if (
            isinstance(config, MLFlowDeploymentConfig)
            and "endpoint" not in attrs
        ):
            if config.mlserver:
                prediction_url_path = MLSERVER_PREDICTION_URL_PATH
                healthcheck_uri_path = MLSERVER_HEALTHCHECK_URL_PATH
                use_head_request = False
            else:
                prediction_url_path = MLFLOW_PREDICTION_URL_PATH
                healthcheck_uri_path = MLFLOW_HEALTHCHECK_URL_PATH
                use_head_request = True

            endpoint = MLFlowDeploymentEndpoint(
                config=MLFlowDeploymentEndpointConfig(
                    protocol=ServiceEndpointProtocol.HTTP,
                    prediction_url_path=prediction_url_path,
                ),
                monitor=HTTPEndpointHealthMonitor(
                    config=HTTPEndpointHealthMonitorConfig(
                        healthcheck_uri_path=healthcheck_uri_path,
                        use_head_request=use_head_request,
                    )
                ),
            )
            attrs["endpoint"] = endpoint
        super().__init__(config=config, **attrs)

    def run(self) -> None:
        logger.info(
            "Starting MLflow prediction service as blocking "
            "process... press CTRL+C once to stop it."
        )

        self.endpoint.prepare_for_start()

        try:
            serve_kwargs: Dict[str, Any] = {}
            # MLflow version 1.26 introduces an additional mandatory
            # `timeout` argument to the `PyFuncBackend.serve` function
            if int(MLFLOW_VERSION.split(".")[1]) >= 26:
                serve_kwargs["timeout"] = None

            backend = PyFuncBackend(
                config={},
                no_conda=True,
                workers=self.config.workers,
                install_mlflow=False,
            )
            backend.serve(
                model_uri=self.config.model_uri,
                port=self.endpoint.status.port,
                host="localhost",
                enable_mlserver=self.config.mlserver,
                **serve_kwargs,
            )
        except KeyboardInterrupt:
            logger.info(
                "MLflow prediction service stopped. Resuming normal execution."
            )

    @property
    def prediction_url(self) -> Optional[str]:
        """Get the URI where the prediction service is answering requests.

        Returns:
            The URI where the prediction service can be contacted to process
            HTTP/REST inference requests, or None, if the service isn't running.
        """
        if not self.is_running:
            return None
        return self.endpoint.prediction_url

    def predict(self, request: "NDArray[Any]") -> "NDArray[Any]":
        """Make a prediction using the service.

        Args:
            request: a numpy array representing the request

        Returns:
            A numpy array representing the prediction returned by the service.
        """
        if not self.is_running:
            raise Exception(
                "MLflow prediction service is not running. "
                "Please start the service before making predictions."
            )

        if self.endpoint.prediction_url is not None:
            response = requests.post(
                self.endpoint.prediction_url,
                json={"instances": request.tolist()},
            )
        else:
            raise ValueError("No endpoint known for prediction.")
        response.raise_for_status()
        return np.array(response.json())
prediction_url: Optional[str] property readonly

Get the URI where the prediction service is answering requests.

Returns:

Type Description
Optional[str]

The URI where the prediction service can be contacted to process HTTP/REST inference requests, or None, if the service isn't running.

predict(self, request)

Make a prediction using the service.

Parameters:

Name Type Description Default
request NDArray[Any]

a numpy array representing the request

required

Returns:

Type Description
NDArray[Any]

A numpy array representing the prediction returned by the service.

Source code in zenml/integrations/mlflow/services/mlflow_deployment.py
def predict(self, request: "NDArray[Any]") -> "NDArray[Any]":
    """Make a prediction using the service.

    Args:
        request: a numpy array representing the request

    Returns:
        A numpy array representing the prediction returned by the service.
    """
    if not self.is_running:
        raise Exception(
            "MLflow prediction service is not running. "
            "Please start the service before making predictions."
        )

    if self.endpoint.prediction_url is not None:
        response = requests.post(
            self.endpoint.prediction_url,
            json={"instances": request.tolist()},
        )
    else:
        raise ValueError("No endpoint known for prediction.")
    response.raise_for_status()
    return np.array(response.json())
run(self)

Run the service daemon process associated with this service.

Subclasses must implement this method to provide the service daemon functionality. This method will be executed in the context of the running daemon, not in the context of the process that calls the start method.

Source code in zenml/integrations/mlflow/services/mlflow_deployment.py
def run(self) -> None:
    logger.info(
        "Starting MLflow prediction service as blocking "
        "process... press CTRL+C once to stop it."
    )

    self.endpoint.prepare_for_start()

    try:
        serve_kwargs: Dict[str, Any] = {}
        # MLflow version 1.26 introduces an additional mandatory
        # `timeout` argument to the `PyFuncBackend.serve` function
        if int(MLFLOW_VERSION.split(".")[1]) >= 26:
            serve_kwargs["timeout"] = None

        backend = PyFuncBackend(
            config={},
            no_conda=True,
            workers=self.config.workers,
            install_mlflow=False,
        )
        backend.serve(
            model_uri=self.config.model_uri,
            port=self.endpoint.status.port,
            host="localhost",
            enable_mlserver=self.config.mlserver,
            **serve_kwargs,
        )
    except KeyboardInterrupt:
        logger.info(
            "MLflow prediction service stopped. Resuming normal execution."
        )

steps special

mlflow_deployer
MLFlowDeployerConfig (BaseStepConfig) pydantic-model

MLflow model deployer step configuration

Attributes:

Name Type Description
model_name str

the name of the MLflow model logged in the MLflow artifact store for the current pipeline.

workers int

number of workers to use for the prediction service

mlserver bool

set to True to use the MLflow MLServer backend (see https://github.com/SeldonIO/MLServer). If False, the MLflow built-in scoring server will be used.

timeout int

the number of seconds to wait for the service to start/stop.

Source code in zenml/integrations/mlflow/steps/mlflow_deployer.py
class MLFlowDeployerConfig(BaseStepConfig):
    """MLflow model deployer step configuration

    Attributes:
        model_name: the name of the MLflow model logged in the MLflow artifact
            store for the current pipeline.
        workers: number of workers to use for the prediction service
        mlserver: set to True to use the MLflow MLServer backend (see
            https://github.com/SeldonIO/MLServer). If False, the
            MLflow built-in scoring server will be used.
        timeout: the number of seconds to wait for the service to start/stop.
    """

    model_name: str = "model"
    model_uri: str = ""
    workers: int = 1
    mlserver: bool = False
    timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT
mlflow_model_deployer_step (mlflow_model_deployer_step)
CONFIG_CLASS (BaseStepConfig) pydantic-model

MLflow model deployer step configuration

Attributes:

Name Type Description
model_name str

the name of the MLflow model logged in the MLflow artifact store for the current pipeline.

workers int

number of workers to use for the prediction service

mlserver bool

set to True to use the MLflow MLServer backend (see https://github.com/SeldonIO/MLServer). If False, the MLflow built-in scoring server will be used.

timeout int

the number of seconds to wait for the service to start/stop.

Source code in zenml/integrations/mlflow/steps/mlflow_deployer.py
class MLFlowDeployerConfig(BaseStepConfig):
    """MLflow model deployer step configuration

    Attributes:
        model_name: the name of the MLflow model logged in the MLflow artifact
            store for the current pipeline.
        workers: number of workers to use for the prediction service
        mlserver: set to True to use the MLflow MLServer backend (see
            https://github.com/SeldonIO/MLServer). If False, the
            MLflow built-in scoring server will be used.
        timeout: the number of seconds to wait for the service to start/stop.
    """

    model_name: str = "model"
    model_uri: str = ""
    workers: int = 1
    mlserver: bool = False
    timeout: int = DEFAULT_SERVICE_START_STOP_TIMEOUT
entrypoint(deploy_decision, model, config) staticmethod

MLflow model deployer pipeline step

Parameters:

Name Type Description Default
deploy_decision bool

whether to deploy the model or not

required
model ModelArtifact

the model artifact to deploy

required
config MLFlowDeployerConfig

configuration for the deployer step

required

Returns:

Type Description
MLFlowDeploymentService

MLflow deployment service

Source code in zenml/integrations/mlflow/steps/mlflow_deployer.py
@enable_mlflow
@step(enable_cache=False)
def mlflow_model_deployer_step(
    deploy_decision: bool,
    model: ModelArtifact,
    config: MLFlowDeployerConfig,
) -> MLFlowDeploymentService:
    """MLflow model deployer pipeline step

    Args:
        deploy_decision: whether to deploy the model or not
        model: the model artifact to deploy
        config: configuration for the deployer step

    Returns:
        MLflow deployment service
    """
    model_deployer = MLFlowModelDeployer.get_active_model_deployer()

    # fetch the MLflow artifacts logged during the pipeline run
    experiment_tracker = Repository(  # type: ignore[call-arg]
        skip_repository_check=True
    ).active_stack.experiment_tracker

    if not isinstance(experiment_tracker, MLFlowExperimentTracker):
        raise get_missing_mlflow_experiment_tracker_error()

    client = MlflowClient()
    model_uri = ""
    mlflow_run = experiment_tracker.active_run
    if mlflow_run and client.list_artifacts(
        mlflow_run.info.run_id, config.model_name
    ):
        model_uri = get_artifact_uri(config.model_name)

    # get pipeline name, step name and run id
    step_env = cast(StepEnvironment, Environment()[STEP_ENVIRONMENT_NAME])
    pipeline_name = step_env.pipeline_name
    run_id = step_env.pipeline_run_id
    step_name = step_env.step_name

    # fetch existing services with same pipeline name, step name and model name
    existing_services = model_deployer.find_model_server(
        pipeline_name=pipeline_name,
        pipeline_step_name=step_name,
        model_name=config.model_name,
    )

    # create a config for the new model service
    predictor_cfg = MLFlowDeploymentConfig(
        model_name=config.model_name or "",
        model_uri=model_uri,
        workers=config.workers,
        mlserver=config.mlserver,
        pipeline_name=pipeline_name,
        pipeline_run_id=run_id,
        pipeline_step_name=step_name,
    )

    # Creating a new service with inactive state and status by default
    service = MLFlowDeploymentService(predictor_cfg)
    if existing_services:
        service = cast(MLFlowDeploymentService, existing_services[0])

    # check for conditions to deploy the model
    if not model_uri:
        # an MLflow model was not trained in the current run, so we simply reuse
        # the currently running service created for the same model, if any
        if not existing_services:
            logger.warning(
                f"An MLflow model with name `{config.model_name}` was not "
                f"logged in the current pipeline run and no running MLflow "
                f"model server was found. Please ensure that your pipeline "
                f"includes an `@enable_mlflow` decorated step that trains a "
                f"model and logs it to MLflow. This could also happen if "
                f"the current pipeline run did not log an MLflow model  "
                f"because the training step was cached."
            )
            # return an inactive service just because we have to return
            # something
            return service
        logger.info(
            f"An MLflow model with name `{config.model_name}` was not "
            f"trained in the current pipeline run. Reusing the existing "
            f"MLflow model server."
        )
        if not service.is_running:
            service.start(config.timeout)

        # return the existing service
        return service

    # even when the deploy decision is negative, if an existing model server
    # is not running for this pipeline/step, we still have to serve the
    # current model, to ensure that a model server is available at all times
    if not deploy_decision and existing_services:
        logger.info(
            f"Skipping model deployment because the model quality does not "
            f"meet the criteria. Reusing last model server deployed by step "
            f"'{step_name}' and pipeline '{pipeline_name}' for model "
            f"'{config.model_name}'..."
        )
        # even when the deploy decision is negative, we still need to start
        # the previous model server if it is no longer running, to ensure
        # that a model server is available at all times
        if not service.is_running:
            service.start(config.timeout)
        return service

    # create a new model deployment and replace an old one if it exists
    new_service = cast(
        MLFlowDeploymentService,
        model_deployer.deploy_model(
            replace=True,
            config=predictor_cfg,
            timeout=config.timeout,
        ),
    )

    logger.info(
        f"MLflow deployment service started and reachable at:\n"
        f"    {new_service.prediction_url}\n"
    )

    return new_service
mlflow_deployer_step(enable_cache=True, name=None)

Shortcut function to create a pipeline step to deploy a given ML model with a local MLflow prediction server.

The returned step can be used in a pipeline to implement continuous deployment for an MLflow model.

Parameters:

Name Type Description Default
enable_cache bool

Specify whether caching is enabled for this step. If no value is passed, caching is enabled by default

True

Returns:

Type Description
Type[zenml.steps.base_step.BaseStep]

an MLflow model deployer pipeline step

Source code in zenml/integrations/mlflow/steps/mlflow_deployer.py
def mlflow_deployer_step(
    enable_cache: bool = True,
    name: Optional[str] = None,
) -> Type[BaseStep]:
    """Shortcut function to create a pipeline step to deploy a given ML model
    with a local MLflow prediction server.

    The returned step can be used in a pipeline to implement continuous
    deployment for an MLflow model.

    Args:
        enable_cache: Specify whether caching is enabled for this step. If no
            value is passed, caching is enabled by default

    Returns:
        an MLflow model deployer pipeline step
    """
    logger.warning(
        "The `mlflow_deployer_step` function is deprecated. Please "
        "use the built-in `mlflow_model_deployer_step` step instead."
    )
    return mlflow_model_deployer_step

neural_prophet special

NeuralProphetIntegration (Integration)

Definition of NeuralProphet integration for ZenML.

Source code in zenml/integrations/neural_prophet/__init__.py
class NeuralProphetIntegration(Integration):
    """Definition of NeuralProphet integration for ZenML."""

    NAME = NEURAL_PROPHET
    REQUIREMENTS = ["neuralprophet>=0.3.2"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.neural_prophet import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/neural_prophet/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.neural_prophet import materializers  # noqa

materializers special

neural_prophet_materializer
NeuralProphetMaterializer (BaseMaterializer)

Materializer to read/write NeuralProphet models.

Source code in zenml/integrations/neural_prophet/materializers/neural_prophet_materializer.py
class NeuralProphetMaterializer(BaseMaterializer):
    """Materializer to read/write NeuralProphet models."""

    ASSOCIATED_TYPES = (NeuralProphet,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> NeuralProphet:
        """Reads and returns a NeuralProphet model.

        Returns:
            A loaded NeuralProphet model.
        """
        super().handle_input(data_type)
        return torch.load(  # type: ignore[no-untyped-call]
            os.path.join(self.artifact.uri, DEFAULT_FILENAME)
        )  # noqa

    def handle_return(self, model: NeuralProphet) -> None:
        """Writes a NeuralProphet model.

        Args:
            model: A NeuralProphet model object.
        """
        super().handle_return(model)
        torch.save(model, os.path.join(self.artifact.uri, DEFAULT_FILENAME))
handle_input(self, data_type)

Reads and returns a NeuralProphet model.

Returns:

Type Description
NeuralProphet

A loaded NeuralProphet model.

Source code in zenml/integrations/neural_prophet/materializers/neural_prophet_materializer.py
def handle_input(self, data_type: Type[Any]) -> NeuralProphet:
    """Reads and returns a NeuralProphet model.

    Returns:
        A loaded NeuralProphet model.
    """
    super().handle_input(data_type)
    return torch.load(  # type: ignore[no-untyped-call]
        os.path.join(self.artifact.uri, DEFAULT_FILENAME)
    )  # noqa
handle_return(self, model)

Writes a NeuralProphet model.

Parameters:

Name Type Description Default
model NeuralProphet

A NeuralProphet model object.

required
Source code in zenml/integrations/neural_prophet/materializers/neural_prophet_materializer.py
def handle_return(self, model: NeuralProphet) -> None:
    """Writes a NeuralProphet model.

    Args:
        model: A NeuralProphet model object.
    """
    super().handle_return(model)
    torch.save(model, os.path.join(self.artifact.uri, DEFAULT_FILENAME))

plotly special

PlotlyIntegration (Integration)

Definition of Plotly integration for ZenML.

Source code in zenml/integrations/plotly/__init__.py
class PlotlyIntegration(Integration):
    """Definition of Plotly integration for ZenML."""

    NAME = PLOTLY
    REQUIREMENTS = ["plotly>=5.4.0"]

visualizers special

pipeline_lineage_visualizer
PipelineLineageVisualizer (BasePipelineVisualizer)

Visualize the lineage of runs in a pipeline using plotly.

Source code in zenml/integrations/plotly/visualizers/pipeline_lineage_visualizer.py
class PipelineLineageVisualizer(BasePipelineVisualizer):
    """Visualize the lineage of runs in a pipeline using plotly."""

    @abstractmethod
    def visualize(
        self, object: PipelineView, *args: Any, **kwargs: Any
    ) -> Figure:
        """Creates a pipeline lineage diagram using plotly."""
        logger.warning(
            "This integration is not completed yet. Results might be unexpected."
        )

        category_dict = {}
        dimensions = ["run"]
        for run in object.runs:
            category_dict[run.name] = {"run": run.name}
            for step in run.steps:
                category_dict[run.name].update(
                    {
                        step.entrypoint_name: str(step.id),
                    }
                )
                if step.entrypoint_name not in dimensions:
                    dimensions.append(f"{step.entrypoint_name}")

        category_df = pd.DataFrame.from_dict(category_dict, orient="index")

        category_df = category_df.reset_index()

        fig = px.parallel_categories(
            category_df,
            dimensions,
            color=None,
            labels="status",
        )

        fig.show()
        return fig
visualize(self, object, *args, **kwargs)

Creates a pipeline lineage diagram using plotly.

Source code in zenml/integrations/plotly/visualizers/pipeline_lineage_visualizer.py
@abstractmethod
def visualize(
    self, object: PipelineView, *args: Any, **kwargs: Any
) -> Figure:
    """Creates a pipeline lineage diagram using plotly."""
    logger.warning(
        "This integration is not completed yet. Results might be unexpected."
    )

    category_dict = {}
    dimensions = ["run"]
    for run in object.runs:
        category_dict[run.name] = {"run": run.name}
        for step in run.steps:
            category_dict[run.name].update(
                {
                    step.entrypoint_name: str(step.id),
                }
            )
            if step.entrypoint_name not in dimensions:
                dimensions.append(f"{step.entrypoint_name}")

    category_df = pd.DataFrame.from_dict(category_dict, orient="index")

    category_df = category_df.reset_index()

    fig = px.parallel_categories(
        category_df,
        dimensions,
        color=None,
        labels="status",
    )

    fig.show()
    return fig

pytorch special

PytorchIntegration (Integration)

Definition of PyTorch integration for ZenML.

Source code in zenml/integrations/pytorch/__init__.py
class PytorchIntegration(Integration):
    """Definition of PyTorch integration for ZenML."""

    NAME = PYTORCH
    REQUIREMENTS = ["torch"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.pytorch import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/pytorch/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.pytorch import materializers  # noqa

materializers special

pytorch_dataloader_materializer
PyTorchDataLoaderMaterializer (BaseMaterializer)

Materializer to read/write Pytorch dataloaders.

Source code in zenml/integrations/pytorch/materializers/pytorch_dataloader_materializer.py
class PyTorchDataLoaderMaterializer(BaseMaterializer):
    """Materializer to read/write Pytorch dataloaders."""

    ASSOCIATED_TYPES = (DataLoader,)
    ASSOCIATED_ARTIFACT_TYPES = (DataArtifact,)

    def handle_input(self, data_type: Type[Any]) -> DataLoader[Any]:
        """Reads and returns a PyTorch dataloader.

        Returns:
            A loaded PyTorch dataloader.
        """
        super().handle_input(data_type)
        with fileio.open(
            os.path.join(self.artifact.uri, DEFAULT_FILENAME), "rb"
        ) as f:
            return cast(DataLoader[Any], torch.load(f))  # type: ignore[no-untyped-call]  # noqa

    def handle_return(self, dataloader: DataLoader[Any]) -> None:
        """Writes a PyTorch dataloader.

        Args:
            dataloader: A torch.utils.DataLoader or a dict to pass into dataloader.save
        """
        super().handle_return(dataloader)

        # Save entire dataloader to artifact directory
        with fileio.open(
            os.path.join(self.artifact.uri, DEFAULT_FILENAME), "wb"
        ) as f:
            torch.save(dataloader, f)
handle_input(self, data_type)

Reads and returns a PyTorch dataloader.

Returns:

Type Description
torch.utils.data.dataloader.DataLoader[Any]

A loaded PyTorch dataloader.

Source code in zenml/integrations/pytorch/materializers/pytorch_dataloader_materializer.py
def handle_input(self, data_type: Type[Any]) -> DataLoader[Any]:
    """Reads and returns a PyTorch dataloader.

    Returns:
        A loaded PyTorch dataloader.
    """
    super().handle_input(data_type)
    with fileio.open(
        os.path.join(self.artifact.uri, DEFAULT_FILENAME), "rb"
    ) as f:
        return cast(DataLoader[Any], torch.load(f))  # type: ignore[no-untyped-call]  # noqa
handle_return(self, dataloader)

Writes a PyTorch dataloader.

Parameters:

Name Type Description Default
dataloader torch.utils.data.dataloader.DataLoader[Any]

A torch.utils.DataLoader or a dict to pass into dataloader.save

required
Source code in zenml/integrations/pytorch/materializers/pytorch_dataloader_materializer.py
def handle_return(self, dataloader: DataLoader[Any]) -> None:
    """Writes a PyTorch dataloader.

    Args:
        dataloader: A torch.utils.DataLoader or a dict to pass into dataloader.save
    """
    super().handle_return(dataloader)

    # Save entire dataloader to artifact directory
    with fileio.open(
        os.path.join(self.artifact.uri, DEFAULT_FILENAME), "wb"
    ) as f:
        torch.save(dataloader, f)
pytorch_module_materializer
PyTorchModuleMaterializer (BaseMaterializer)

Materializer to read/write Pytorch models. Inspired by the guide: https://pytorch.org/tutorials/beginner/saving_loading_models.html

Source code in zenml/integrations/pytorch/materializers/pytorch_module_materializer.py
class PyTorchModuleMaterializer(BaseMaterializer):
    """Materializer to read/write Pytorch models. Inspired by the guide:
    https://pytorch.org/tutorials/beginner/saving_loading_models.html"""

    ASSOCIATED_TYPES = (Module,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> Module:
        """Reads and returns a PyTorch model. Only loads the model, not
        the checkpoint.

        Returns:
            A loaded pytorch model.
        """
        super().handle_input(data_type)
        with fileio.open(
            os.path.join(self.artifact.uri, DEFAULT_FILENAME), "rb"
        ) as f:
            return torch.load(f)  # type: ignore[no-untyped-call]  # noqa

    def handle_return(self, model: Module) -> None:
        """Writes a PyTorch model, as a model and a checkpoint.

        Args:
            model: A torch.nn.Module or a dict to pass into model.save
        """
        super().handle_return(model)

        # Save entire model to artifact directory, This is the default behavior
        # for loading model in development phase (training, evaluation)
        with fileio.open(
            os.path.join(self.artifact.uri, DEFAULT_FILENAME), "wb"
        ) as f:
            torch.save(model, f)

        # Also save model checkpoint to artifact directory,
        # This is the default behavior for loading model in production phase (inference)
        if isinstance(model, Module):
            with fileio.open(
                os.path.join(self.artifact.uri, CHECKPOINT_FILENAME), "wb"
            ) as f:
                torch.save(model.state_dict(), f)
handle_input(self, data_type)

Reads and returns a PyTorch model. Only loads the model, not the checkpoint.

Returns:

Type Description
Module

A loaded pytorch model.

Source code in zenml/integrations/pytorch/materializers/pytorch_module_materializer.py
def handle_input(self, data_type: Type[Any]) -> Module:
    """Reads and returns a PyTorch model. Only loads the model, not
    the checkpoint.

    Returns:
        A loaded pytorch model.
    """
    super().handle_input(data_type)
    with fileio.open(
        os.path.join(self.artifact.uri, DEFAULT_FILENAME), "rb"
    ) as f:
        return torch.load(f)  # type: ignore[no-untyped-call]  # noqa
handle_return(self, model)

Writes a PyTorch model, as a model and a checkpoint.

Parameters:

Name Type Description Default
model Module

A torch.nn.Module or a dict to pass into model.save

required
Source code in zenml/integrations/pytorch/materializers/pytorch_module_materializer.py
def handle_return(self, model: Module) -> None:
    """Writes a PyTorch model, as a model and a checkpoint.

    Args:
        model: A torch.nn.Module or a dict to pass into model.save
    """
    super().handle_return(model)

    # Save entire model to artifact directory, This is the default behavior
    # for loading model in development phase (training, evaluation)
    with fileio.open(
        os.path.join(self.artifact.uri, DEFAULT_FILENAME), "wb"
    ) as f:
        torch.save(model, f)

    # Also save model checkpoint to artifact directory,
    # This is the default behavior for loading model in production phase (inference)
    if isinstance(model, Module):
        with fileio.open(
            os.path.join(self.artifact.uri, CHECKPOINT_FILENAME), "wb"
        ) as f:
            torch.save(model.state_dict(), f)

pytorch_lightning special

PytorchLightningIntegration (Integration)

Definition of PyTorch Lightning integration for ZenML.

Source code in zenml/integrations/pytorch_lightning/__init__.py
class PytorchLightningIntegration(Integration):
    """Definition of PyTorch Lightning integration for ZenML."""

    NAME = PYTORCH_L
    REQUIREMENTS = ["pytorch_lightning"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.pytorch_lightning import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/pytorch_lightning/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.pytorch_lightning import materializers  # noqa

materializers special

pytorch_lightning_materializer
PyTorchLightningMaterializer (BaseMaterializer)

Materializer to read/write Pytorch models.

Source code in zenml/integrations/pytorch_lightning/materializers/pytorch_lightning_materializer.py
class PyTorchLightningMaterializer(BaseMaterializer):
    """Materializer to read/write Pytorch models."""

    ASSOCIATED_TYPES = (Trainer,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> Trainer:
        """Reads and returns a PyTorch Lightning trainer.

        Returns:
            A PyTorch Lightning trainer object.
        """
        super().handle_input(data_type)
        return Trainer(
            resume_from_checkpoint=os.path.join(
                self.artifact.uri, CHECKPOINT_NAME
            )
        )

    def handle_return(self, trainer: Trainer) -> None:
        """Writes a PyTorch Lightning trainer.

        Args:
            trainer: A PyTorch Lightning trainer object.
        """
        super().handle_return(trainer)
        trainer.save_checkpoint(
            os.path.join(self.artifact.uri, CHECKPOINT_NAME)
        )
handle_input(self, data_type)

Reads and returns a PyTorch Lightning trainer.

Returns:

Type Description
Trainer

A PyTorch Lightning trainer object.

Source code in zenml/integrations/pytorch_lightning/materializers/pytorch_lightning_materializer.py
def handle_input(self, data_type: Type[Any]) -> Trainer:
    """Reads and returns a PyTorch Lightning trainer.

    Returns:
        A PyTorch Lightning trainer object.
    """
    super().handle_input(data_type)
    return Trainer(
        resume_from_checkpoint=os.path.join(
            self.artifact.uri, CHECKPOINT_NAME
        )
    )
handle_return(self, trainer)

Writes a PyTorch Lightning trainer.

Parameters:

Name Type Description Default
trainer Trainer

A PyTorch Lightning trainer object.

required
Source code in zenml/integrations/pytorch_lightning/materializers/pytorch_lightning_materializer.py
def handle_return(self, trainer: Trainer) -> None:
    """Writes a PyTorch Lightning trainer.

    Args:
        trainer: A PyTorch Lightning trainer object.
    """
    super().handle_return(trainer)
    trainer.save_checkpoint(
        os.path.join(self.artifact.uri, CHECKPOINT_NAME)
    )

registry

IntegrationRegistry

Registry to keep track of ZenML Integrations

Source code in zenml/integrations/registry.py
class IntegrationRegistry(object):
    """Registry to keep track of ZenML Integrations"""

    def __init__(self) -> None:
        """Initializing the integration registry"""
        self._integrations: Dict[str, Type["Integration"]] = {}

    @property
    def integrations(self) -> Dict[str, Type["Integration"]]:
        """Method to get integrations dictionary.

        Returns:
            A dict of integration key to type of `Integration`.
        """
        return self._integrations

    @integrations.setter
    def integrations(self, i: Any) -> None:
        """Setter method for the integrations property"""
        raise IntegrationError(
            "Please do not manually change the integrations within the "
            "registry. If you would like to register a new integration "
            "manually, please use "
            "`integration_registry.register_integration()`."
        )

    def register_integration(
        self, key: str, type_: Type["Integration"]
    ) -> None:
        """Method to register an integration with a given name"""
        self._integrations[key] = type_

    def activate_integrations(self) -> None:
        """Method to activate the integrations with are registered in the
        registry"""
        for name, integration in self._integrations.items():
            if integration.check_installation():
                integration.activate()
                logger.debug(f"Integration `{name}` is activated.")
            else:
                logger.debug(f"Integration `{name}` could not be activated.")

    @property
    def list_integration_names(self) -> List[str]:
        """Get a list of all possible integrations"""
        return [name for name in self._integrations]

    def select_integration_requirements(
        self, integration_name: Optional[str] = None
    ) -> List[str]:
        """Select the requirements for a given integration
        or all integrations"""
        if integration_name:
            if integration_name in self.list_integration_names:
                return self._integrations[integration_name].REQUIREMENTS
            else:
                raise KeyError(
                    f"Version {integration_name} does not exist. "
                    f"Currently the following integrations are implemented. "
                    f"{self.list_integration_names}"
                )
        else:
            return [
                requirement
                for name in self.list_integration_names
                for requirement in self._integrations[name].REQUIREMENTS
            ]

    def is_installed(self, integration_name: Optional[str] = None) -> bool:
        """Checks if all requirements for an integration are installed"""
        if integration_name in self.list_integration_names:
            return self._integrations[integration_name].check_installation()
        elif not integration_name:
            all_installed = [
                self._integrations[item].check_installation()
                for item in self.list_integration_names
            ]
            return all(all_installed)
        else:
            raise KeyError(
                f"Integration '{integration_name}' not found. "
                f"Currently the following integrations are available: "
                f"{self.list_integration_names}"
            )

    def get_installed_integrations(self) -> List[str]:
        """Returns list of installed integrations."""
        return [
            name
            for name, integration in integration_registry.integrations.items()
            if integration.check_installation()
        ]
integrations: Dict[str, Type[Integration]] property writable

Method to get integrations dictionary.

Returns:

Type Description
Dict[str, Type[Integration]]

A dict of integration key to type of Integration.

list_integration_names: List[str] property readonly

Get a list of all possible integrations

__init__(self) special

Initializing the integration registry

Source code in zenml/integrations/registry.py
def __init__(self) -> None:
    """Initializing the integration registry"""
    self._integrations: Dict[str, Type["Integration"]] = {}
activate_integrations(self)

Method to activate the integrations with are registered in the registry

Source code in zenml/integrations/registry.py
def activate_integrations(self) -> None:
    """Method to activate the integrations with are registered in the
    registry"""
    for name, integration in self._integrations.items():
        if integration.check_installation():
            integration.activate()
            logger.debug(f"Integration `{name}` is activated.")
        else:
            logger.debug(f"Integration `{name}` could not be activated.")
get_installed_integrations(self)

Returns list of installed integrations.

Source code in zenml/integrations/registry.py
def get_installed_integrations(self) -> List[str]:
    """Returns list of installed integrations."""
    return [
        name
        for name, integration in integration_registry.integrations.items()
        if integration.check_installation()
    ]
is_installed(self, integration_name=None)

Checks if all requirements for an integration are installed

Source code in zenml/integrations/registry.py
def is_installed(self, integration_name: Optional[str] = None) -> bool:
    """Checks if all requirements for an integration are installed"""
    if integration_name in self.list_integration_names:
        return self._integrations[integration_name].check_installation()
    elif not integration_name:
        all_installed = [
            self._integrations[item].check_installation()
            for item in self.list_integration_names
        ]
        return all(all_installed)
    else:
        raise KeyError(
            f"Integration '{integration_name}' not found. "
            f"Currently the following integrations are available: "
            f"{self.list_integration_names}"
        )
register_integration(self, key, type_)

Method to register an integration with a given name

Source code in zenml/integrations/registry.py
def register_integration(
    self, key: str, type_: Type["Integration"]
) -> None:
    """Method to register an integration with a given name"""
    self._integrations[key] = type_
select_integration_requirements(self, integration_name=None)

Select the requirements for a given integration or all integrations

Source code in zenml/integrations/registry.py
def select_integration_requirements(
    self, integration_name: Optional[str] = None
) -> List[str]:
    """Select the requirements for a given integration
    or all integrations"""
    if integration_name:
        if integration_name in self.list_integration_names:
            return self._integrations[integration_name].REQUIREMENTS
        else:
            raise KeyError(
                f"Version {integration_name} does not exist. "
                f"Currently the following integrations are implemented. "
                f"{self.list_integration_names}"
            )
    else:
        return [
            requirement
            for name in self.list_integration_names
            for requirement in self._integrations[name].REQUIREMENTS
        ]

s3 special

The S3 integration allows the use of cloud artifact stores and file operations on S3 buckets.

S3Integration (Integration)

Definition of S3 integration for ZenML.

Source code in zenml/integrations/s3/__init__.py
class S3Integration(Integration):
    """Definition of S3 integration for ZenML."""

    NAME = S3
    REQUIREMENTS = ["s3fs==2022.3.0"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the s3 integration."""
        return [
            FlavorWrapper(
                name=S3_ARTIFACT_STORE_FLAVOR,
                source="zenml.integrations.s3.artifact_stores.S3ArtifactStore",
                type=StackComponentType.ARTIFACT_STORE,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the s3 integration.

Source code in zenml/integrations/s3/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the s3 integration."""
    return [
        FlavorWrapper(
            name=S3_ARTIFACT_STORE_FLAVOR,
            source="zenml.integrations.s3.artifact_stores.S3ArtifactStore",
            type=StackComponentType.ARTIFACT_STORE,
            integration=cls.NAME,
        )
    ]

artifact_stores special

s3_artifact_store
S3ArtifactStore (BaseArtifactStore) pydantic-model

Artifact Store for S3 based artifacts.

All attributes of this class except path will be passed to the s3fs.S3FileSystem initialization. See here for more information on how to use those configuration options to connect to any S3-compatible storage.

When you want to register an S3ArtifactStore from the CLI and need to pass client_kwargs, config_kwargs or s3_additional_kwargs, you should pass them as a json string:

zenml artifact-store register my_s3_store --type=s3 --path=s3://my_bucket     --client_kwargs='{"endpoint_url": "http://my-s3-endpoint"}'
Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
class S3ArtifactStore(BaseArtifactStore):
    """Artifact Store for S3 based artifacts.

    All attributes of this class except `path` will be passed to the
    `s3fs.S3FileSystem` initialization. See
    [here](https://s3fs.readthedocs.io/en/latest/) for more information on how
    to use those configuration options to connect to any S3-compatible storage.

    When you want to register an S3ArtifactStore from the CLI and need to pass
    `client_kwargs`, `config_kwargs` or `s3_additional_kwargs`, you should pass
    them as a json string:
    ```
    zenml artifact-store register my_s3_store --type=s3 --path=s3://my_bucket \
    --client_kwargs='{"endpoint_url": "http://my-s3-endpoint"}'
    ```
    """

    key: Optional[str] = None
    secret: Optional[str] = None
    token: Optional[str] = None
    client_kwargs: Optional[Dict[str, Any]] = None
    config_kwargs: Optional[Dict[str, Any]] = None
    s3_additional_kwargs: Optional[Dict[str, Any]] = None
    _filesystem: Optional[s3fs.S3FileSystem] = None

    # Class variables
    FLAVOR: ClassVar[str] = S3_ARTIFACT_STORE_FLAVOR
    SUPPORTED_SCHEMES: ClassVar[Set[str]] = {"s3://"}

    @validator(
        "client_kwargs", "config_kwargs", "s3_additional_kwargs", pre=True
    )
    def _convert_json_string(
        cls, value: Union[None, str, Dict[str, Any]]
    ) -> Optional[Dict[str, Any]]:
        """Converts potential JSON strings passed via the CLI to
        dictionaries.

        Raises:
            TypeError: If the value is not a `str`, `Dict` or `None`.
            ValueError: If the value is an invalid json string or a json string
                that does not decode into a dictionary.
        """
        if isinstance(value, str):
            try:
                dict_ = json.loads(value)
            except json.JSONDecodeError as e:
                raise ValueError(f"Invalid json string '{value}'") from e

            if not isinstance(dict_, Dict):
                raise ValueError(
                    f"Json string '{value}' did not decode into a dictionary."
                )

            return dict_
        elif isinstance(value, Dict) or value is None:
            return value
        else:
            raise TypeError(f"{value} is not a json string or a dictionary.")

    @property
    def filesystem(self) -> s3fs.S3FileSystem:
        """The s3 filesystem to access this artifact store."""
        if not self._filesystem:
            self._filesystem = s3fs.S3FileSystem(
                key=self.key,
                secret=self.secret,
                token=self.token,
                client_kwargs=self.client_kwargs,
                config_kwargs=self.config_kwargs,
                s3_additional_kwargs=self.s3_additional_kwargs,
            )
        return self._filesystem

    def open(self, path: PathType, mode: str = "r") -> Any:
        """Open a file at the given path.
        Args:
            path: Path of the file to open.
            mode: Mode in which to open the file. Currently, only
                'rb' and 'wb' to read and write binary files are supported.
        """
        return self.filesystem.open(path=path, mode=mode)

    def copyfile(
        self, src: PathType, dst: PathType, overwrite: bool = False
    ) -> None:
        """Copy a file.
        Args:
            src: The path to copy from.
            dst: The path to copy to.
            overwrite: If a file already exists at the destination, this
                method will overwrite it if overwrite=`True` and
                raise a FileExistsError otherwise.
        Raises:
            FileNotFoundError: If the source file does not exist.
            FileExistsError: If a file already exists at the destination
                and overwrite is not set to `True`.
        """
        if not overwrite and self.filesystem.exists(dst):
            raise FileExistsError(
                f"Unable to copy to destination '{convert_to_str(dst)}', "
                f"file already exists. Set `overwrite=True` to copy anyway."
            )

        # TODO [ENG-151]: Check if it works with overwrite=True or if we need to
        #  manually remove it first
        self.filesystem.copy(path1=src, path2=dst)

    def exists(self, path: PathType) -> bool:
        """Check whether a path exists."""
        return self.filesystem.exists(path=path)  # type: ignore[no-any-return]

    def glob(self, pattern: PathType) -> List[PathType]:
        """Return all paths that match the given glob pattern.
        The glob pattern may include:
        - '*' to match any number of characters
        - '?' to match a single character
        - '[...]' to match one of the characters inside the brackets
        - '**' as the full name of a path component to match to search
          in subdirectories of any depth (e.g. '/some_dir/**/some_file)
        Args:
            pattern: The glob pattern to match, see details above.
        Returns:
            A list of paths that match the given glob pattern.
        """
        return [f"s3://{path}" for path in self.filesystem.glob(path=pattern)]

    def isdir(self, path: PathType) -> bool:
        """Check whether a path is a directory."""
        return self.filesystem.isdir(path=path)  # type: ignore[no-any-return]

    def listdir(self, path: PathType) -> List[PathType]:
        """Return a list of files in a directory."""
        # remove s3 prefix if given, so we can remove the directory later as
        # this method is expected to only return filenames
        path = convert_to_str(path)
        if path.startswith("s3://"):
            path = path[5:]

        def _extract_basename(file_dict: Dict[str, Any]) -> str:
            """Extracts the basename from a file info dict returned by the S3
            filesystem."""
            file_path = cast(str, file_dict["Key"])
            base_name = file_path[len(path) :]
            return base_name.lstrip("/")

        return [
            _extract_basename(dict_)
            for dict_ in self.filesystem.listdir(path=path)
            # s3fs.listdir also returns the root directory, so we filter
            # it out here
            if _extract_basename(dict_)
        ]

    def makedirs(self, path: PathType) -> None:
        """Create a directory at the given path. If needed also
        create missing parent directories."""
        self.filesystem.makedirs(path=path, exist_ok=True)

    def mkdir(self, path: PathType) -> None:
        """Create a directory at the given path."""
        self.filesystem.makedir(path=path)

    def remove(self, path: PathType) -> None:
        """Remove the file at the given path."""
        self.filesystem.rm_file(path=path)

    def rename(
        self, src: PathType, dst: PathType, overwrite: bool = False
    ) -> None:
        """Rename source file to destination file.
        Args:
            src: The path of the file to rename.
            dst: The path to rename the source file to.
            overwrite: If a file already exists at the destination, this
                method will overwrite it if overwrite=`True` and
                raise a FileExistsError otherwise.
        Raises:
            FileNotFoundError: If the source file does not exist.
            FileExistsError: If a file already exists at the destination
                and overwrite is not set to `True`.
        """
        if not overwrite and self.filesystem.exists(dst):
            raise FileExistsError(
                f"Unable to rename file to '{convert_to_str(dst)}', "
                f"file already exists. Set `overwrite=True` to rename anyway."
            )

        # TODO [ENG-152]: Check if it works with overwrite=True or if we need
        #  to manually remove it first
        self.filesystem.rename(path1=src, path2=dst)

    def rmtree(self, path: PathType) -> None:
        """Remove the given directory."""
        self.filesystem.delete(path=path, recursive=True)

    def stat(self, path: PathType) -> Dict[str, Any]:
        """Return stat info for the given path."""
        return self.filesystem.stat(path=path)  # type: ignore[no-any-return]

    def walk(
        self,
        top: PathType,
        topdown: bool = True,
        onerror: Optional[Callable[..., None]] = None,
    ) -> Iterable[Tuple[PathType, List[PathType], List[PathType]]]:
        """Return an iterator that walks the contents of the given directory.
        Args:
            top: Path of directory to walk.
            topdown: Unused argument to conform to interface.
            onerror: Unused argument to conform to interface.
        Returns:
            An Iterable of Tuples, each of which contain the path of the current
            directory path, a list of directories inside the current directory
            and a list of files inside the current directory.
        """
        # TODO [ENG-153]: Additional params
        for directory, subdirectories, files in self.filesystem.walk(path=top):
            yield f"s3://{directory}", subdirectories, files
filesystem: S3FileSystem property readonly

The s3 filesystem to access this artifact store.

copyfile(self, src, dst, overwrite=False)

Copy a file.

Parameters:

Name Type Description Default
src Union[bytes, str]

The path to copy from.

required
dst Union[bytes, str]

The path to copy to.

required
overwrite bool

If a file already exists at the destination, this method will overwrite it if overwrite=True and raise a FileExistsError otherwise.

False

Exceptions:

Type Description
FileNotFoundError

If the source file does not exist.

FileExistsError

If a file already exists at the destination and overwrite is not set to True.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def copyfile(
    self, src: PathType, dst: PathType, overwrite: bool = False
) -> None:
    """Copy a file.
    Args:
        src: The path to copy from.
        dst: The path to copy to.
        overwrite: If a file already exists at the destination, this
            method will overwrite it if overwrite=`True` and
            raise a FileExistsError otherwise.
    Raises:
        FileNotFoundError: If the source file does not exist.
        FileExistsError: If a file already exists at the destination
            and overwrite is not set to `True`.
    """
    if not overwrite and self.filesystem.exists(dst):
        raise FileExistsError(
            f"Unable to copy to destination '{convert_to_str(dst)}', "
            f"file already exists. Set `overwrite=True` to copy anyway."
        )

    # TODO [ENG-151]: Check if it works with overwrite=True or if we need to
    #  manually remove it first
    self.filesystem.copy(path1=src, path2=dst)
exists(self, path)

Check whether a path exists.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def exists(self, path: PathType) -> bool:
    """Check whether a path exists."""
    return self.filesystem.exists(path=path)  # type: ignore[no-any-return]
glob(self, pattern)

Return all paths that match the given glob pattern. The glob pattern may include: - '' to match any number of characters - '?' to match a single character - '[...]' to match one of the characters inside the brackets - '' as the full name of a path component to match to search in subdirectories of any depth (e.g. '/some_dir/*/some_file)

Parameters:

Name Type Description Default
pattern Union[bytes, str]

The glob pattern to match, see details above.

required

Returns:

Type Description
List[Union[bytes, str]]

A list of paths that match the given glob pattern.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def glob(self, pattern: PathType) -> List[PathType]:
    """Return all paths that match the given glob pattern.
    The glob pattern may include:
    - '*' to match any number of characters
    - '?' to match a single character
    - '[...]' to match one of the characters inside the brackets
    - '**' as the full name of a path component to match to search
      in subdirectories of any depth (e.g. '/some_dir/**/some_file)
    Args:
        pattern: The glob pattern to match, see details above.
    Returns:
        A list of paths that match the given glob pattern.
    """
    return [f"s3://{path}" for path in self.filesystem.glob(path=pattern)]
isdir(self, path)

Check whether a path is a directory.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def isdir(self, path: PathType) -> bool:
    """Check whether a path is a directory."""
    return self.filesystem.isdir(path=path)  # type: ignore[no-any-return]
listdir(self, path)

Return a list of files in a directory.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def listdir(self, path: PathType) -> List[PathType]:
    """Return a list of files in a directory."""
    # remove s3 prefix if given, so we can remove the directory later as
    # this method is expected to only return filenames
    path = convert_to_str(path)
    if path.startswith("s3://"):
        path = path[5:]

    def _extract_basename(file_dict: Dict[str, Any]) -> str:
        """Extracts the basename from a file info dict returned by the S3
        filesystem."""
        file_path = cast(str, file_dict["Key"])
        base_name = file_path[len(path) :]
        return base_name.lstrip("/")

    return [
        _extract_basename(dict_)
        for dict_ in self.filesystem.listdir(path=path)
        # s3fs.listdir also returns the root directory, so we filter
        # it out here
        if _extract_basename(dict_)
    ]
makedirs(self, path)

Create a directory at the given path. If needed also create missing parent directories.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def makedirs(self, path: PathType) -> None:
    """Create a directory at the given path. If needed also
    create missing parent directories."""
    self.filesystem.makedirs(path=path, exist_ok=True)
mkdir(self, path)

Create a directory at the given path.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def mkdir(self, path: PathType) -> None:
    """Create a directory at the given path."""
    self.filesystem.makedir(path=path)
open(self, path, mode='r')

Open a file at the given path.

Parameters:

Name Type Description Default
path Union[bytes, str]

Path of the file to open.

required
mode str

Mode in which to open the file. Currently, only 'rb' and 'wb' to read and write binary files are supported.

'r'
Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def open(self, path: PathType, mode: str = "r") -> Any:
    """Open a file at the given path.
    Args:
        path: Path of the file to open.
        mode: Mode in which to open the file. Currently, only
            'rb' and 'wb' to read and write binary files are supported.
    """
    return self.filesystem.open(path=path, mode=mode)
remove(self, path)

Remove the file at the given path.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def remove(self, path: PathType) -> None:
    """Remove the file at the given path."""
    self.filesystem.rm_file(path=path)
rename(self, src, dst, overwrite=False)

Rename source file to destination file.

Parameters:

Name Type Description Default
src Union[bytes, str]

The path of the file to rename.

required
dst Union[bytes, str]

The path to rename the source file to.

required
overwrite bool

If a file already exists at the destination, this method will overwrite it if overwrite=True and raise a FileExistsError otherwise.

False

Exceptions:

Type Description
FileNotFoundError

If the source file does not exist.

FileExistsError

If a file already exists at the destination and overwrite is not set to True.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def rename(
    self, src: PathType, dst: PathType, overwrite: bool = False
) -> None:
    """Rename source file to destination file.
    Args:
        src: The path of the file to rename.
        dst: The path to rename the source file to.
        overwrite: If a file already exists at the destination, this
            method will overwrite it if overwrite=`True` and
            raise a FileExistsError otherwise.
    Raises:
        FileNotFoundError: If the source file does not exist.
        FileExistsError: If a file already exists at the destination
            and overwrite is not set to `True`.
    """
    if not overwrite and self.filesystem.exists(dst):
        raise FileExistsError(
            f"Unable to rename file to '{convert_to_str(dst)}', "
            f"file already exists. Set `overwrite=True` to rename anyway."
        )

    # TODO [ENG-152]: Check if it works with overwrite=True or if we need
    #  to manually remove it first
    self.filesystem.rename(path1=src, path2=dst)
rmtree(self, path)

Remove the given directory.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def rmtree(self, path: PathType) -> None:
    """Remove the given directory."""
    self.filesystem.delete(path=path, recursive=True)
stat(self, path)

Return stat info for the given path.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def stat(self, path: PathType) -> Dict[str, Any]:
    """Return stat info for the given path."""
    return self.filesystem.stat(path=path)  # type: ignore[no-any-return]
walk(self, top, topdown=True, onerror=None)

Return an iterator that walks the contents of the given directory.

Parameters:

Name Type Description Default
top Union[bytes, str]

Path of directory to walk.

required
topdown bool

Unused argument to conform to interface.

True
onerror Optional[Callable[..., NoneType]]

Unused argument to conform to interface.

None

Returns:

Type Description
Iterable[Tuple[Union[bytes, str], List[Union[bytes, str]], List[Union[bytes, str]]]]

An Iterable of Tuples, each of which contain the path of the current directory path, a list of directories inside the current directory and a list of files inside the current directory.

Source code in zenml/integrations/s3/artifact_stores/s3_artifact_store.py
def walk(
    self,
    top: PathType,
    topdown: bool = True,
    onerror: Optional[Callable[..., None]] = None,
) -> Iterable[Tuple[PathType, List[PathType], List[PathType]]]:
    """Return an iterator that walks the contents of the given directory.
    Args:
        top: Path of directory to walk.
        topdown: Unused argument to conform to interface.
        onerror: Unused argument to conform to interface.
    Returns:
        An Iterable of Tuples, each of which contain the path of the current
        directory path, a list of directories inside the current directory
        and a list of files inside the current directory.
    """
    # TODO [ENG-153]: Additional params
    for directory, subdirectories, files in self.filesystem.walk(path=top):
        yield f"s3://{directory}", subdirectories, files

sagemaker special

The Sagemaker integration submodule provides a way to run ZenML steps in Sagemaker.

SagemakerIntegration (Integration)

Definition of Sagemaker integration for ZenML.

Source code in zenml/integrations/sagemaker/__init__.py
class SagemakerIntegration(Integration):
    """Definition of Sagemaker integration for ZenML."""

    NAME = SAGEMAKER
    REQUIREMENTS = ["sagemaker==2.82.2"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the Sagemaker integration."""
        return [
            FlavorWrapper(
                name=SAGEMAKER_STEP_OPERATOR_FLAVOR,
                source="zenml.integrations.sagemaker.step_operators.SagemakerStepOperator",
                type=StackComponentType.STEP_OPERATOR,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the Sagemaker integration.

Source code in zenml/integrations/sagemaker/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the Sagemaker integration."""
    return [
        FlavorWrapper(
            name=SAGEMAKER_STEP_OPERATOR_FLAVOR,
            source="zenml.integrations.sagemaker.step_operators.SagemakerStepOperator",
            type=StackComponentType.STEP_OPERATOR,
            integration=cls.NAME,
        )
    ]

step_operators special

sagemaker_step_operator
SagemakerStepOperator (BaseStepOperator) pydantic-model

Step operator to run a step on Sagemaker.

This class defines code that builds an image with the ZenML entrypoint to run using Sagemaker's Estimator.

Attributes:

Name Type Description
role str

The role that has to be assigned to the jobs which are running in Sagemaker.

instance_type str

The type of the compute instance where jobs will run.

base_image Optional[str]

[Optional] The base image to use for building the docker image that will be executed.

bucket Optional[str]

[Optional] Name of the S3 bucket to use for storing artifacts from the job run. If not provided, a default bucket will be created based on the following format: "sagemaker-{region}-{aws-account-id}".

experiment_name Optional[str]

[Optional] The name for the experiment to which the job will be associated. If not provided, the job runs would be independent.

Source code in zenml/integrations/sagemaker/step_operators/sagemaker_step_operator.py
class SagemakerStepOperator(BaseStepOperator):
    """Step operator to run a step on Sagemaker.

    This class defines code that builds an image with the ZenML entrypoint
    to run using Sagemaker's Estimator.

    Attributes:
        role: The role that has to be assigned to the jobs which are
            running in Sagemaker.
        instance_type: The type of the compute instance where jobs will run.
        base_image: [Optional] The base image to use for building the docker
            image that will be executed.
        bucket: [Optional] Name of the S3 bucket to use for storing artifacts
            from the job run. If not provided, a default bucket will be created
            based on the following format: "sagemaker-{region}-{aws-account-id}".
        experiment_name: [Optional] The name for the experiment to which the job
            will be associated. If not provided, the job runs would be
            independent.
    """

    role: str
    instance_type: str

    base_image: Optional[str] = None
    bucket: Optional[str] = None
    experiment_name: Optional[str] = None

    # Class Configuration
    FLAVOR: ClassVar[str] = SAGEMAKER_STEP_OPERATOR_FLAVOR

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates that the stack contains a container registry."""

        def _ensure_local_orchestrator(stack: Stack) -> Tuple[bool, str]:
            return (
                stack.orchestrator.FLAVOR == "local",
                "Local orchestrator is required",
            )

        return StackValidator(
            required_components={StackComponentType.CONTAINER_REGISTRY},
            custom_validation_function=_ensure_local_orchestrator,
        )

    def _build_docker_image(
        self,
        pipeline_name: str,
        requirements: List[str],
        entrypoint_command: List[str],
    ) -> str:
        repo = Repository()
        container_registry = repo.active_stack.container_registry

        if not container_registry:
            raise RuntimeError("Missing container registry")

        registry_uri = container_registry.uri.rstrip("/")
        image_name = f"{registry_uri}/zenml-sagemaker:{pipeline_name}"

        docker_utils.build_docker_image(
            build_context_path=get_source_root_path(),
            image_name=image_name,
            entrypoint=" ".join(entrypoint_command),
            requirements=set(requirements),
            base_image=self.base_image,
        )
        container_registry.push_image(image_name)
        return docker_utils.get_image_digest(image_name) or image_name

    def launch(
        self,
        pipeline_name: str,
        run_name: str,
        requirements: List[str],
        entrypoint_command: List[str],
    ) -> None:
        """Launches a step on Sagemaker.

        Args:
            pipeline_name: Name of the pipeline which the step to be executed
                is part of.
            run_name: Name of the pipeline run which the step to be executed
                is part of.
            entrypoint_command: Command that executes the step.
            requirements: List of pip requirements that must be installed
                inside the step operator environment.
        """
        image_name = self._build_docker_image(
            pipeline_name=pipeline_name,
            requirements=requirements,
            entrypoint_command=entrypoint_command,
        )

        session = sagemaker.Session(default_bucket=self.bucket)
        estimator = sagemaker.estimator.Estimator(
            image_name,
            self.role,
            instance_count=1,
            instance_type=self.instance_type,
            sagemaker_session=session,
        )

        # Sagemaker doesn't allow any underscores in job/experiment/trial names
        sanitized_run_name = run_name.replace("_", "-")

        experiment_config = {}
        if self.experiment_name:
            experiment_config = {
                "ExperimentName": self.experiment_name,
                "TrialName": sanitized_run_name,
            }

        estimator.fit(
            wait=True,
            experiment_config=experiment_config,
            job_name=sanitized_run_name,
        )
validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates that the stack contains a container registry.

launch(self, pipeline_name, run_name, requirements, entrypoint_command)

Launches a step on Sagemaker.

Parameters:

Name Type Description Default
pipeline_name str

Name of the pipeline which the step to be executed is part of.

required
run_name str

Name of the pipeline run which the step to be executed is part of.

required
entrypoint_command List[str]

Command that executes the step.

required
requirements List[str]

List of pip requirements that must be installed inside the step operator environment.

required
Source code in zenml/integrations/sagemaker/step_operators/sagemaker_step_operator.py
def launch(
    self,
    pipeline_name: str,
    run_name: str,
    requirements: List[str],
    entrypoint_command: List[str],
) -> None:
    """Launches a step on Sagemaker.

    Args:
        pipeline_name: Name of the pipeline which the step to be executed
            is part of.
        run_name: Name of the pipeline run which the step to be executed
            is part of.
        entrypoint_command: Command that executes the step.
        requirements: List of pip requirements that must be installed
            inside the step operator environment.
    """
    image_name = self._build_docker_image(
        pipeline_name=pipeline_name,
        requirements=requirements,
        entrypoint_command=entrypoint_command,
    )

    session = sagemaker.Session(default_bucket=self.bucket)
    estimator = sagemaker.estimator.Estimator(
        image_name,
        self.role,
        instance_count=1,
        instance_type=self.instance_type,
        sagemaker_session=session,
    )

    # Sagemaker doesn't allow any underscores in job/experiment/trial names
    sanitized_run_name = run_name.replace("_", "-")

    experiment_config = {}
    if self.experiment_name:
        experiment_config = {
            "ExperimentName": self.experiment_name,
            "TrialName": sanitized_run_name,
        }

    estimator.fit(
        wait=True,
        experiment_config=experiment_config,
        job_name=sanitized_run_name,
    )

scipy special

ScipyIntegration (Integration)

Definition of scipy integration for ZenML.

Source code in zenml/integrations/scipy/__init__.py
class ScipyIntegration(Integration):
    """Definition of scipy integration for ZenML."""

    NAME = SCIPY
    REQUIREMENTS = ["scipy"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.scipy import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/scipy/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.scipy import materializers  # noqa

materializers special

sparse_materializer
SparseMaterializer (BaseMaterializer)

Materializer to read and write scipy sparse matrices.

Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
class SparseMaterializer(BaseMaterializer):
    """Materializer to read and write scipy sparse matrices."""

    ASSOCIATED_TYPES = (spmatrix,)
    ASSOCIATED_ARTIFACT_TYPES = (DataArtifact,)

    def handle_input(self, data_type: Type[Any]) -> spmatrix:
        """Reads spmatrix from npz file."""
        super().handle_input(data_type)
        with fileio.open(
            os.path.join(self.artifact.uri, DATA_FILENAME), "rb"
        ) as f:
            mat = load_npz(f)
        return mat

    def handle_return(self, mat: spmatrix) -> None:
        """Writes a spmatrix to the artifact store as a npz file.

        Args:
            mat: The spmatrix to write.
        """
        super().handle_return(mat)
        with fileio.open(
            os.path.join(self.artifact.uri, DATA_FILENAME), "wb"
        ) as f:
            save_npz(f, mat)
handle_input(self, data_type)

Reads spmatrix from npz file.

Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
def handle_input(self, data_type: Type[Any]) -> spmatrix:
    """Reads spmatrix from npz file."""
    super().handle_input(data_type)
    with fileio.open(
        os.path.join(self.artifact.uri, DATA_FILENAME), "rb"
    ) as f:
        mat = load_npz(f)
    return mat
handle_return(self, mat)

Writes a spmatrix to the artifact store as a npz file.

Parameters:

Name Type Description Default
mat spmatrix

The spmatrix to write.

required
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
def handle_return(self, mat: spmatrix) -> None:
    """Writes a spmatrix to the artifact store as a npz file.

    Args:
        mat: The spmatrix to write.
    """
    super().handle_return(mat)
    with fileio.open(
        os.path.join(self.artifact.uri, DATA_FILENAME), "wb"
    ) as f:
        save_npz(f, mat)

seldon special

The Seldon Core integration allows you to use the Seldon Core model serving platform to implement continuous model deployment.

SeldonIntegration (Integration)

Definition of Seldon Core integration for ZenML.

Source code in zenml/integrations/seldon/__init__.py
class SeldonIntegration(Integration):
    """Definition of Seldon Core integration for ZenML."""

    NAME = SELDON
    REQUIREMENTS = [
        "kubernetes==18.20.0",
    ]

    @classmethod
    def activate(cls) -> None:
        """Activate the Seldon Core integration."""
        from zenml.integrations.seldon import secret_schemas  # noqa
        from zenml.integrations.seldon import services  # noqa

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the Seldon Core."""
        return [
            FlavorWrapper(
                name=SELDON_MODEL_DEPLOYER_FLAVOR,
                source="zenml.integrations.seldon.model_deployers.SeldonModelDeployer",
                type=StackComponentType.MODEL_DEPLOYER,
                integration=cls.NAME,
            )
        ]
activate() classmethod

Activate the Seldon Core integration.

Source code in zenml/integrations/seldon/__init__.py
@classmethod
def activate(cls) -> None:
    """Activate the Seldon Core integration."""
    from zenml.integrations.seldon import secret_schemas  # noqa
    from zenml.integrations.seldon import services  # noqa
flavors() classmethod

Declare the stack component flavors for the Seldon Core.

Source code in zenml/integrations/seldon/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the Seldon Core."""
    return [
        FlavorWrapper(
            name=SELDON_MODEL_DEPLOYER_FLAVOR,
            source="zenml.integrations.seldon.model_deployers.SeldonModelDeployer",
            type=StackComponentType.MODEL_DEPLOYER,
            integration=cls.NAME,
        )
    ]

model_deployers special

seldon_model_deployer
SeldonModelDeployer (BaseModelDeployer) pydantic-model

Seldon Core model deployer stack component implementation.

Attributes:

Name Type Description
kubernetes_context Optional[str]

the Kubernetes context to use to contact the remote Seldon Core installation. If not specified, the current configuration is used. Depending on where the Seldon model deployer is being used, this can be either a locally active context or an in-cluster Kubernetes configuration (if running inside a pod).

kubernetes_namespace Optional[str]

the Kubernetes namespace where the Seldon Core deployment servers are provisioned and managed by ZenML. If not specified, the namespace set in the current configuration is used. Depending on where the Seldon model deployer is being used, this can be either the current namespace configured in the locally active context or the namespace in the context of which the pod is running (if running inside a pod).

base_url str

the base URL of the Kubernetes ingress used to expose the Seldon Core deployment servers.

secret Optional[str]

the name of a ZenML secret containing the credentials used by Seldon Core storage initializers to authenticate to the Artifact Store (i.e. the storage backend where models are stored - see https://docs.seldon.io/projects/seldon-core/en/latest/servers/overview.html#handling-credentials).

Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
class SeldonModelDeployer(BaseModelDeployer):
    """Seldon Core model deployer stack component implementation.

    Attributes:
        kubernetes_context: the Kubernetes context to use to contact the remote
            Seldon Core installation. If not specified, the current
            configuration is used. Depending on where the Seldon model deployer
            is being used, this can be either a locally active context or an
            in-cluster Kubernetes configuration (if running inside a pod).
        kubernetes_namespace: the Kubernetes namespace where the Seldon Core
            deployment servers are provisioned and managed by ZenML. If not
            specified, the namespace set in the current configuration is used.
            Depending on where the Seldon model deployer is being used, this can
            be either the current namespace configured in the locally active
            context or the namespace in the context of which the pod is running
            (if running inside a pod).
        base_url: the base URL of the Kubernetes ingress used to expose the
            Seldon Core deployment servers.
        secret: the name of a ZenML secret containing the credentials used by
            Seldon Core storage initializers to authenticate to the Artifact
            Store (i.e. the storage backend where models are stored - see
            https://docs.seldon.io/projects/seldon-core/en/latest/servers/overview.html#handling-credentials).
    """

    # Class Configuration
    FLAVOR: ClassVar[str] = SELDON_MODEL_DEPLOYER_FLAVOR

    kubernetes_context: Optional[str]
    kubernetes_namespace: Optional[str]
    base_url: str
    secret: Optional[str]

    # private attributes
    _client: Optional[SeldonClient] = None

    @staticmethod
    def get_model_server_info(  # type: ignore[override]
        service_instance: "SeldonDeploymentService",
    ) -> Dict[str, Optional[str]]:
        """ "Return implementation specific information that might be relevant
        to the user.

        Args:
            service_instance: Instance of a SeldonDeploymentService
        """

        return {
            "PREDICTION_URL": service_instance.prediction_url,
            "MODEL_URI": service_instance.config.model_uri,
            "MODEL_NAME": service_instance.config.model_name,
            "SELDON_DEPLOYMENT": service_instance.seldon_deployment_name,
        }

    @staticmethod
    def get_active_model_deployer() -> "SeldonModelDeployer":
        """Get the Seldon Core model deployer registered in the active stack.

        Returns:
            The Seldon Core model deployer registered in the active stack.
        Raises:
            TypeError: if the Seldon Core model deployer is not available.
        """
        model_deployer = Repository(  # type: ignore [call-arg]
            skip_repository_check=True
        ).active_stack.model_deployer
        if not model_deployer or not isinstance(
            model_deployer, SeldonModelDeployer
        ):
            raise TypeError(
                f"The active stack needs to have a Seldon Core model deployer "
                f"component registered to be able to deploy models with Seldon "
                f"Core. You can create a new stack with a Seldon Core model "
                f"deployer component or update your existing stack to add this "
                f"component, e.g.:\n\n"
                f"  'zenml model-deployer register seldon --flavor={SELDON_MODEL_DEPLOYER_FLAVOR} "
                f"--kubernetes_context=context-name --kubernetes_namespace="
                f"namespace-name --base_url=https://ingress.cluster.kubernetes'\n"
                f"  'zenml stack create stack-name -d seldon ...'\n"
            )
        return model_deployer

    @property
    def seldon_client(self) -> SeldonClient:
        """Get the Seldon Core client associated with this model deployer.

        Returns:
            The Seldon Core client.

        Raises:
            SeldonClientError: if the Kubernetes client configuration cannot be
                found.
        """
        if not self._client:
            self._client = SeldonClient(
                context=self.kubernetes_context,
                namespace=self.kubernetes_namespace,
            )
        return self._client

    @property
    def kubernetes_secret_name(self) -> Optional[str]:
        """Get the Kubernetes secret name associated with this model deployer.

        If a secret is configured for this model deployer, a corresponding
        Kubernetes secret is created in the remote cluster to be used
        by Seldon Core storage initializers to authenticate to the Artifact
        Store. This method returns the unique name that is used for this secret.

        Returns:
            The Seldon Core Kubernetes secret name, or None if no secret is
            configured.
        """
        if not self.secret:
            return None
        return (
            re.sub(r"[^0-9a-zA-Z-]+", "-", f"zenml-seldon-core-{self.secret}")
            .strip("-")
            .lower()
        )

    def _create_or_update_kubernetes_secret(self) -> Optional[str]:
        """Create or update a Kubernetes secret with the information stored in
        the ZenML secret configured for the model deployer.

        Returns:
            The name of the Kubernetes secret that was created or updated, or
            None if no secret was configured.

        Raises:
            SeldonClientError: if the secret cannot be created or updated.
        """
        # if a ZenML secret was configured in the model deployer,
        # create a Kubernetes secret as a means to pass this information
        # to the Seldon Core deployment
        if self.secret:

            secret_manager = Repository(  # type: ignore [call-arg]
                skip_repository_check=True
            ).active_stack.secrets_manager

            if not secret_manager or not isinstance(
                secret_manager, BaseSecretsManager
            ):
                raise RuntimeError(
                    f"The active stack doesn't have a secret manager component. "
                    f"The ZenML secret specified in the Seldon Core Model "
                    f"Deployer configuration cannot be fetched: {self.secret}."
                )

            try:
                zenml_secret = secret_manager.get_secret(self.secret)
            except KeyError:
                raise RuntimeError(
                    f"The ZenML secret '{self.secret}' specified in the "
                    f"Seldon Core Model Deployer configuration was not found "
                    f"in the active stack's secret manager."
                )

            # should never happen, just making mypy happy
            assert self.kubernetes_secret_name is not None
            self.seldon_client.create_or_update_secret(
                self.kubernetes_secret_name, zenml_secret
            )

        return self.kubernetes_secret_name

    def _delete_kubernetes_secret(self) -> None:
        """Delete the Kubernetes secret associated with this model deployer
        if no Seldon Core deployments are using it.

        Raises:
            SeldonClientError: if the secret cannot be deleted.
        """
        if self.kubernetes_secret_name:

            # fetch all the Seldon Core deployments that currently
            # configured to use this secret
            services = self.find_model_server()
            for service in services:
                config = cast(SeldonDeploymentConfig, service.config)
                if config.secret_name == self.kubernetes_secret_name:
                    return
            self.seldon_client.delete_secret(self.kubernetes_secret_name)

    def deploy_model(
        self,
        config: ServiceConfig,
        replace: bool = False,
        timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
    ) -> BaseService:
        """Create a new Seldon Core deployment or update an existing one to
        serve the supplied model and deployment configuration.

        This method has two modes of operation, depending on the `replace`
        argument value:

          * if `replace` is False, calling this method will create a new Seldon
            Core deployment server to reflect the model and other configuration
            parameters specified in the supplied Seldon deployment `config`.

          * if `replace` is True, this method will first attempt to find an
            existing Seldon Core deployment that is *equivalent* to the supplied
            configuration parameters. Two or more Seldon Core deployments are
            considered equivalent if they have the same `pipeline_name`,
            `pipeline_step_name` and `model_name` configuration parameters. To
            put it differently, two Seldon Core deployments are equivalent if
            they serve versions of the same model deployed by the same pipeline
            step. If an equivalent Seldon Core deployment is found, it will be
            updated in place to reflect the new configuration parameters. This
            allows an existing Seldon Core deployment to retain its prediction
            URL while performing a rolling update to serve a new model version.

        Callers should set `replace` to True if they want a continuous model
        deployment workflow that doesn't spin up a new Seldon Core deployment
        server for each new model version. If multiple equivalent Seldon Core
        deployments are found, the most recently created deployment is selected
        to be updated and the others are deleted.

        Args:
            config: the configuration of the model to be deployed with Seldon.
                Core
            replace: set this flag to True to find and update an equivalent
                Seldon Core deployment server with the new model instead of
                starting a new deployment server.
            timeout: the timeout in seconds to wait for the Seldon Core server
                to be provisioned and successfully started or updated. If set
                to 0, the method will return immediately after the Seldon Core
                server is provisioned, without waiting for it to fully start.

        Returns:
            The ZenML Seldon Core deployment service object that can be used to
            interact with the remote Seldon Core server.

        Raises:
            SeldonClientError: if a Seldon Core client error is encountered
                while provisioning the Seldon Core deployment server.
            RuntimeError: if `timeout` is set to a positive value that is
                exceeded while waiting for the Seldon Core deployment server
                to start, or if an operational failure is encountered before
                it reaches a ready state.
        """
        config = cast(SeldonDeploymentConfig, config)
        service = None

        # if a custom Kubernetes secret is not explicitly specified in the
        # SeldonDeploymentConfig, try to create one from the ZenML secret
        # configured for the model deployer
        config.secret_name = (
            config.secret_name or self._create_or_update_kubernetes_secret()
        )

        # if replace is True, find equivalent Seldon Core deployments
        if replace is True:
            equivalent_services = self.find_model_server(
                running=False,
                pipeline_name=config.pipeline_name,
                pipeline_step_name=config.pipeline_step_name,
                model_name=config.model_name,
            )

            for equivalent_service in equivalent_services:
                if service is None:
                    # keep the most recently created service
                    service = equivalent_service
                else:
                    try:
                        # delete the older services and don't wait for them to
                        # be deprovisioned
                        service.stop()
                    except RuntimeError:
                        # ignore errors encountered while stopping old services
                        pass

        if service:
            # update an equivalent service in place
            service.update(config)
            logger.info(
                f"Updating an existing Seldon deployment service: {service}"
            )
        else:
            # create a new service
            service = SeldonDeploymentService(config=config)
            logger.info(f"Creating a new Seldon deployment service: {service}")

        # start the service which in turn provisions the Seldon Core
        # deployment server and waits for it to reach a ready state
        service.start(timeout=timeout)
        return service

    def find_model_server(
        self,
        running: bool = False,
        service_uuid: Optional[UUID] = None,
        pipeline_name: Optional[str] = None,
        pipeline_run_id: Optional[str] = None,
        pipeline_step_name: Optional[str] = None,
        model_name: Optional[str] = None,
        model_uri: Optional[str] = None,
        model_type: Optional[str] = None,
    ) -> List[BaseService]:
        """Find one or more Seldon Core model services that match th given
        criteria.

        The Seldon Core deployment services that meet the search criteria are
        returned sorted in descending order of their creation time (i.e. more
        recent deployments first).

        Args:
            running: if true, only running services will be returned.
            service_uuid: the UUID of the Seldon Core service that was originally used
                to create the Seldon Core deployment resource.
            pipeline_name: name of the pipeline that the deployed model was part
                of.
            pipeline_run_id: ID of the pipeline run which the deployed model was
                part of.
            pipeline_step_name: the name of the pipeline model deployment step
                that deployed the model.
            model_name: the name of the deployed model.
            model_uri: URI of the deployed model.
            model_type: the Seldon Core server implementation used to serve
                the model

        Returns:
            One or more Seldon Core service objects representing Seldon Core
            model servers that match the input search criteria.
        """
        # Use a Seldon deployment service configuration to compute the labels
        config = SeldonDeploymentConfig(
            pipeline_name=pipeline_name or "",
            pipeline_run_id=pipeline_run_id or "",
            pipeline_step_name=pipeline_step_name or "",
            model_name=model_name or "",
            model_uri=model_uri or "",
            implementation=model_type or "",
        )
        labels = config.get_seldon_deployment_labels()
        if service_uuid:
            # the service UUID is not a label covered by the Seldon
            # deployment service configuration, so we need to add it
            # separately
            labels["zenml.service_uuid"] = str(service_uuid)

        deployments = self.seldon_client.find_deployments(labels=labels)
        # sort the deployments in descending order of their creation time
        deployments.sort(
            key=lambda deployment: datetime.strptime(
                deployment.metadata.creationTimestamp,
                "%Y-%m-%dT%H:%M:%SZ",
            )
            if deployment.metadata.creationTimestamp
            else datetime.min,
            reverse=True,
        )

        services: List[BaseService] = []
        for deployment in deployments:
            # recreate the Seldon deployment service object from the Seldon
            # deployment resource
            service = SeldonDeploymentService.create_from_deployment(
                deployment=deployment
            )
            if running and not service.is_running:
                # skip non-running services
                continue
            services.append(service)

        return services

    def stop_model_server(
        self,
        uuid: UUID,
        timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
        force: bool = False,
    ) -> None:
        """Stop a Seldon Core model server.

        Args:
            uuid: UUID of the model server to stop.
            timeout: timeout in seconds to wait for the service to stop.
            force: if True, force the service to stop.
        """
        raise NotImplementedError(
            "Stopping Seldon Core model servers is not implemented. Try "
            "deleting the Seldon Core model server instead."
        )

    def start_model_server(
        self,
        uuid: UUID,
        timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
    ) -> None:
        """Start a Seldon Core model deployment server.

        Args:
            uuid: UUID of the model server to start.
            timeout: timeout in seconds to wait for the service to become
                active. . If set to 0, the method will return immediately after
                provisioning the service, without waiting for it to become
                active.
        """
        raise NotImplementedError(
            "Starting Seldon Core model servers is not implemented"
        )

    def delete_model_server(
        self,
        uuid: UUID,
        timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
        force: bool = False,
    ) -> None:
        """Delete a Seldon Core model deployment server.

        Args:
            uuid: UUID of the model server to delete.
            timeout: timeout in seconds to wait for the service to stop. If
                set to 0, the method will return immediately after
                deprovisioning the service, without waiting for it to stop.
            force: if True, force the service to stop.
        """
        services = self.find_model_server(service_uuid=uuid)
        if len(services) == 0:
            return
        services[0].stop(timeout=timeout, force=force)

        # if this is the last Seldon Core model server, delete the Kubernetes
        # secret used to store the authentication information for the Seldon
        # Core model server storage initializer
        self._delete_kubernetes_secret()
kubernetes_secret_name: Optional[str] property readonly

Get the Kubernetes secret name associated with this model deployer.

If a secret is configured for this model deployer, a corresponding Kubernetes secret is created in the remote cluster to be used by Seldon Core storage initializers to authenticate to the Artifact Store. This method returns the unique name that is used for this secret.

Returns:

Type Description
Optional[str]

The Seldon Core Kubernetes secret name, or None if no secret is configured.

seldon_client: SeldonClient property readonly

Get the Seldon Core client associated with this model deployer.

Returns:

Type Description
SeldonClient

The Seldon Core client.

Exceptions:

Type Description
SeldonClientError

if the Kubernetes client configuration cannot be found.

delete_model_server(self, uuid, timeout=300, force=False)

Delete a Seldon Core model deployment server.

Parameters:

Name Type Description Default
uuid UUID

UUID of the model server to delete.

required
timeout int

timeout in seconds to wait for the service to stop. If set to 0, the method will return immediately after deprovisioning the service, without waiting for it to stop.

300
force bool

if True, force the service to stop.

False
Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
def delete_model_server(
    self,
    uuid: UUID,
    timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
    force: bool = False,
) -> None:
    """Delete a Seldon Core model deployment server.

    Args:
        uuid: UUID of the model server to delete.
        timeout: timeout in seconds to wait for the service to stop. If
            set to 0, the method will return immediately after
            deprovisioning the service, without waiting for it to stop.
        force: if True, force the service to stop.
    """
    services = self.find_model_server(service_uuid=uuid)
    if len(services) == 0:
        return
    services[0].stop(timeout=timeout, force=force)

    # if this is the last Seldon Core model server, delete the Kubernetes
    # secret used to store the authentication information for the Seldon
    # Core model server storage initializer
    self._delete_kubernetes_secret()
deploy_model(self, config, replace=False, timeout=300)

Create a new Seldon Core deployment or update an existing one to serve the supplied model and deployment configuration.

This method has two modes of operation, depending on the replace argument value:

  • if replace is False, calling this method will create a new Seldon Core deployment server to reflect the model and other configuration parameters specified in the supplied Seldon deployment config.

  • if replace is True, this method will first attempt to find an existing Seldon Core deployment that is equivalent to the supplied configuration parameters. Two or more Seldon Core deployments are considered equivalent if they have the same pipeline_name, pipeline_step_name and model_name configuration parameters. To put it differently, two Seldon Core deployments are equivalent if they serve versions of the same model deployed by the same pipeline step. If an equivalent Seldon Core deployment is found, it will be updated in place to reflect the new configuration parameters. This allows an existing Seldon Core deployment to retain its prediction URL while performing a rolling update to serve a new model version.

Callers should set replace to True if they want a continuous model deployment workflow that doesn't spin up a new Seldon Core deployment server for each new model version. If multiple equivalent Seldon Core deployments are found, the most recently created deployment is selected to be updated and the others are deleted.

Parameters:

Name Type Description Default
config ServiceConfig

the configuration of the model to be deployed with Seldon. Core

required
replace bool

set this flag to True to find and update an equivalent Seldon Core deployment server with the new model instead of starting a new deployment server.

False
timeout int

the timeout in seconds to wait for the Seldon Core server to be provisioned and successfully started or updated. If set to 0, the method will return immediately after the Seldon Core server is provisioned, without waiting for it to fully start.

300

Returns:

Type Description
BaseService

The ZenML Seldon Core deployment service object that can be used to interact with the remote Seldon Core server.

Exceptions:

Type Description
SeldonClientError

if a Seldon Core client error is encountered while provisioning the Seldon Core deployment server.

RuntimeError

if timeout is set to a positive value that is exceeded while waiting for the Seldon Core deployment server to start, or if an operational failure is encountered before it reaches a ready state.

Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
def deploy_model(
    self,
    config: ServiceConfig,
    replace: bool = False,
    timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
) -> BaseService:
    """Create a new Seldon Core deployment or update an existing one to
    serve the supplied model and deployment configuration.

    This method has two modes of operation, depending on the `replace`
    argument value:

      * if `replace` is False, calling this method will create a new Seldon
        Core deployment server to reflect the model and other configuration
        parameters specified in the supplied Seldon deployment `config`.

      * if `replace` is True, this method will first attempt to find an
        existing Seldon Core deployment that is *equivalent* to the supplied
        configuration parameters. Two or more Seldon Core deployments are
        considered equivalent if they have the same `pipeline_name`,
        `pipeline_step_name` and `model_name` configuration parameters. To
        put it differently, two Seldon Core deployments are equivalent if
        they serve versions of the same model deployed by the same pipeline
        step. If an equivalent Seldon Core deployment is found, it will be
        updated in place to reflect the new configuration parameters. This
        allows an existing Seldon Core deployment to retain its prediction
        URL while performing a rolling update to serve a new model version.

    Callers should set `replace` to True if they want a continuous model
    deployment workflow that doesn't spin up a new Seldon Core deployment
    server for each new model version. If multiple equivalent Seldon Core
    deployments are found, the most recently created deployment is selected
    to be updated and the others are deleted.

    Args:
        config: the configuration of the model to be deployed with Seldon.
            Core
        replace: set this flag to True to find and update an equivalent
            Seldon Core deployment server with the new model instead of
            starting a new deployment server.
        timeout: the timeout in seconds to wait for the Seldon Core server
            to be provisioned and successfully started or updated. If set
            to 0, the method will return immediately after the Seldon Core
            server is provisioned, without waiting for it to fully start.

    Returns:
        The ZenML Seldon Core deployment service object that can be used to
        interact with the remote Seldon Core server.

    Raises:
        SeldonClientError: if a Seldon Core client error is encountered
            while provisioning the Seldon Core deployment server.
        RuntimeError: if `timeout` is set to a positive value that is
            exceeded while waiting for the Seldon Core deployment server
            to start, or if an operational failure is encountered before
            it reaches a ready state.
    """
    config = cast(SeldonDeploymentConfig, config)
    service = None

    # if a custom Kubernetes secret is not explicitly specified in the
    # SeldonDeploymentConfig, try to create one from the ZenML secret
    # configured for the model deployer
    config.secret_name = (
        config.secret_name or self._create_or_update_kubernetes_secret()
    )

    # if replace is True, find equivalent Seldon Core deployments
    if replace is True:
        equivalent_services = self.find_model_server(
            running=False,
            pipeline_name=config.pipeline_name,
            pipeline_step_name=config.pipeline_step_name,
            model_name=config.model_name,
        )

        for equivalent_service in equivalent_services:
            if service is None:
                # keep the most recently created service
                service = equivalent_service
            else:
                try:
                    # delete the older services and don't wait for them to
                    # be deprovisioned
                    service.stop()
                except RuntimeError:
                    # ignore errors encountered while stopping old services
                    pass

    if service:
        # update an equivalent service in place
        service.update(config)
        logger.info(
            f"Updating an existing Seldon deployment service: {service}"
        )
    else:
        # create a new service
        service = SeldonDeploymentService(config=config)
        logger.info(f"Creating a new Seldon deployment service: {service}")

    # start the service which in turn provisions the Seldon Core
    # deployment server and waits for it to reach a ready state
    service.start(timeout=timeout)
    return service
find_model_server(self, running=False, service_uuid=None, pipeline_name=None, pipeline_run_id=None, pipeline_step_name=None, model_name=None, model_uri=None, model_type=None)

Find one or more Seldon Core model services that match th given criteria.

The Seldon Core deployment services that meet the search criteria are returned sorted in descending order of their creation time (i.e. more recent deployments first).

Parameters:

Name Type Description Default
running bool

if true, only running services will be returned.

False
service_uuid Optional[uuid.UUID]

the UUID of the Seldon Core service that was originally used to create the Seldon Core deployment resource.

None
pipeline_name Optional[str]

name of the pipeline that the deployed model was part of.

None
pipeline_run_id Optional[str]

ID of the pipeline run which the deployed model was part of.

None
pipeline_step_name Optional[str]

the name of the pipeline model deployment step that deployed the model.

None
model_name Optional[str]

the name of the deployed model.

None
model_uri Optional[str]

URI of the deployed model.

None
model_type Optional[str]

the Seldon Core server implementation used to serve the model

None

Returns:

Type Description
List[zenml.services.service.BaseService]

One or more Seldon Core service objects representing Seldon Core model servers that match the input search criteria.

Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
def find_model_server(
    self,
    running: bool = False,
    service_uuid: Optional[UUID] = None,
    pipeline_name: Optional[str] = None,
    pipeline_run_id: Optional[str] = None,
    pipeline_step_name: Optional[str] = None,
    model_name: Optional[str] = None,
    model_uri: Optional[str] = None,
    model_type: Optional[str] = None,
) -> List[BaseService]:
    """Find one or more Seldon Core model services that match th given
    criteria.

    The Seldon Core deployment services that meet the search criteria are
    returned sorted in descending order of their creation time (i.e. more
    recent deployments first).

    Args:
        running: if true, only running services will be returned.
        service_uuid: the UUID of the Seldon Core service that was originally used
            to create the Seldon Core deployment resource.
        pipeline_name: name of the pipeline that the deployed model was part
            of.
        pipeline_run_id: ID of the pipeline run which the deployed model was
            part of.
        pipeline_step_name: the name of the pipeline model deployment step
            that deployed the model.
        model_name: the name of the deployed model.
        model_uri: URI of the deployed model.
        model_type: the Seldon Core server implementation used to serve
            the model

    Returns:
        One or more Seldon Core service objects representing Seldon Core
        model servers that match the input search criteria.
    """
    # Use a Seldon deployment service configuration to compute the labels
    config = SeldonDeploymentConfig(
        pipeline_name=pipeline_name or "",
        pipeline_run_id=pipeline_run_id or "",
        pipeline_step_name=pipeline_step_name or "",
        model_name=model_name or "",
        model_uri=model_uri or "",
        implementation=model_type or "",
    )
    labels = config.get_seldon_deployment_labels()
    if service_uuid:
        # the service UUID is not a label covered by the Seldon
        # deployment service configuration, so we need to add it
        # separately
        labels["zenml.service_uuid"] = str(service_uuid)

    deployments = self.seldon_client.find_deployments(labels=labels)
    # sort the deployments in descending order of their creation time
    deployments.sort(
        key=lambda deployment: datetime.strptime(
            deployment.metadata.creationTimestamp,
            "%Y-%m-%dT%H:%M:%SZ",
        )
        if deployment.metadata.creationTimestamp
        else datetime.min,
        reverse=True,
    )

    services: List[BaseService] = []
    for deployment in deployments:
        # recreate the Seldon deployment service object from the Seldon
        # deployment resource
        service = SeldonDeploymentService.create_from_deployment(
            deployment=deployment
        )
        if running and not service.is_running:
            # skip non-running services
            continue
        services.append(service)

    return services
get_active_model_deployer() staticmethod

Get the Seldon Core model deployer registered in the active stack.

Returns:

Type Description
SeldonModelDeployer

The Seldon Core model deployer registered in the active stack.

Exceptions:

Type Description
TypeError

if the Seldon Core model deployer is not available.

Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
@staticmethod
def get_active_model_deployer() -> "SeldonModelDeployer":
    """Get the Seldon Core model deployer registered in the active stack.

    Returns:
        The Seldon Core model deployer registered in the active stack.
    Raises:
        TypeError: if the Seldon Core model deployer is not available.
    """
    model_deployer = Repository(  # type: ignore [call-arg]
        skip_repository_check=True
    ).active_stack.model_deployer
    if not model_deployer or not isinstance(
        model_deployer, SeldonModelDeployer
    ):
        raise TypeError(
            f"The active stack needs to have a Seldon Core model deployer "
            f"component registered to be able to deploy models with Seldon "
            f"Core. You can create a new stack with a Seldon Core model "
            f"deployer component or update your existing stack to add this "
            f"component, e.g.:\n\n"
            f"  'zenml model-deployer register seldon --flavor={SELDON_MODEL_DEPLOYER_FLAVOR} "
            f"--kubernetes_context=context-name --kubernetes_namespace="
            f"namespace-name --base_url=https://ingress.cluster.kubernetes'\n"
            f"  'zenml stack create stack-name -d seldon ...'\n"
        )
    return model_deployer
get_model_server_info(service_instance) staticmethod

"Return implementation specific information that might be relevant to the user.

Parameters:

Name Type Description Default
service_instance SeldonDeploymentService

Instance of a SeldonDeploymentService

required
Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
@staticmethod
def get_model_server_info(  # type: ignore[override]
    service_instance: "SeldonDeploymentService",
) -> Dict[str, Optional[str]]:
    """ "Return implementation specific information that might be relevant
    to the user.

    Args:
        service_instance: Instance of a SeldonDeploymentService
    """

    return {
        "PREDICTION_URL": service_instance.prediction_url,
        "MODEL_URI": service_instance.config.model_uri,
        "MODEL_NAME": service_instance.config.model_name,
        "SELDON_DEPLOYMENT": service_instance.seldon_deployment_name,
    }
start_model_server(self, uuid, timeout=300)

Start a Seldon Core model deployment server.

Parameters:

Name Type Description Default
uuid UUID

UUID of the model server to start.

required
timeout int

timeout in seconds to wait for the service to become active. . If set to 0, the method will return immediately after provisioning the service, without waiting for it to become active.

300
Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
def start_model_server(
    self,
    uuid: UUID,
    timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
) -> None:
    """Start a Seldon Core model deployment server.

    Args:
        uuid: UUID of the model server to start.
        timeout: timeout in seconds to wait for the service to become
            active. . If set to 0, the method will return immediately after
            provisioning the service, without waiting for it to become
            active.
    """
    raise NotImplementedError(
        "Starting Seldon Core model servers is not implemented"
    )
stop_model_server(self, uuid, timeout=300, force=False)

Stop a Seldon Core model server.

Parameters:

Name Type Description Default
uuid UUID

UUID of the model server to stop.

required
timeout int

timeout in seconds to wait for the service to stop.

300
force bool

if True, force the service to stop.

False
Source code in zenml/integrations/seldon/model_deployers/seldon_model_deployer.py
def stop_model_server(
    self,
    uuid: UUID,
    timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT,
    force: bool = False,
) -> None:
    """Stop a Seldon Core model server.

    Args:
        uuid: UUID of the model server to stop.
        timeout: timeout in seconds to wait for the service to stop.
        force: if True, force the service to stop.
    """
    raise NotImplementedError(
        "Stopping Seldon Core model servers is not implemented. Try "
        "deleting the Seldon Core model server instead."
    )

secret_schemas special

Seldon Secret Schemas

These are secret schemas that can be used to authenticate Seldon to the Artifact Store used to store served ML models.

secret_schemas
SeldonAzureSecretSchema (BaseSecretSchema) pydantic-model

Seldon Azure Blob Storage credentials.

Based on: https://rclone.org/azureblob/

Attributes:

Name Type Description
rclone_config_azureblob_type Literal['azureblob']

the rclone config type. Must be set to "azureblob" for this schema.

rclone_config_azureblob_account Optional[str]

storage Account Name. Leave blank to use SAS URL or MSI.

rclone_config_azureblob_key Optional[str]

storage Account Key. Leave blank to use SAS URL or MSI.

rclone_config_azureblob_sas_url Optional[str]

SAS URL for container level access only. Leave blank if using account/key or MSI.

rclone_config_azureblob_use_msi bool

use a managed service identity to authenticate (only works in Azure).

Source code in zenml/integrations/seldon/secret_schemas/secret_schemas.py
class SeldonAzureSecretSchema(BaseSecretSchema):
    """Seldon Azure Blob Storage credentials.

    Based on: https://rclone.org/azureblob/

    Attributes:

        rclone_config_azureblob_type: the rclone config type. Must be set to
            "azureblob" for this schema.
        rclone_config_azureblob_account: storage Account Name. Leave blank to
            use SAS URL or MSI.
        rclone_config_azureblob_key: storage Account Key. Leave blank to
            use SAS URL or MSI.
        rclone_config_azureblob_sas_url: SAS URL for container level access
            only. Leave blank if using account/key or MSI.
        rclone_config_azureblob_use_msi: use a managed service identity to
            authenticate (only works in Azure).
    """

    TYPE: ClassVar[str] = SELDON_AZUREBLOB_SECRET_SCHEMA_TYPE

    rclone_config_azureblob_type: Literal["azureblob"] = "azureblob"
    rclone_config_azureblob_account: Optional[str]
    rclone_config_azureblob_key: Optional[str]
    rclone_config_azureblob_sas_url: Optional[str]
    rclone_config_azureblob_use_msi: bool = False
SeldonGSSecretSchema (BaseSecretSchema) pydantic-model

Seldon GCS credentials.

Based on: https://rclone.org/googlecloudstorage/

Attributes:

Name Type Description
rclone_config_gs_type Literal['google cloud storage']

the rclone config type. Must be set to "google cloud storage" for this schema.

rclone_config_gs_client_id Optional[str]

OAuth client id.

rclone_config_gs_client_secret Optional[str]

OAuth client secret.

rclone_config_gs_token Optional[str]

OAuth Access Token as a JSON blob.

rclone_config_gs_project_number Optional[str]

project number.

rclone_config_gs_service_account_credentials Optional[str]

service account credentials JSON blob.

rclone_config_gs_anonymous bool

access public buckets and objects without credentials. Set to True if you just want to download files and don't configure credentials.

rclone_config_gs_auth_url Optional[str]

auth server URL.

Source code in zenml/integrations/seldon/secret_schemas/secret_schemas.py
class SeldonGSSecretSchema(BaseSecretSchema):
    """Seldon GCS credentials.

    Based on: https://rclone.org/googlecloudstorage/

    Attributes:

        rclone_config_gs_type: the rclone config type. Must be set to "google
            cloud storage" for this schema.
        rclone_config_gs_client_id: OAuth client id.
        rclone_config_gs_client_secret: OAuth client secret.
        rclone_config_gs_token: OAuth Access Token as a JSON blob.
        rclone_config_gs_project_number: project number.
        rclone_config_gs_service_account_credentials: service account
            credentials JSON blob.
        rclone_config_gs_anonymous: access public buckets and objects without
            credentials. Set to True if you just want to download files and
            don't configure credentials.
        rclone_config_gs_auth_url: auth server URL.
    """

    TYPE: ClassVar[str] = SELDON_GS_SECRET_SCHEMA_TYPE

    rclone_config_gs_type: Literal[
        "google cloud storage"
    ] = "google cloud storage"
    rclone_config_gs_client_id: Optional[str]
    rclone_config_gs_client_secret: Optional[str]
    rclone_config_gs_project_number: Optional[str]
    rclone_config_gs_service_account_credentials: Optional[str]
    rclone_config_gs_anonymous: bool = False
    rclone_config_gs_token: Optional[str]
    rclone_config_gs_auth_url: Optional[str]
    rclone_config_gs_token_url: Optional[str]
SeldonS3SecretSchema (BaseSecretSchema) pydantic-model

Seldon S3 credentials.

Based on: https://rclone.org/s3/#amazon-s3

Attributes:

Name Type Description
rclone_config_s3_type Literal['s3']

the rclone config type. Must be set to "s3" for this schema.

rclone_config_s3_provider str

the S3 provider (e.g. aws, ceph, minio).

rclone_config_s3_env_auth bool

get AWS credentials from EC2/ECS meta data (i.e. with IAM roles configuration). Only applies if access_key_id and secret_access_key are blank.

rclone_config_s3_access_key_id Optional[str]

AWS Access Key ID.

rclone_config_s3_secret_access_key Optional[str]

AWS Secret Access Key.

rclone_config_s3_session_token Optional[str]

AWS Session Token.

rclone_config_s3_region Optional[str]

region to connect to.

rclone_config_s3_endpoint Optional[str]

S3 API endpoint.

Source code in zenml/integrations/seldon/secret_schemas/secret_schemas.py
class SeldonS3SecretSchema(BaseSecretSchema):
    """Seldon S3 credentials.

    Based on: https://rclone.org/s3/#amazon-s3

    Attributes:
        rclone_config_s3_type: the rclone config type. Must be set to "s3" for
            this schema.
        rclone_config_s3_provider: the S3 provider (e.g. aws, ceph, minio).
        rclone_config_s3_env_auth: get AWS credentials from EC2/ECS meta data
            (i.e. with IAM roles configuration). Only applies if access_key_id
            and secret_access_key are blank.
        rclone_config_s3_access_key_id: AWS Access Key ID.
        rclone_config_s3_secret_access_key: AWS Secret Access Key.
        rclone_config_s3_session_token: AWS Session Token.
        rclone_config_s3_region: region to connect to.
        rclone_config_s3_endpoint: S3 API endpoint.

    """

    TYPE: ClassVar[str] = SELDON_S3_SECRET_SCHEMA_TYPE

    rclone_config_s3_type: Literal["s3"] = "s3"
    rclone_config_s3_provider: str = "aws"
    rclone_config_s3_env_auth: bool = False
    rclone_config_s3_access_key_id: Optional[str]
    rclone_config_s3_secret_access_key: Optional[str]
    rclone_config_s3_session_token: Optional[str]
    rclone_config_s3_region: Optional[str]
    rclone_config_s3_endpoint: Optional[str]

seldon_client

SeldonClient
Source code in zenml/integrations/seldon/seldon_client.py
class SeldonClient:
    def __init__(self, context: Optional[str], namespace: Optional[str]):
        """Initialize a Seldon Core client.

        Args:
            context: the Kubernetes context to use.
            namespace: the Kubernetes namespace to use.
        """
        self._context = context
        self._namespace = namespace
        self._initialize_k8s_clients()

    def _initialize_k8s_clients(self) -> None:
        """Initialize the Kubernetes clients."""
        try:
            k8s_config.load_incluster_config()
            if not self._namespace:
                # load the namespace in the context of which the
                # current pod is running
                self._namespace = open(
                    "/var/run/secrets/kubernetes.io/serviceaccount/namespace"
                ).read()
        except k8s_config.config_exception.ConfigException:
            if not self._namespace:
                raise SeldonClientError(
                    "The Kubernetes namespace must be explicitly "
                    "configured when running outside of a cluster."
                )
            try:
                k8s_config.load_kube_config(
                    context=self._context, persist_config=False
                )
            except k8s_config.config_exception.ConfigException as e:
                raise SeldonClientError(
                    "Could not load the Kubernetes configuration"
                ) from e
        self._core_api = k8s_client.CoreV1Api()
        self._custom_objects_api = k8s_client.CustomObjectsApi()

    @staticmethod
    def sanitize_labels(labels: Dict[str, str]) -> None:
        """Update the label values to be valid Kubernetes labels.

        See: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set
        """
        for key, value in labels.items():
            # Kubernetes labels must be alphanumeric, no longer than
            # 63 characters, and must begin and end with an alphanumeric
            # character ([a-z0-9A-Z])
            labels[key] = re.sub(r"[^0-9a-zA-Z-_\.]+", "_", value)[:63].strip(
                "-_."
            )

    @property
    def namespace(self) -> str:
        """Returns the Kubernetes namespace in use by the client.

        Returns:
            The Kubernetes namespace in use by the client.
        """
        if not self._namespace:
            # shouldn't happen if the client is initialized, but we need to
            # appease the mypy type checker
            raise RuntimeError("The Kubernetes namespace is not configured")
        return self._namespace

    def create_deployment(
        self,
        deployment: SeldonDeployment,
        poll_timeout: int = 0,
    ) -> SeldonDeployment:
        """Create a Seldon Core deployment resource.

        Args:
            deployment: the Seldon Core deployment resource to create
            poll_timeout: the maximum time to wait for the deployment to become
                available or to fail. If set to 0, the function will return
                immediately without checking the deployment status. If a timeout
                occurs and the deployment is still pending creation, it will
                be returned anyway and no exception will be raised.

        Returns:
            the created Seldon Core deployment resource with updated status.

        Raises:
            SeldonDeploymentExistsError: if a deployment with the same name
                already exists.
            SeldonDeploymentNotFoundError: if the newly created deployment
                resource cannot be found.
            SeldonClientError: if an unknown error occurs during the creation of
                the deployment.
        """
        try:
            logger.debug(f"Creating SeldonDeployment resource: {deployment}")

            # mark the deployment as managed by ZenML, to differentiate
            # between deployments that are created by ZenML and those that
            # are not
            deployment.mark_as_managed_by_zenml()

            response = self._custom_objects_api.create_namespaced_custom_object(
                group="machinelearning.seldon.io",
                version="v1",
                namespace=self._namespace,
                plural="seldondeployments",
                body=deployment.dict(exclude_none=True),
                _request_timeout=poll_timeout or None,
            )
            logger.debug("Seldon Core API response: %s", response)
        except k8s_client.rest.ApiException as e:
            logger.error(
                "Exception when creating SeldonDeployment resource: %s", str(e)
            )
            if e.status == 409:
                raise SeldonDeploymentExistsError(
                    f"A deployment with the name {deployment.name} "
                    f"already exists in namespace {self._namespace}"
                )
            raise SeldonClientError(
                "Exception when creating SeldonDeployment resource"
            ) from e

        created_deployment = self.get_deployment(name=deployment.name)

        while poll_timeout > 0 and created_deployment.is_pending():
            time.sleep(5)
            poll_timeout -= 5
            created_deployment = self.get_deployment(name=deployment.name)

        return created_deployment

    def delete_deployment(
        self,
        name: str,
        force: bool = False,
        poll_timeout: int = 0,
    ) -> None:
        """Delete a Seldon Core deployment resource managed by ZenML.

        Args:
            name: the name of the Seldon Core deployment resource to delete.
            force: if True, the deployment deletion will be forced (the graceful
                period will be set to zero).
            poll_timeout: the maximum time to wait for the deployment to be
                deleted. If set to 0, the function will return immediately
                without checking the deployment status. If a timeout
                occurs and the deployment still exists, this method will
                return and no exception will be raised.

        Raises:
            SeldonDeploymentNotFoundError: if the deployment resource cannot be
                found or is not managed by ZenML.
            SeldonClientError: if an unknown error occurs during the deployment
                removal.
        """
        try:
            logger.debug(f"Deleting SeldonDeployment resource: {name}")

            # call `get_deployment` to check that the deployment exists
            # and is managed by ZenML. It will raise
            # a SeldonDeploymentNotFoundError otherwise
            self.get_deployment(name=name)

            response = self._custom_objects_api.delete_namespaced_custom_object(
                group="machinelearning.seldon.io",
                version="v1",
                namespace=self._namespace,
                plural="seldondeployments",
                name=name,
                _request_timeout=poll_timeout or None,
                grace_period_seconds=0 if force else None,
            )
            logger.debug("Seldon Core API response: %s", response)
        except k8s_client.rest.ApiException as e:
            logger.error(
                "Exception when deleting SeldonDeployment resource %s: %s",
                name,
                str(e),
            )
            raise SeldonClientError(
                f"Exception when deleting SeldonDeployment resource {name}"
            ) from e

        while poll_timeout > 0:
            try:
                self.get_deployment(name=name)
            except SeldonDeploymentNotFoundError:
                return
            time.sleep(5)
            poll_timeout -= 5

    def update_deployment(
        self,
        deployment: SeldonDeployment,
        poll_timeout: int = 0,
    ) -> SeldonDeployment:
        """Update a Seldon Core deployment resource.

        Args:
            deployment: the Seldon Core deployment resource to update
            poll_timeout: the maximum time to wait for the deployment to become
                available or to fail. If set to 0, the function will return
                immediately without checking the deployment status. If a timeout
                occurs and the deployment is still pending creation, it will
                be returned anyway and no exception will be raised.

        Returns:
            the updated Seldon Core deployment resource with updated status.

        Raises:
            SeldonDeploymentNotFoundError: if deployment resource with the given
                name cannot be found.
            SeldonClientError: if an unknown error occurs while updating the
                deployment.
        """
        try:
            logger.debug(
                f"Updating SeldonDeployment resource: {deployment.name}"
            )

            # mark the deployment as managed by ZenML, to differentiate
            # between deployments that are created by ZenML and those that
            # are not
            deployment.mark_as_managed_by_zenml()

            # call `get_deployment` to check that the deployment exists
            # and is managed by ZenML. It will raise
            # a SeldonDeploymentNotFoundError otherwise
            self.get_deployment(name=deployment.name)

            response = self._custom_objects_api.patch_namespaced_custom_object(
                group="machinelearning.seldon.io",
                version="v1",
                namespace=self._namespace,
                plural="seldondeployments",
                name=deployment.name,
                body=deployment.dict(exclude_none=True),
                _request_timeout=poll_timeout or None,
            )
            logger.debug("Seldon Core API response: %s", response)
        except k8s_client.rest.ApiException as e:
            logger.error(
                "Exception when updating SeldonDeployment resource: %s", str(e)
            )
            raise SeldonClientError(
                "Exception when creating SeldonDeployment resource"
            ) from e

        updated_deployment = self.get_deployment(name=deployment.name)

        while poll_timeout > 0 and updated_deployment.is_pending():
            time.sleep(5)
            poll_timeout -= 5
            updated_deployment = self.get_deployment(name=deployment.name)

        return updated_deployment

    def get_deployment(self, name: str) -> SeldonDeployment:
        """Get a ZenML managed Seldon Core deployment resource by name.

        Args:
            name: the name of the Seldon Core deployment resource to fetch.

        Returns:
            The Seldon Core deployment resource.

        Raises:
            SeldonDeploymentNotFoundError: if the deployment resource cannot
                be found or is not managed by ZenML.
            SeldonClientError: if an unknown error occurs while fetching
                the deployment.
        """

        try:
            logger.debug(f"Retrieving SeldonDeployment resource: {name}")

            response = self._custom_objects_api.get_namespaced_custom_object(
                group="machinelearning.seldon.io",
                version="v1",
                namespace=self._namespace,
                plural="seldondeployments",
                name=name,
            )
            logger.debug("Seldon Core API response: %s", response)
            try:
                deployment = SeldonDeployment(**response)
            except ValidationError as e:
                logger.error(
                    "Invalid Seldon Core deployment resource: %s\n%s",
                    str(e),
                    str(response),
                )
                raise SeldonDeploymentNotFoundError(
                    f"SeldonDeployment resource {name} could not be parsed"
                )

            # Only Seldon deployments managed by ZenML are returned
            if not deployment.is_managed_by_zenml():
                raise SeldonDeploymentNotFoundError(
                    f"Seldon Deployment {name} is not managed by ZenML"
                )
            return deployment

        except k8s_client.rest.ApiException as e:
            if e.status == 404:
                raise SeldonDeploymentNotFoundError(
                    f"SeldonDeployment resource not found: {name}"
                ) from e
            logger.error(
                "Exception when fetching SeldonDeployment resource %s: %s",
                name,
                str(e),
            )
            raise SeldonClientError(
                f"Unexpected exception when fetching SeldonDeployment "
                f"resource: {name}"
            ) from e

    def find_deployments(
        self,
        name: Optional[str] = None,
        labels: Optional[Dict[str, str]] = None,
        fields: Optional[Dict[str, str]] = None,
    ) -> List[SeldonDeployment]:
        """Find all ZenML managed Seldon Core deployment resources that match
        the given criteria.

        Args:
            name: optional name of the deployment resource to find.
            fields: optional selector to restrict the list of returned
                Seldon deployments by their fields. Defaults to everything.
            labels: optional selector to restrict the list of returned
                Seldon deployments by their labels. Defaults to everything.

        Returns:
            List of Seldon Core deployments that match the given criteria.

        Raises:
            SeldonClientError: if an unknown error occurs while fetching
                the deployments.
        """
        fields = fields or {}
        labels = labels or {}
        # always filter results to only include Seldon deployments managed
        # by ZenML
        labels["app"] = "zenml"
        if name:
            fields = {"metadata.name": name}
        field_selector = (
            ",".join(f"{k}={v}" for k, v in fields.items()) if fields else None
        )
        label_selector = (
            ",".join(f"{k}={v}" for k, v in labels.items()) if labels else None
        )
        try:

            logger.debug(
                f"Searching SeldonDeployment resources with label selector "
                f"'{labels or ''}' and field selector '{fields or ''}'"
            )
            response = self._custom_objects_api.list_namespaced_custom_object(
                group="machinelearning.seldon.io",
                version="v1",
                namespace=self._namespace,
                plural="seldondeployments",
                field_selector=field_selector,
                label_selector=label_selector,
            )
            logger.debug(
                "Seldon Core API returned %s items", len(response["items"])
            )
            deployments = []
            for item in response.get("items") or []:
                try:
                    deployments.append(SeldonDeployment(**item))
                except ValidationError as e:
                    logger.error(
                        "Invalid Seldon Core deployment resource: %s\n%s",
                        str(e),
                        str(item),
                    )
            return deployments
        except k8s_client.rest.ApiException as e:
            logger.error(
                "Exception when searching SeldonDeployment resources with "
                "label selector '%s' and field selector '%s': %s",
                label_selector or "",
                field_selector or "",
            )
            raise SeldonClientError(
                f"Unexpected exception when searching SeldonDeployment "
                f"with labels '{labels or ''}' and field '{fields or ''}'"
            ) from e

    def get_deployment_logs(
        self,
        name: str,
        follow: bool = False,
        tail: Optional[int] = None,
    ) -> Generator[str, bool, None]:
        """Get the logs of a Seldon Core deployment resource.

        Args:
            name: the name of the Seldon Core deployment to get logs for.
            follow: if True, the logs will be streamed as they are written
            tail: only retrieve the last NUM lines of log output.

        Returns:
            A generator that can be acccessed to get the service logs.

        Raises:
            SeldonClientError: if an unknown error occurs while fetching
                the logs.
        """
        logger.debug(f"Retrieving logs for SeldonDeployment resource: {name}")
        try:
            response = self._core_api.list_namespaced_pod(
                namespace=self._namespace,
                label_selector=f"seldon-deployment-id={name}",
            )
            logger.debug("Kubernetes API response: %s", response)
            pods = response.items
            if not pods:
                raise SeldonClientError(
                    f"The Seldon Core deployment {name} is not currently "
                    f"running: no Kubernetes pods associated with it were found"
                )
            pod = pods[0]
            pod_name = pod.metadata.name

            containers = [c.name for c in pod.spec.containers]
            init_containers = [c.name for c in pod.spec.init_containers]
            container_statuses = {
                c.name: c.started or c.restart_count
                for c in pod.status.container_statuses
            }

            container = "default"
            if container not in containers:
                container = containers[0]
            # some containers might not be running yet and have no logs to show,
            # so we need to filter them out
            if not container_statuses[container]:
                container = init_containers[0]

            logger.info(
                f"Retrieving logs for pod: `{pod_name}` and container "
                f"`{container}` in namespace `{self._namespace}`"
            )
            response = self._core_api.read_namespaced_pod_log(
                name=pod_name,
                namespace=self._namespace,
                container=container,
                follow=follow,
                tail_lines=tail,
                _preload_content=False,
            )
        except k8s_client.rest.ApiException as e:
            logger.error(
                "Exception when fetching logs for SeldonDeployment resource "
                "%s: %s",
                name,
                str(e),
            )
            raise SeldonClientError(
                f"Unexpected exception when fetching logs for SeldonDeployment "
                f"resource: {name}"
            ) from e

        try:
            while True:
                line = response.readline().decode("utf-8").rstrip("\n")
                if not line:
                    return
                stop = yield line
                if stop:
                    return
        finally:
            response.release_conn()

    def create_or_update_secret(
        self,
        name: str,
        secret: BaseSecretSchema,
    ) -> None:
        """Create or update a Kubernetes Secret resource with the information
        contained in a ZenML secret.

        Args:
            name: the name of the Secret resource to create.
            secret: a ZenML secret with key-values that should be
                stored in the Secret resource.

        Raises:
            SeldonClientError: if an unknown error occurs during the creation of
                the secret.
        """
        try:
            logger.debug(f"Creating Secret resource: {name}")

            secret_data = {
                k.upper(): base64.b64encode(str(v).encode("utf-8")).decode(
                    "ascii"
                )
                for k, v in secret.content.items()
                if v is not None
            }

            secret = k8s_client.V1Secret(
                metadata=k8s_client.V1ObjectMeta(
                    name=name,
                    labels={"app": "zenml"},
                ),
                type="Opaque",
                data=secret_data,
            )

            try:
                # check if the secret is already present
                self._core_api.read_namespaced_secret(
                    name=name,
                    namespace=self._namespace,
                )
                # if we got this far, the secret is already present, update it
                # in place
                response = self._core_api.replace_namespaced_secret(
                    name=name,
                    namespace=self._namespace,
                    body=secret,
                )
            except k8s_client.rest.ApiException as e:
                if e.status != 404:
                    # if an error other than 404 is raised here, treat it
                    # as an unexpected error
                    raise
                response = self._core_api.create_namespaced_secret(
                    namespace=self._namespace,
                    body=secret,
                )
            logger.debug("Kubernetes API response: %s", response)
        except k8s_client.rest.ApiException as e:
            logger.error("Exception when creating Secret resource: %s", str(e))
            raise SeldonClientError(
                "Exception when creating Secret resource"
            ) from e

    def delete_secret(
        self,
        name: str,
    ) -> None:
        """Delete a Kubernetes Secret resource managed by ZenML.

        Args:
            name: the name of the Kubernetes Secret resource to delete.
        Raises:
            SeldonClientError: if an unknown error occurs during the removal
                of the secret.
        """
        try:
            logger.debug(f"Deleting Secret resource: {name}")

            response = self._core_api.delete_namespaced_secret(
                name=name,
                namespace=self._namespace,
            )
            logger.debug("Kubernetes API response: %s", response)
        except k8s_client.rest.ApiException as e:
            if e.status == 404:
                # the secret is no longer present, nothing to do
                return
            logger.error(
                "Exception when deleting Secret resource %s: %s",
                name,
                str(e),
            )
            raise SeldonClientError(
                f"Exception when deleting Secret resource {name}"
            ) from e
namespace: str property readonly

Returns the Kubernetes namespace in use by the client.

Returns:

Type Description
str

The Kubernetes namespace in use by the client.

__init__(self, context, namespace) special

Initialize a Seldon Core client.

Parameters:

Name Type Description Default
context Optional[str]

the Kubernetes context to use.

required
namespace Optional[str]

the Kubernetes namespace to use.

required
Source code in zenml/integrations/seldon/seldon_client.py
def __init__(self, context: Optional[str], namespace: Optional[str]):
    """Initialize a Seldon Core client.

    Args:
        context: the Kubernetes context to use.
        namespace: the Kubernetes namespace to use.
    """
    self._context = context
    self._namespace = namespace
    self._initialize_k8s_clients()
create_deployment(self, deployment, poll_timeout=0)

Create a Seldon Core deployment resource.

Parameters:

Name Type Description Default
deployment SeldonDeployment

the Seldon Core deployment resource to create

required
poll_timeout int

the maximum time to wait for the deployment to become available or to fail. If set to 0, the function will return immediately without checking the deployment status. If a timeout occurs and the deployment is still pending creation, it will be returned anyway and no exception will be raised.

0

Returns:

Type Description
SeldonDeployment

the created Seldon Core deployment resource with updated status.

Exceptions:

Type Description
SeldonDeploymentExistsError

if a deployment with the same name already exists.

SeldonDeploymentNotFoundError

if the newly created deployment resource cannot be found.

SeldonClientError

if an unknown error occurs during the creation of the deployment.

Source code in zenml/integrations/seldon/seldon_client.py
def create_deployment(
    self,
    deployment: SeldonDeployment,
    poll_timeout: int = 0,
) -> SeldonDeployment:
    """Create a Seldon Core deployment resource.

    Args:
        deployment: the Seldon Core deployment resource to create
        poll_timeout: the maximum time to wait for the deployment to become
            available or to fail. If set to 0, the function will return
            immediately without checking the deployment status. If a timeout
            occurs and the deployment is still pending creation, it will
            be returned anyway and no exception will be raised.

    Returns:
        the created Seldon Core deployment resource with updated status.

    Raises:
        SeldonDeploymentExistsError: if a deployment with the same name
            already exists.
        SeldonDeploymentNotFoundError: if the newly created deployment
            resource cannot be found.
        SeldonClientError: if an unknown error occurs during the creation of
            the deployment.
    """
    try:
        logger.debug(f"Creating SeldonDeployment resource: {deployment}")

        # mark the deployment as managed by ZenML, to differentiate
        # between deployments that are created by ZenML and those that
        # are not
        deployment.mark_as_managed_by_zenml()

        response = self._custom_objects_api.create_namespaced_custom_object(
            group="machinelearning.seldon.io",
            version="v1",
            namespace=self._namespace,
            plural="seldondeployments",
            body=deployment.dict(exclude_none=True),
            _request_timeout=poll_timeout or None,
        )
        logger.debug("Seldon Core API response: %s", response)
    except k8s_client.rest.ApiException as e:
        logger.error(
            "Exception when creating SeldonDeployment resource: %s", str(e)
        )
        if e.status == 409:
            raise SeldonDeploymentExistsError(
                f"A deployment with the name {deployment.name} "
                f"already exists in namespace {self._namespace}"
            )
        raise SeldonClientError(
            "Exception when creating SeldonDeployment resource"
        ) from e

    created_deployment = self.get_deployment(name=deployment.name)

    while poll_timeout > 0 and created_deployment.is_pending():
        time.sleep(5)
        poll_timeout -= 5
        created_deployment = self.get_deployment(name=deployment.name)

    return created_deployment
create_or_update_secret(self, name, secret)

Create or update a Kubernetes Secret resource with the information contained in a ZenML secret.

Parameters:

Name Type Description Default
name str

the name of the Secret resource to create.

required
secret BaseSecretSchema

a ZenML secret with key-values that should be stored in the Secret resource.

required

Exceptions:

Type Description
SeldonClientError

if an unknown error occurs during the creation of the secret.

Source code in zenml/integrations/seldon/seldon_client.py
def create_or_update_secret(
    self,
    name: str,
    secret: BaseSecretSchema,
) -> None:
    """Create or update a Kubernetes Secret resource with the information
    contained in a ZenML secret.

    Args:
        name: the name of the Secret resource to create.
        secret: a ZenML secret with key-values that should be
            stored in the Secret resource.

    Raises:
        SeldonClientError: if an unknown error occurs during the creation of
            the secret.
    """
    try:
        logger.debug(f"Creating Secret resource: {name}")

        secret_data = {
            k.upper(): base64.b64encode(str(v).encode("utf-8")).decode(
                "ascii"
            )
            for k, v in secret.content.items()
            if v is not None
        }

        secret = k8s_client.V1Secret(
            metadata=k8s_client.V1ObjectMeta(
                name=name,
                labels={"app": "zenml"},
            ),
            type="Opaque",
            data=secret_data,
        )

        try:
            # check if the secret is already present
            self._core_api.read_namespaced_secret(
                name=name,
                namespace=self._namespace,
            )
            # if we got this far, the secret is already present, update it
            # in place
            response = self._core_api.replace_namespaced_secret(
                name=name,
                namespace=self._namespace,
                body=secret,
            )
        except k8s_client.rest.ApiException as e:
            if e.status != 404:
                # if an error other than 404 is raised here, treat it
                # as an unexpected error
                raise
            response = self._core_api.create_namespaced_secret(
                namespace=self._namespace,
                body=secret,
            )
        logger.debug("Kubernetes API response: %s", response)
    except k8s_client.rest.ApiException as e:
        logger.error("Exception when creating Secret resource: %s", str(e))
        raise SeldonClientError(
            "Exception when creating Secret resource"
        ) from e
delete_deployment(self, name, force=False, poll_timeout=0)

Delete a Seldon Core deployment resource managed by ZenML.

Parameters:

Name Type Description Default
name str

the name of the Seldon Core deployment resource to delete.

required
force bool

if True, the deployment deletion will be forced (the graceful period will be set to zero).

False
poll_timeout int

the maximum time to wait for the deployment to be deleted. If set to 0, the function will return immediately without checking the deployment status. If a timeout occurs and the deployment still exists, this method will return and no exception will be raised.

0

Exceptions:

Type Description
SeldonDeploymentNotFoundError

if the deployment resource cannot be found or is not managed by ZenML.

SeldonClientError

if an unknown error occurs during the deployment removal.

Source code in zenml/integrations/seldon/seldon_client.py
def delete_deployment(
    self,
    name: str,
    force: bool = False,
    poll_timeout: int = 0,
) -> None:
    """Delete a Seldon Core deployment resource managed by ZenML.

    Args:
        name: the name of the Seldon Core deployment resource to delete.
        force: if True, the deployment deletion will be forced (the graceful
            period will be set to zero).
        poll_timeout: the maximum time to wait for the deployment to be
            deleted. If set to 0, the function will return immediately
            without checking the deployment status. If a timeout
            occurs and the deployment still exists, this method will
            return and no exception will be raised.

    Raises:
        SeldonDeploymentNotFoundError: if the deployment resource cannot be
            found or is not managed by ZenML.
        SeldonClientError: if an unknown error occurs during the deployment
            removal.
    """
    try:
        logger.debug(f"Deleting SeldonDeployment resource: {name}")

        # call `get_deployment` to check that the deployment exists
        # and is managed by ZenML. It will raise
        # a SeldonDeploymentNotFoundError otherwise
        self.get_deployment(name=name)

        response = self._custom_objects_api.delete_namespaced_custom_object(
            group="machinelearning.seldon.io",
            version="v1",
            namespace=self._namespace,
            plural="seldondeployments",
            name=name,
            _request_timeout=poll_timeout or None,
            grace_period_seconds=0 if force else None,
        )
        logger.debug("Seldon Core API response: %s", response)
    except k8s_client.rest.ApiException as e:
        logger.error(
            "Exception when deleting SeldonDeployment resource %s: %s",
            name,
            str(e),
        )
        raise SeldonClientError(
            f"Exception when deleting SeldonDeployment resource {name}"
        ) from e

    while poll_timeout > 0:
        try:
            self.get_deployment(name=name)
        except SeldonDeploymentNotFoundError:
            return
        time.sleep(5)
        poll_timeout -= 5
delete_secret(self, name)

Delete a Kubernetes Secret resource managed by ZenML.

Parameters:

Name Type Description Default
name str

the name of the Kubernetes Secret resource to delete.

required

Exceptions:

Type Description
SeldonClientError

if an unknown error occurs during the removal of the secret.

Source code in zenml/integrations/seldon/seldon_client.py
def delete_secret(
    self,
    name: str,
) -> None:
    """Delete a Kubernetes Secret resource managed by ZenML.

    Args:
        name: the name of the Kubernetes Secret resource to delete.
    Raises:
        SeldonClientError: if an unknown error occurs during the removal
            of the secret.
    """
    try:
        logger.debug(f"Deleting Secret resource: {name}")

        response = self._core_api.delete_namespaced_secret(
            name=name,
            namespace=self._namespace,
        )
        logger.debug("Kubernetes API response: %s", response)
    except k8s_client.rest.ApiException as e:
        if e.status == 404:
            # the secret is no longer present, nothing to do
            return
        logger.error(
            "Exception when deleting Secret resource %s: %s",
            name,
            str(e),
        )
        raise SeldonClientError(
            f"Exception when deleting Secret resource {name}"
        ) from e
find_deployments(self, name=None, labels=None, fields=None)

Find all ZenML managed Seldon Core deployment resources that match the given criteria.

Parameters:

Name Type Description Default
name Optional[str]

optional name of the deployment resource to find.

None
fields Optional[Dict[str, str]]

optional selector to restrict the list of returned Seldon deployments by their fields. Defaults to everything.

None
labels Optional[Dict[str, str]]

optional selector to restrict the list of returned Seldon deployments by their labels. Defaults to everything.

None

Returns:

Type Description
List[zenml.integrations.seldon.seldon_client.SeldonDeployment]

List of Seldon Core deployments that match the given criteria.

Exceptions:

Type Description
SeldonClientError

if an unknown error occurs while fetching the deployments.

Source code in zenml/integrations/seldon/seldon_client.py
def find_deployments(
    self,
    name: Optional[str] = None,
    labels: Optional[Dict[str, str]] = None,
    fields: Optional[Dict[str, str]] = None,
) -> List[SeldonDeployment]:
    """Find all ZenML managed Seldon Core deployment resources that match
    the given criteria.

    Args:
        name: optional name of the deployment resource to find.
        fields: optional selector to restrict the list of returned
            Seldon deployments by their fields. Defaults to everything.
        labels: optional selector to restrict the list of returned
            Seldon deployments by their labels. Defaults to everything.

    Returns:
        List of Seldon Core deployments that match the given criteria.

    Raises:
        SeldonClientError: if an unknown error occurs while fetching
            the deployments.
    """
    fields = fields or {}
    labels = labels or {}
    # always filter results to only include Seldon deployments managed
    # by ZenML
    labels["app"] = "zenml"
    if name:
        fields = {"metadata.name": name}
    field_selector = (
        ",".join(f"{k}={v}" for k, v in fields.items()) if fields else None
    )
    label_selector = (
        ",".join(f"{k}={v}" for k, v in labels.items()) if labels else None
    )
    try:

        logger.debug(
            f"Searching SeldonDeployment resources with label selector "
            f"'{labels or ''}' and field selector '{fields or ''}'"
        )
        response = self._custom_objects_api.list_namespaced_custom_object(
            group="machinelearning.seldon.io",
            version="v1",
            namespace=self._namespace,
            plural="seldondeployments",
            field_selector=field_selector,
            label_selector=label_selector,
        )
        logger.debug(
            "Seldon Core API returned %s items", len(response["items"])
        )
        deployments = []
        for item in response.get("items") or []:
            try:
                deployments.append(SeldonDeployment(**item))
            except ValidationError as e:
                logger.error(
                    "Invalid Seldon Core deployment resource: %s\n%s",
                    str(e),
                    str(item),
                )
        return deployments
    except k8s_client.rest.ApiException as e:
        logger.error(
            "Exception when searching SeldonDeployment resources with "
            "label selector '%s' and field selector '%s': %s",
            label_selector or "",
            field_selector or "",
        )
        raise SeldonClientError(
            f"Unexpected exception when searching SeldonDeployment "
            f"with labels '{labels or ''}' and field '{fields or ''}'"
        ) from e
get_deployment(self, name)

Get a ZenML managed Seldon Core deployment resource by name.

Parameters:

Name Type Description Default
name str

the name of the Seldon Core deployment resource to fetch.

required

Returns:

Type Description
SeldonDeployment

The Seldon Core deployment resource.

Exceptions:

Type Description
SeldonDeploymentNotFoundError

if the deployment resource cannot be found or is not managed by ZenML.

SeldonClientError

if an unknown error occurs while fetching the deployment.

Source code in zenml/integrations/seldon/seldon_client.py
def get_deployment(self, name: str) -> SeldonDeployment:
    """Get a ZenML managed Seldon Core deployment resource by name.

    Args:
        name: the name of the Seldon Core deployment resource to fetch.

    Returns:
        The Seldon Core deployment resource.

    Raises:
        SeldonDeploymentNotFoundError: if the deployment resource cannot
            be found or is not managed by ZenML.
        SeldonClientError: if an unknown error occurs while fetching
            the deployment.
    """

    try:
        logger.debug(f"Retrieving SeldonDeployment resource: {name}")

        response = self._custom_objects_api.get_namespaced_custom_object(
            group="machinelearning.seldon.io",
            version="v1",
            namespace=self._namespace,
            plural="seldondeployments",
            name=name,
        )
        logger.debug("Seldon Core API response: %s", response)
        try:
            deployment = SeldonDeployment(**response)
        except ValidationError as e:
            logger.error(
                "Invalid Seldon Core deployment resource: %s\n%s",
                str(e),
                str(response),
            )
            raise SeldonDeploymentNotFoundError(
                f"SeldonDeployment resource {name} could not be parsed"
            )

        # Only Seldon deployments managed by ZenML are returned
        if not deployment.is_managed_by_zenml():
            raise SeldonDeploymentNotFoundError(
                f"Seldon Deployment {name} is not managed by ZenML"
            )
        return deployment

    except k8s_client.rest.ApiException as e:
        if e.status == 404:
            raise SeldonDeploymentNotFoundError(
                f"SeldonDeployment resource not found: {name}"
            ) from e
        logger.error(
            "Exception when fetching SeldonDeployment resource %s: %s",
            name,
            str(e),
        )
        raise SeldonClientError(
            f"Unexpected exception when fetching SeldonDeployment "
            f"resource: {name}"
        ) from e
get_deployment_logs(self, name, follow=False, tail=None)

Get the logs of a Seldon Core deployment resource.

Parameters:

Name Type Description Default
name str

the name of the Seldon Core deployment to get logs for.

required
follow bool

if True, the logs will be streamed as they are written

False
tail Optional[int]

only retrieve the last NUM lines of log output.

None

Returns:

Type Description
Generator[str, bool, NoneType]

A generator that can be acccessed to get the service logs.

Exceptions:

Type Description
SeldonClientError

if an unknown error occurs while fetching the logs.

Source code in zenml/integrations/seldon/seldon_client.py
def get_deployment_logs(
    self,
    name: str,
    follow: bool = False,
    tail: Optional[int] = None,
) -> Generator[str, bool, None]:
    """Get the logs of a Seldon Core deployment resource.

    Args:
        name: the name of the Seldon Core deployment to get logs for.
        follow: if True, the logs will be streamed as they are written
        tail: only retrieve the last NUM lines of log output.

    Returns:
        A generator that can be acccessed to get the service logs.

    Raises:
        SeldonClientError: if an unknown error occurs while fetching
            the logs.
    """
    logger.debug(f"Retrieving logs for SeldonDeployment resource: {name}")
    try:
        response = self._core_api.list_namespaced_pod(
            namespace=self._namespace,
            label_selector=f"seldon-deployment-id={name}",
        )
        logger.debug("Kubernetes API response: %s", response)
        pods = response.items
        if not pods:
            raise SeldonClientError(
                f"The Seldon Core deployment {name} is not currently "
                f"running: no Kubernetes pods associated with it were found"
            )
        pod = pods[0]
        pod_name = pod.metadata.name

        containers = [c.name for c in pod.spec.containers]
        init_containers = [c.name for c in pod.spec.init_containers]
        container_statuses = {
            c.name: c.started or c.restart_count
            for c in pod.status.container_statuses
        }

        container = "default"
        if container not in containers:
            container = containers[0]
        # some containers might not be running yet and have no logs to show,
        # so we need to filter them out
        if not container_statuses[container]:
            container = init_containers[0]

        logger.info(
            f"Retrieving logs for pod: `{pod_name}` and container "
            f"`{container}` in namespace `{self._namespace}`"
        )
        response = self._core_api.read_namespaced_pod_log(
            name=pod_name,
            namespace=self._namespace,
            container=container,
            follow=follow,
            tail_lines=tail,
            _preload_content=False,
        )
    except k8s_client.rest.ApiException as e:
        logger.error(
            "Exception when fetching logs for SeldonDeployment resource "
            "%s: %s",
            name,
            str(e),
        )
        raise SeldonClientError(
            f"Unexpected exception when fetching logs for SeldonDeployment "
            f"resource: {name}"
        ) from e

    try:
        while True:
            line = response.readline().decode("utf-8").rstrip("\n")
            if not line:
                return
            stop = yield line
            if stop:
                return
    finally:
        response.release_conn()
sanitize_labels(labels) staticmethod

Update the label values to be valid Kubernetes labels.

See: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set

Source code in zenml/integrations/seldon/seldon_client.py
@staticmethod
def sanitize_labels(labels: Dict[str, str]) -> None:
    """Update the label values to be valid Kubernetes labels.

    See: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set
    """
    for key, value in labels.items():
        # Kubernetes labels must be alphanumeric, no longer than
        # 63 characters, and must begin and end with an alphanumeric
        # character ([a-z0-9A-Z])
        labels[key] = re.sub(r"[^0-9a-zA-Z-_\.]+", "_", value)[:63].strip(
            "-_."
        )
update_deployment(self, deployment, poll_timeout=0)

Update a Seldon Core deployment resource.

Parameters:

Name Type Description Default
deployment SeldonDeployment

the Seldon Core deployment resource to update

required
poll_timeout int

the maximum time to wait for the deployment to become available or to fail. If set to 0, the function will return immediately without checking the deployment status. If a timeout occurs and the deployment is still pending creation, it will be returned anyway and no exception will be raised.

0

Returns:

Type Description
SeldonDeployment

the updated Seldon Core deployment resource with updated status.

Exceptions:

Type Description
SeldonDeploymentNotFoundError

if deployment resource with the given name cannot be found.

SeldonClientError

if an unknown error occurs while updating the deployment.

Source code in zenml/integrations/seldon/seldon_client.py
def update_deployment(
    self,
    deployment: SeldonDeployment,
    poll_timeout: int = 0,
) -> SeldonDeployment:
    """Update a Seldon Core deployment resource.

    Args:
        deployment: the Seldon Core deployment resource to update
        poll_timeout: the maximum time to wait for the deployment to become
            available or to fail. If set to 0, the function will return
            immediately without checking the deployment status. If a timeout
            occurs and the deployment is still pending creation, it will
            be returned anyway and no exception will be raised.

    Returns:
        the updated Seldon Core deployment resource with updated status.

    Raises:
        SeldonDeploymentNotFoundError: if deployment resource with the given
            name cannot be found.
        SeldonClientError: if an unknown error occurs while updating the
            deployment.
    """
    try:
        logger.debug(
            f"Updating SeldonDeployment resource: {deployment.name}"
        )

        # mark the deployment as managed by ZenML, to differentiate
        # between deployments that are created by ZenML and those that
        # are not
        deployment.mark_as_managed_by_zenml()

        # call `get_deployment` to check that the deployment exists
        # and is managed by ZenML. It will raise
        # a SeldonDeploymentNotFoundError otherwise
        self.get_deployment(name=deployment.name)

        response = self._custom_objects_api.patch_namespaced_custom_object(
            group="machinelearning.seldon.io",
            version="v1",
            namespace=self._namespace,
            plural="seldondeployments",
            name=deployment.name,
            body=deployment.dict(exclude_none=True),
            _request_timeout=poll_timeout or None,
        )
        logger.debug("Seldon Core API response: %s", response)
    except k8s_client.rest.ApiException as e:
        logger.error(
            "Exception when updating SeldonDeployment resource: %s", str(e)
        )
        raise SeldonClientError(
            "Exception when creating SeldonDeployment resource"
        ) from e

    updated_deployment = self.get_deployment(name=deployment.name)

    while poll_timeout > 0 and updated_deployment.is_pending():
        time.sleep(5)
        poll_timeout -= 5
        updated_deployment = self.get_deployment(name=deployment.name)

    return updated_deployment
SeldonClientError (Exception)

Base exception class for all exceptions raised by the SeldonClient.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonClientError(Exception):
    """Base exception class for all exceptions raised by the SeldonClient."""
SeldonClientTimeout (SeldonClientError)

Raised when the Seldon client timed out while waiting for a resource to reach the expected status.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonClientTimeout(SeldonClientError):
    """Raised when the Seldon client timed out while waiting for a resource
    to reach the expected status."""
SeldonDeployment (BaseModel) pydantic-model

A Seldon Core deployment CRD.

This is a Pydantic representation of some of the fields in the Seldon Core CRD (documented here: https://docs.seldon.io/projects/seldon-core/en/latest/reference/seldon-deployment.html).

Note that not all fields are represented, only those that are relevant to the ZenML integration. The fields that are not represented are silently ignored when the Seldon Deployment is created or updated from an external SeldonDeployment CRD representation.

Attributes:

Name Type Description
kind str

Kubernetes kind field.

apiVersion str

Kubernetes apiVersion field.

metadata SeldonDeploymentMetadata

Kubernetes metadata field.

spec SeldonDeploymentSpec

Seldon Deployment spec entry.

status Optional[zenml.integrations.seldon.seldon_client.SeldonDeploymentStatus]

Seldon Deployment status.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeployment(BaseModel):
    """A Seldon Core deployment CRD.

    This is a Pydantic representation of some of the fields in the Seldon Core
    CRD (documented here:
    https://docs.seldon.io/projects/seldon-core/en/latest/reference/seldon-deployment.html).

    Note that not all fields are represented, only those that are relevant to
    the ZenML integration. The fields that are not represented are silently
    ignored when the Seldon Deployment is created or updated from an external
    SeldonDeployment CRD representation.

    Attributes:
        kind: Kubernetes kind field.
        apiVersion: Kubernetes apiVersion field.
        metadata: Kubernetes metadata field.
        spec: Seldon Deployment spec entry.
        status: Seldon Deployment status.
    """

    kind: str = Field(SELDON_DEPLOYMENT_KIND, const=True)
    apiVersion: str = Field(SELDON_DEPLOYMENT_API_VERSION, const=True)
    metadata: SeldonDeploymentMetadata = Field(
        default_factory=SeldonDeploymentMetadata
    )
    spec: SeldonDeploymentSpec = Field(default_factory=SeldonDeploymentSpec)
    status: Optional[SeldonDeploymentStatus]

    def __str__(self) -> str:
        return json.dumps(self.dict(exclude_none=True), indent=4)

    @classmethod
    def build(
        cls,
        name: Optional[str] = None,
        model_uri: Optional[str] = None,
        model_name: Optional[str] = None,
        implementation: Optional[str] = None,
        secret_name: Optional[str] = None,
        labels: Optional[Dict[str, str]] = None,
        annotations: Optional[Dict[str, str]] = None,
    ) -> "SeldonDeployment":
        """Build a basic Seldon Deployment object.

        Args:
            name: The name of the Seldon Deployment. If not explicitly passed,
                a unique name is autogenerated.
            model_uri: The URI of the model.
            model_name: The name of the model.
            implementation: The implementation of the model.
            secret_name: The name of the Kubernetes secret containing
                environment variable values (e.g. with credentials for the
                artifact store) to use with the deployment service.
            labels: A dictionary of labels to apply to the Seldon Deployment.
            annotations: A dictionary of annotations to apply to the Seldon
                Deployment.

        Returns:
            A minimal SeldonDeployment object built from the provided
            parameters.
        """

        if not name:
            name = f"zenml-{time.time()}"

        if labels is None:
            labels = {}
        if annotations is None:
            annotations = {}

        return SeldonDeployment(
            metadata=SeldonDeploymentMetadata(
                name=name, labels=labels, annotations=annotations
            ),
            spec=SeldonDeploymentSpec(
                name=name,
                predictors=[
                    SeldonDeploymentPredictor(
                        name=model_name or "",
                        graph=SeldonDeploymentPredictiveUnit(
                            name="default",
                            type=SeldonDeploymentPredictiveUnitType.MODEL,
                            modelUri=model_uri or "",
                            implementation=implementation or "",
                            envSecretRefName=secret_name,
                        ),
                    )
                ],
            ),
        )

    def is_managed_by_zenml(self) -> bool:
        """Checks if this Seldon Deployment is managed by ZenML.

        The convention used to differentiate between SeldonDeployment instances
        that are managed by ZenML and those that are not is to set the `app`
        label value to `zenml`.

        Returns:
            True if the Seldon Deployment is managed by ZenML, False
            otherwise.
        """
        return self.metadata.labels.get("app") == "zenml"

    def mark_as_managed_by_zenml(self) -> None:
        """Marks this Seldon Deployment as managed by ZenML.

        The convention used to differentiate between SeldonDeployment instances
        that are managed by ZenML and those that are not is to set the `app`
        label value to `zenml`.
        """
        self.metadata.labels["app"] = "zenml"

    @property
    def name(self) -> str:
        """Returns the name of this Seldon Deployment.

        This is just a shortcut for `self.metadata.name`.

        Returns:
            The name of this Seldon Deployment.
        """
        return self.metadata.name

    @property
    def state(self) -> SeldonDeploymentStatusState:
        """The state of the Seldon Deployment.

        Returns:
            The state of the Seldon Deployment.
        """
        if not self.status:
            return SeldonDeploymentStatusState.UNKNOWN
        return self.status.state

    def is_pending(self) -> bool:
        """Checks if the Seldon Deployment is in a pending state.

        Returns:
            True if the Seldon Deployment is pending, False otherwise.
        """
        return self.state == SeldonDeploymentStatusState.CREATING

    def is_available(self) -> bool:
        """Checks if the Seldon Deployment is in an available state.

        Returns:
            True if the Seldon Deployment is available, False otherwise.
        """
        return self.state == SeldonDeploymentStatusState.AVAILABLE

    def is_failed(self) -> bool:
        """Checks if the Seldon Deployment is in a failed state.

        Returns:
            True if the Seldon Deployment is failed, False otherwise.
        """
        return self.state == SeldonDeploymentStatusState.FAILED

    def get_error(self) -> Optional[str]:
        """Get a message describing the error, if in an error state.

        Returns:
            A message describing the error, if in an error state, otherwise
            None.
        """
        if self.status and self.is_failed():
            return self.status.description
        return None

    def get_pending_message(self) -> Optional[str]:
        """Get a message describing the pending conditions of the Seldon
        Deployment.

        Returns:
            A message describing the pending condition of the Seldon
            Deployment, or None, if no conditions are pending.
        """
        if not self.status or not self.status.conditions:
            return None
        ready_condition_message = [
            c.message
            for c in self.status.conditions
            if c.type == "Ready" and not c.status
        ]
        if not ready_condition_message:
            return None
        return ready_condition_message[0]

    class Config:
        """Pydantic configuration class."""

        # validate attribute assignments
        validate_assignment = True
        # Ignore extra attributes from the CRD that are not reflected here
        extra = "ignore"
name: str property readonly

Returns the name of this Seldon Deployment.

This is just a shortcut for self.metadata.name.

Returns:

Type Description
str

The name of this Seldon Deployment.

state: SeldonDeploymentStatusState property readonly

The state of the Seldon Deployment.

Returns:

Type Description
SeldonDeploymentStatusState

The state of the Seldon Deployment.

Config

Pydantic configuration class.

Source code in zenml/integrations/seldon/seldon_client.py
class Config:
    """Pydantic configuration class."""

    # validate attribute assignments
    validate_assignment = True
    # Ignore extra attributes from the CRD that are not reflected here
    extra = "ignore"
__str__(self) special

Return str(self).

Source code in zenml/integrations/seldon/seldon_client.py
def __str__(self) -> str:
    return json.dumps(self.dict(exclude_none=True), indent=4)
build(name=None, model_uri=None, model_name=None, implementation=None, secret_name=None, labels=None, annotations=None) classmethod

Build a basic Seldon Deployment object.

Parameters:

Name Type Description Default
name Optional[str]

The name of the Seldon Deployment. If not explicitly passed, a unique name is autogenerated.

None
model_uri Optional[str]

The URI of the model.

None
model_name Optional[str]

The name of the model.

None
implementation Optional[str]

The implementation of the model.

None
secret_name Optional[str]

The name of the Kubernetes secret containing environment variable values (e.g. with credentials for the artifact store) to use with the deployment service.

None
labels Optional[Dict[str, str]]

A dictionary of labels to apply to the Seldon Deployment.

None
annotations Optional[Dict[str, str]]

A dictionary of annotations to apply to the Seldon Deployment.

None

Returns:

Type Description
SeldonDeployment

A minimal SeldonDeployment object built from the provided parameters.

Source code in zenml/integrations/seldon/seldon_client.py
@classmethod
def build(
    cls,
    name: Optional[str] = None,
    model_uri: Optional[str] = None,
    model_name: Optional[str] = None,
    implementation: Optional[str] = None,
    secret_name: Optional[str] = None,
    labels: Optional[Dict[str, str]] = None,
    annotations: Optional[Dict[str, str]] = None,
) -> "SeldonDeployment":
    """Build a basic Seldon Deployment object.

    Args:
        name: The name of the Seldon Deployment. If not explicitly passed,
            a unique name is autogenerated.
        model_uri: The URI of the model.
        model_name: The name of the model.
        implementation: The implementation of the model.
        secret_name: The name of the Kubernetes secret containing
            environment variable values (e.g. with credentials for the
            artifact store) to use with the deployment service.
        labels: A dictionary of labels to apply to the Seldon Deployment.
        annotations: A dictionary of annotations to apply to the Seldon
            Deployment.

    Returns:
        A minimal SeldonDeployment object built from the provided
        parameters.
    """

    if not name:
        name = f"zenml-{time.time()}"

    if labels is None:
        labels = {}
    if annotations is None:
        annotations = {}

    return SeldonDeployment(
        metadata=SeldonDeploymentMetadata(
            name=name, labels=labels, annotations=annotations
        ),
        spec=SeldonDeploymentSpec(
            name=name,
            predictors=[
                SeldonDeploymentPredictor(
                    name=model_name or "",
                    graph=SeldonDeploymentPredictiveUnit(
                        name="default",
                        type=SeldonDeploymentPredictiveUnitType.MODEL,
                        modelUri=model_uri or "",
                        implementation=implementation or "",
                        envSecretRefName=secret_name,
                    ),
                )
            ],
        ),
    )
get_error(self)

Get a message describing the error, if in an error state.

Returns:

Type Description
Optional[str]

A message describing the error, if in an error state, otherwise None.

Source code in zenml/integrations/seldon/seldon_client.py
def get_error(self) -> Optional[str]:
    """Get a message describing the error, if in an error state.

    Returns:
        A message describing the error, if in an error state, otherwise
        None.
    """
    if self.status and self.is_failed():
        return self.status.description
    return None
get_pending_message(self)

Get a message describing the pending conditions of the Seldon Deployment.

Returns:

Type Description
Optional[str]

A message describing the pending condition of the Seldon Deployment, or None, if no conditions are pending.

Source code in zenml/integrations/seldon/seldon_client.py
def get_pending_message(self) -> Optional[str]:
    """Get a message describing the pending conditions of the Seldon
    Deployment.

    Returns:
        A message describing the pending condition of the Seldon
        Deployment, or None, if no conditions are pending.
    """
    if not self.status or not self.status.conditions:
        return None
    ready_condition_message = [
        c.message
        for c in self.status.conditions
        if c.type == "Ready" and not c.status
    ]
    if not ready_condition_message:
        return None
    return ready_condition_message[0]
is_available(self)

Checks if the Seldon Deployment is in an available state.

Returns:

Type Description
bool

True if the Seldon Deployment is available, False otherwise.

Source code in zenml/integrations/seldon/seldon_client.py
def is_available(self) -> bool:
    """Checks if the Seldon Deployment is in an available state.

    Returns:
        True if the Seldon Deployment is available, False otherwise.
    """
    return self.state == SeldonDeploymentStatusState.AVAILABLE
is_failed(self)

Checks if the Seldon Deployment is in a failed state.

Returns:

Type Description
bool

True if the Seldon Deployment is failed, False otherwise.

Source code in zenml/integrations/seldon/seldon_client.py
def is_failed(self) -> bool:
    """Checks if the Seldon Deployment is in a failed state.

    Returns:
        True if the Seldon Deployment is failed, False otherwise.
    """
    return self.state == SeldonDeploymentStatusState.FAILED
is_managed_by_zenml(self)

Checks if this Seldon Deployment is managed by ZenML.

The convention used to differentiate between SeldonDeployment instances that are managed by ZenML and those that are not is to set the app label value to zenml.

Returns:

Type Description
bool

True if the Seldon Deployment is managed by ZenML, False otherwise.

Source code in zenml/integrations/seldon/seldon_client.py
def is_managed_by_zenml(self) -> bool:
    """Checks if this Seldon Deployment is managed by ZenML.

    The convention used to differentiate between SeldonDeployment instances
    that are managed by ZenML and those that are not is to set the `app`
    label value to `zenml`.

    Returns:
        True if the Seldon Deployment is managed by ZenML, False
        otherwise.
    """
    return self.metadata.labels.get("app") == "zenml"
is_pending(self)

Checks if the Seldon Deployment is in a pending state.

Returns:

Type Description
bool

True if the Seldon Deployment is pending, False otherwise.

Source code in zenml/integrations/seldon/seldon_client.py
def is_pending(self) -> bool:
    """Checks if the Seldon Deployment is in a pending state.

    Returns:
        True if the Seldon Deployment is pending, False otherwise.
    """
    return self.state == SeldonDeploymentStatusState.CREATING
mark_as_managed_by_zenml(self)

Marks this Seldon Deployment as managed by ZenML.

The convention used to differentiate between SeldonDeployment instances that are managed by ZenML and those that are not is to set the app label value to zenml.

Source code in zenml/integrations/seldon/seldon_client.py
def mark_as_managed_by_zenml(self) -> None:
    """Marks this Seldon Deployment as managed by ZenML.

    The convention used to differentiate between SeldonDeployment instances
    that are managed by ZenML and those that are not is to set the `app`
    label value to `zenml`.
    """
    self.metadata.labels["app"] = "zenml"
SeldonDeploymentExistsError (SeldonClientError)

Raised when a SeldonDeployment resource cannot be created because a resource with the same name already exists.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentExistsError(SeldonClientError):
    """Raised when a SeldonDeployment resource cannot be created because a
    resource with the same name already exists."""
SeldonDeploymentMetadata (BaseModel) pydantic-model

Metadata for a Seldon Deployment.

Attributes:

Name Type Description
name str

the name of the Seldon Deployment.

labels Dict[str, str]

Kubernetes labels for the Seldon Deployment.

annotations Dict[str, str]

Kubernetes annotations for the Seldon Deployment.

creationTimestamp Optional[str]

the creation timestamp of the Seldon Deployment.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentMetadata(BaseModel):
    """Metadata for a Seldon Deployment.

    Attributes:
        name: the name of the Seldon Deployment.
        labels: Kubernetes labels for the Seldon Deployment.
        annotations: Kubernetes annotations for the Seldon Deployment.
        creationTimestamp: the creation timestamp of the Seldon Deployment.
    """

    name: str
    labels: Dict[str, str] = Field(default_factory=dict)
    annotations: Dict[str, str] = Field(default_factory=dict)
    creationTimestamp: Optional[str]

    class Config:
        """Pydantic configuration class."""

        # validate attribute assignments
        validate_assignment = True
        # Ignore extra attributes from the CRD that are not reflected here
        extra = "ignore"
Config

Pydantic configuration class.

Source code in zenml/integrations/seldon/seldon_client.py
class Config:
    """Pydantic configuration class."""

    # validate attribute assignments
    validate_assignment = True
    # Ignore extra attributes from the CRD that are not reflected here
    extra = "ignore"
SeldonDeploymentNotFoundError (SeldonClientError)

Raised when a particular SeldonDeployment resource is not found or is not managed by ZenML.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentNotFoundError(SeldonClientError):
    """Raised when a particular SeldonDeployment resource is not found or is
    not managed by ZenML."""
SeldonDeploymentPredictiveUnit (BaseModel) pydantic-model

Seldon Deployment predictive unit.

Attributes:

Name Type Description
name str

the name of the predictive unit.

type Optional[zenml.integrations.seldon.seldon_client.SeldonDeploymentPredictiveUnitType]

predictive unit type.

implementation Optional[str]

the Seldon Core implementation used to serve the model.

modelUri Optional[str]

URI of the model (or models) to serve.

serviceAccountName Optional[str]

the name of the service account to associate with the predictive unit container.

envSecretRefName Optional[str]

the name of a Kubernetes secret that contains environment variables (e.g. credentials) to be configured for the predictive unit container.

children List[zenml.integrations.seldon.seldon_client.SeldonDeploymentPredictiveUnit]

a list of child predictive units that together make up the model serving graph.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentPredictiveUnit(BaseModel):
    """Seldon Deployment predictive unit.

    Attributes:
        name: the name of the predictive unit.
        type: predictive unit type.
        implementation: the Seldon Core implementation used to serve the model.
        modelUri: URI of the model (or models) to serve.
        serviceAccountName: the name of the service account to associate with
            the predictive unit container.
        envSecretRefName: the name of a Kubernetes secret that contains
            environment variables (e.g. credentials) to be configured for the
            predictive unit container.
        children: a list of child predictive units that together make up the
            model serving graph.
    """

    name: str
    type: Optional[
        SeldonDeploymentPredictiveUnitType
    ] = SeldonDeploymentPredictiveUnitType.MODEL
    implementation: Optional[str]
    modelUri: Optional[str]
    serviceAccountName: Optional[str]
    envSecretRefName: Optional[str]
    children: List["SeldonDeploymentPredictiveUnit"] = Field(
        default_factory=list
    )

    class Config:
        """Pydantic configuration class."""

        # validate attribute assignments
        validate_assignment = True
        # Ignore extra attributes from the CRD that are not reflected here
        extra = "ignore"
Config

Pydantic configuration class.

Source code in zenml/integrations/seldon/seldon_client.py
class Config:
    """Pydantic configuration class."""

    # validate attribute assignments
    validate_assignment = True
    # Ignore extra attributes from the CRD that are not reflected here
    extra = "ignore"
SeldonDeploymentPredictiveUnitType (StrEnum)

Predictive unit types for a Seldon Deployment.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentPredictiveUnitType(StrEnum):
    """Predictive unit types for a Seldon Deployment."""

    UNKNOWN_TYPE = "UNKNOWN_TYPE"
    ROUTER = "ROUTER"
    COMBINER = "COMBINER"
    MODEL = "MODEL"
    TRANSFORMER = "TRANSFORMER"
    OUTPUT_TRANSFORMER = "OUTPUT_TRANSFORMER"
SeldonDeploymentPredictor (BaseModel) pydantic-model

Seldon Deployment predictor.

Attributes:

Name Type Description
name str

the name of the predictor.

replicas int

the number of pod replicas for the predictor.

graph SeldonDeploymentPredictiveUnit

the serving graph composed of one or more predictive units.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentPredictor(BaseModel):
    """Seldon Deployment predictor.

    Attributes:
        name: the name of the predictor.
        replicas: the number of pod replicas for the predictor.
        graph: the serving graph composed of one or more predictive units.
    """

    name: str
    replicas: int = 1
    graph: SeldonDeploymentPredictiveUnit = Field(
        default_factory=SeldonDeploymentPredictiveUnit
    )

    class Config:
        """Pydantic configuration class."""

        # validate attribute assignments
        validate_assignment = True
        # Ignore extra attributes from the CRD that are not reflected here
        extra = "ignore"
Config

Pydantic configuration class.

Source code in zenml/integrations/seldon/seldon_client.py
class Config:
    """Pydantic configuration class."""

    # validate attribute assignments
    validate_assignment = True
    # Ignore extra attributes from the CRD that are not reflected here
    extra = "ignore"
SeldonDeploymentSpec (BaseModel) pydantic-model

Spec for a Seldon Deployment.

Attributes:

Name Type Description
name str

the name of the Seldon Deployment.

protocol Optional[str]

the API protocol used for the Seldon Deployment.

predictors List[zenml.integrations.seldon.seldon_client.SeldonDeploymentPredictor]

a list of predictors that make up the serving graph.

replicas int

the default number of pod replicas used for the predictors.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentSpec(BaseModel):
    """Spec for a Seldon Deployment.

    Attributes:
        name: the name of the Seldon Deployment.
        protocol: the API protocol used for the Seldon Deployment.
        predictors: a list of predictors that make up the serving graph.
        replicas: the default number of pod replicas used for the predictors.
    """

    name: str
    protocol: Optional[str]
    predictors: List[SeldonDeploymentPredictor]
    replicas: int = 1

    class Config:
        """Pydantic configuration class."""

        # validate attribute assignments
        validate_assignment = True
        # Ignore extra attributes from the CRD that are not reflected here
        extra = "ignore"
Config

Pydantic configuration class.

Source code in zenml/integrations/seldon/seldon_client.py
class Config:
    """Pydantic configuration class."""

    # validate attribute assignments
    validate_assignment = True
    # Ignore extra attributes from the CRD that are not reflected here
    extra = "ignore"
SeldonDeploymentStatus (BaseModel) pydantic-model

The status of a Seldon Deployment.

Attributes:

Name Type Description
state SeldonDeploymentStatusState

the current state of the Seldon Deployment.

description Optional[str]

a human-readable description of the current state.

replicas Optional[int]

the current number of running pod replicas

address Optional[zenml.integrations.seldon.seldon_client.SeldonDeploymentStatusAddress]

the address where the Seldon Deployment API can be accessed.

conditions List[zenml.integrations.seldon.seldon_client.SeldonDeploymentStatusCondition]

the list of Kubernetes conditions for the Seldon Deployment.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentStatus(BaseModel):
    """The status of a Seldon Deployment.

    Attributes:
        state: the current state of the Seldon Deployment.
        description: a human-readable description of the current state.
        replicas: the current number of running pod replicas
        address: the address where the Seldon Deployment API can be accessed.
        conditions: the list of Kubernetes conditions for the Seldon Deployment.
    """

    state: SeldonDeploymentStatusState = SeldonDeploymentStatusState.UNKNOWN
    description: Optional[str]
    replicas: Optional[int]
    address: Optional[SeldonDeploymentStatusAddress]
    conditions: List[SeldonDeploymentStatusCondition]

    class Config:
        """Pydantic configuration class."""

        # validate attribute assignments
        validate_assignment = True
        # Ignore extra attributes from the CRD that are not reflected here
        extra = "ignore"
Config

Pydantic configuration class.

Source code in zenml/integrations/seldon/seldon_client.py
class Config:
    """Pydantic configuration class."""

    # validate attribute assignments
    validate_assignment = True
    # Ignore extra attributes from the CRD that are not reflected here
    extra = "ignore"
SeldonDeploymentStatusAddress (BaseModel) pydantic-model

The status address for a Seldon Deployment.

Attributes:

Name Type Description
url str

the URL where the Seldon Deployment API can be accessed internally.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentStatusAddress(BaseModel):
    """The status address for a Seldon Deployment.

    Attributes:
        url: the URL where the Seldon Deployment API can be accessed internally.
    """

    url: str
SeldonDeploymentStatusCondition (BaseModel) pydantic-model

The Kubernetes status condition entry for a Seldon Deployment.

Attributes:

Name Type Description
type str

Type of runtime condition.

status bool

Status of the condition.

reason Optional[str]

Brief CamelCase string containing reason for the condition's last transition.

message Optional[str]

Human-readable message indicating details about last transition.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentStatusCondition(BaseModel):
    """The Kubernetes status condition entry for a Seldon Deployment.

    Attributes:

        type: Type of runtime condition.
        status: Status of the condition.
        reason: Brief CamelCase string containing reason for the condition's
            last transition.
        message: Human-readable message indicating details about last
            transition.
    """

    type: str
    status: bool
    reason: Optional[str]
    message: Optional[str]
SeldonDeploymentStatusState (StrEnum)

Possible state values for a Seldon Deployment.

Source code in zenml/integrations/seldon/seldon_client.py
class SeldonDeploymentStatusState(StrEnum):
    """Possible state values for a Seldon Deployment."""

    UNKNOWN = "Unknown"
    AVAILABLE = "Available"
    CREATING = "Creating"
    FAILED = "Failed"

services special

seldon_deployment
SeldonDeploymentConfig (ServiceConfig) pydantic-model

Seldon Core deployment service configuration.

Attributes:

Name Type Description
model_uri str

URI of the model (or models) to serve.

model_name str

the name of the model. Multiple versions of the same model should use the same model name.

implementation str

the Seldon Core implementation used to serve the model.

replicas int

number of replicas to use for the prediction service.

secret_name Optional[str]

the name of a Kubernetes secret containing additional configuration parameters for the Seldon Core deployment (e.g. credentials to access the Artifact Store).

model_metadata Dict[str, Any]

optional model metadata information (see https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/metadata.html).

extra_args Dict[str, Any]

additional arguments to pass to the Seldon Core deployment resource configuration.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
class SeldonDeploymentConfig(ServiceConfig):
    """Seldon Core deployment service configuration.

    Attributes:
        model_uri: URI of the model (or models) to serve.
        model_name: the name of the model. Multiple versions of the same model
            should use the same model name.
        implementation: the Seldon Core implementation used to serve the model.
        replicas: number of replicas to use for the prediction service.
        secret_name: the name of a Kubernetes secret containing additional
            configuration parameters for the Seldon Core deployment (e.g.
            credentials to access the Artifact Store).
        model_metadata: optional model metadata information (see
            https://docs.seldon.io/projects/seldon-core/en/latest/reference/apis/metadata.html).
        extra_args: additional arguments to pass to the Seldon Core deployment
            resource configuration.
    """

    model_uri: str = ""
    model_name: str = "default"
    # TODO [ENG-775]: have an enum of all supported Seldon Core implementations
    implementation: str
    replicas: int = 1
    secret_name: Optional[str]
    model_metadata: Dict[str, Any] = Field(default_factory=dict)
    extra_args: Dict[str, Any] = Field(default_factory=dict)

    def get_seldon_deployment_labels(self) -> Dict[str, str]:
        """Generate the labels for the Seldon Core deployment from the
        service configuration.

        These labels are attached to the Seldon Core deployment resource
        and may be used as label selectors in lookup operations.

        Returns:
            The labels for the Seldon Core deployment.
        """
        labels = {}
        if self.pipeline_name:
            labels["zenml.pipeline_name"] = self.pipeline_name
        if self.pipeline_run_id:
            labels["zenml.pipeline_run_id"] = self.pipeline_run_id
        if self.pipeline_step_name:
            labels["zenml.pipeline_step_name"] = self.pipeline_step_name
        if self.model_name:
            labels["zenml.model_name"] = self.model_name
        if self.model_uri:
            labels["zenml.model_uri"] = self.model_uri
        if self.implementation:
            labels["zenml.model_type"] = self.implementation
        SeldonClient.sanitize_labels(labels)
        return labels

    def get_seldon_deployment_annotations(self) -> Dict[str, str]:
        """Generate the annotations for the Seldon Core deployment from the
        service configuration.

        The annotations are used to store additional information about the
        Seldon Core service that is associated with the deployment that is
        not available in the labels. One annotation particularly important
        is the serialized Service configuration itself, which is used to
        recreate the service configuration from a remote Seldon deployment.

        Returns:
            The annotations for the Seldon Core deployment.
        """
        annotations = {
            "zenml.service_config": self.json(),
            "zenml.version": __version__,
        }
        return annotations

    @classmethod
    def create_from_deployment(
        cls, deployment: SeldonDeployment
    ) -> "SeldonDeploymentConfig":
        """Recreate the configuration of a Seldon Core Service from a deployed instance.

        Args:
            deployment: the Seldon Core deployment resource.

        Returns:
            The Seldon Core service configuration corresponding to the given
            Seldon Core deployment resource.

        Raises:
            ValueError: if the given deployment resource does not contain
                the expected annotations or it contains an invalid or
                incompatible Seldon Core service configuration.
        """
        config_data = deployment.metadata.annotations.get(
            "zenml.service_config"
        )
        if not config_data:
            raise ValueError(
                f"The given deployment resource does not contain a "
                f"'zenml.service_config' annotation: {deployment}"
            )
        try:
            service_config = cls.parse_raw(config_data)
        except ValidationError as e:
            raise ValueError(
                f"The loaded Seldon Core deployment resource contains an "
                f"invalid or incompatible Seldon Core service configuration: "
                f"{config_data}"
            ) from e
        return service_config
create_from_deployment(deployment) classmethod

Recreate the configuration of a Seldon Core Service from a deployed instance.

Parameters:

Name Type Description Default
deployment SeldonDeployment

the Seldon Core deployment resource.

required

Returns:

Type Description
SeldonDeploymentConfig

The Seldon Core service configuration corresponding to the given Seldon Core deployment resource.

Exceptions:

Type Description
ValueError

if the given deployment resource does not contain the expected annotations or it contains an invalid or incompatible Seldon Core service configuration.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
@classmethod
def create_from_deployment(
    cls, deployment: SeldonDeployment
) -> "SeldonDeploymentConfig":
    """Recreate the configuration of a Seldon Core Service from a deployed instance.

    Args:
        deployment: the Seldon Core deployment resource.

    Returns:
        The Seldon Core service configuration corresponding to the given
        Seldon Core deployment resource.

    Raises:
        ValueError: if the given deployment resource does not contain
            the expected annotations or it contains an invalid or
            incompatible Seldon Core service configuration.
    """
    config_data = deployment.metadata.annotations.get(
        "zenml.service_config"
    )
    if not config_data:
        raise ValueError(
            f"The given deployment resource does not contain a "
            f"'zenml.service_config' annotation: {deployment}"
        )
    try:
        service_config = cls.parse_raw(config_data)
    except ValidationError as e:
        raise ValueError(
            f"The loaded Seldon Core deployment resource contains an "
            f"invalid or incompatible Seldon Core service configuration: "
            f"{config_data}"
        ) from e
    return service_config
get_seldon_deployment_annotations(self)

Generate the annotations for the Seldon Core deployment from the service configuration.

The annotations are used to store additional information about the Seldon Core service that is associated with the deployment that is not available in the labels. One annotation particularly important is the serialized Service configuration itself, which is used to recreate the service configuration from a remote Seldon deployment.

Returns:

Type Description
Dict[str, str]

The annotations for the Seldon Core deployment.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
def get_seldon_deployment_annotations(self) -> Dict[str, str]:
    """Generate the annotations for the Seldon Core deployment from the
    service configuration.

    The annotations are used to store additional information about the
    Seldon Core service that is associated with the deployment that is
    not available in the labels. One annotation particularly important
    is the serialized Service configuration itself, which is used to
    recreate the service configuration from a remote Seldon deployment.

    Returns:
        The annotations for the Seldon Core deployment.
    """
    annotations = {
        "zenml.service_config": self.json(),
        "zenml.version": __version__,
    }
    return annotations
get_seldon_deployment_labels(self)

Generate the labels for the Seldon Core deployment from the service configuration.

These labels are attached to the Seldon Core deployment resource and may be used as label selectors in lookup operations.

Returns:

Type Description
Dict[str, str]

The labels for the Seldon Core deployment.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
def get_seldon_deployment_labels(self) -> Dict[str, str]:
    """Generate the labels for the Seldon Core deployment from the
    service configuration.

    These labels are attached to the Seldon Core deployment resource
    and may be used as label selectors in lookup operations.

    Returns:
        The labels for the Seldon Core deployment.
    """
    labels = {}
    if self.pipeline_name:
        labels["zenml.pipeline_name"] = self.pipeline_name
    if self.pipeline_run_id:
        labels["zenml.pipeline_run_id"] = self.pipeline_run_id
    if self.pipeline_step_name:
        labels["zenml.pipeline_step_name"] = self.pipeline_step_name
    if self.model_name:
        labels["zenml.model_name"] = self.model_name
    if self.model_uri:
        labels["zenml.model_uri"] = self.model_uri
    if self.implementation:
        labels["zenml.model_type"] = self.implementation
    SeldonClient.sanitize_labels(labels)
    return labels
SeldonDeploymentService (BaseService) pydantic-model

A service that represents a Seldon Core deployment server.

Attributes:

Name Type Description
config SeldonDeploymentConfig

service configuration.

status SeldonDeploymentServiceStatus

service status.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
class SeldonDeploymentService(BaseService):
    """A service that represents a Seldon Core deployment server.


    Attributes:
        config: service configuration.
        status: service status.
    """

    SERVICE_TYPE = ServiceType(
        name="seldon-deployment",
        type="model-serving",
        flavor="seldon",
        description="Seldon Core prediction service",
    )

    config: SeldonDeploymentConfig = Field(
        default_factory=SeldonDeploymentConfig
    )
    status: SeldonDeploymentServiceStatus = Field(
        default_factory=SeldonDeploymentServiceStatus
    )

    def _get_client(self) -> SeldonClient:
        """Get the Seldon Core client from the active Seldon Core model deployer.

        Returns:
            The Seldon Core client.
        """
        from zenml.integrations.seldon.model_deployers.seldon_model_deployer import (
            SeldonModelDeployer,
        )

        model_deployer = SeldonModelDeployer.get_active_model_deployer()
        return model_deployer.seldon_client

    def check_status(self) -> Tuple[ServiceState, str]:
        """Check the the current operational state of the Seldon Core
        deployment.

        Returns:
            The operational state of the Seldon Core deployment and a message
            providing additional information about that state (e.g. a
            description of the error, if one is encountered).
        """
        client = self._get_client()
        name = self.seldon_deployment_name
        try:
            deployment = client.get_deployment(name=name)
        except SeldonDeploymentNotFoundError:
            return (ServiceState.INACTIVE, "")

        if deployment.is_available():
            return (
                ServiceState.ACTIVE,
                f"Seldon Core deployment '{name}' is available",
            )

        if deployment.is_failed():
            return (
                ServiceState.ERROR,
                f"Seldon Core deployment '{name}' failed: "
                f"{deployment.get_error()}",
            )

        pending_message = deployment.get_pending_message() or ""
        return (
            ServiceState.PENDING_STARTUP,
            "Seldon Core deployment is being created: " + pending_message,
        )

    @property
    def seldon_deployment_name(self) -> str:
        """Get the name of the Seldon Core deployment that uniquely
        corresponds to this service instance

        Returns:
            The name of the Seldon Core deployment.
        """
        return f"zenml-{str(self.uuid)}"

    def _get_seldon_deployment_labels(self) -> Dict[str, str]:
        """Generate the labels for the Seldon Core deployment from the
        service configuration.

        Returns:
            The labels for the Seldon Core deployment.
        """
        labels = self.config.get_seldon_deployment_labels()
        labels["zenml.service_uuid"] = str(self.uuid)
        SeldonClient.sanitize_labels(labels)
        return labels

    @classmethod
    def create_from_deployment(
        cls, deployment: SeldonDeployment
    ) -> "SeldonDeploymentService":
        """Recreate a Seldon Core service from a Seldon Core
        deployment resource and update their operational status.

        Args:
            deployment: the Seldon Core deployment resource.

        Returns:
            The Seldon Core service corresponding to the given
            Seldon Core deployment resource.
        """
        config = SeldonDeploymentConfig.create_from_deployment(deployment)
        uuid = deployment.metadata.labels.get("zenml.service_uuid")
        if not uuid:
            raise ValueError(
                f"The given deployment resource does not contain a valid "
                f"'zenml.service_uuid' label: {deployment}"
            )
        service = cls(uuid=UUID(uuid), config=config)
        service.update_status()
        return service

    def provision(self) -> None:
        """Provision or update the remote Seldon Core deployment instance to
        match the current configuration.
        """
        client = self._get_client()

        name = self.seldon_deployment_name

        deployment = SeldonDeployment.build(
            name=name,
            model_uri=self.config.model_uri,
            model_name=self.config.model_name,
            implementation=self.config.implementation,
            secret_name=self.config.secret_name,
            labels=self._get_seldon_deployment_labels(),
            annotations=self.config.get_seldon_deployment_annotations(),
        )
        deployment.spec.replicas = self.config.replicas
        deployment.spec.predictors[0].replicas = self.config.replicas

        # check if the Seldon deployment already exists
        try:
            client.get_deployment(name=name)
            # update the existing deployment
            client.update_deployment(deployment)
        except SeldonDeploymentNotFoundError:
            # create the deployment
            client.create_deployment(deployment=deployment)

    def deprovision(self, force: bool = False) -> None:
        """Deprovision the remote Seldon Core deployment instance.

        Args:
            force: if True, the remote deployment instance will be
                forcefully deprovisioned.
        """
        client = self._get_client()
        name = self.seldon_deployment_name
        try:
            client.delete_deployment(name=name, force=force)
        except SeldonDeploymentNotFoundError:
            pass

    def get_logs(
        self,
        follow: bool = False,
        tail: Optional[int] = None,
    ) -> Generator[str, bool, None]:
        """Get the logs of a Seldon Core model deployment.

        Args:
            follow: if True, the logs will be streamed as they are written
            tail: only retrieve the last NUM lines of log output.

        Returns:
            A generator that can be acccessed to get the service logs.
        """
        return self._get_client().get_deployment_logs(
            self.seldon_deployment_name,
            follow=follow,
            tail=tail,
        )

    @property
    def prediction_url(self) -> Optional[str]:
        """The prediction URI exposed by the prediction service.

        Returns:
            The prediction URI exposed by the prediction service, or None if
            the service is not yet ready.
        """
        from zenml.integrations.seldon.model_deployers.seldon_model_deployer import (
            SeldonModelDeployer,
        )

        if not self.is_running:
            return None
        namespace = self._get_client().namespace
        model_deployer = SeldonModelDeployer.get_active_model_deployer()
        return os.path.join(
            model_deployer.base_url,
            "seldon",
            namespace,
            self.seldon_deployment_name,
            "api/v0.1/predictions",
        )

    def predict(self, request: "NDArray[Any]") -> "NDArray[Any]":
        """Make a prediction using the service.

        Args:
            request: a numpy array representing the request

        Returns:
            A numpy array representing the prediction returned by the service.
        """
        if not self.is_running:
            raise Exception(
                "Seldon prediction service is not running. "
                "Please start the service before making predictions."
            )

        if self.prediction_url is None:
            raise ValueError("`self.prediction_url` is not set, cannot post.")
        response = requests.post(
            self.prediction_url,
            json={"data": {"ndarray": request.tolist()}},
        )
        response.raise_for_status()
        return np.array(response.json()["data"]["ndarray"])
prediction_url: Optional[str] property readonly

The prediction URI exposed by the prediction service.

Returns:

Type Description
Optional[str]

The prediction URI exposed by the prediction service, or None if the service is not yet ready.

seldon_deployment_name: str property readonly

Get the name of the Seldon Core deployment that uniquely corresponds to this service instance

Returns:

Type Description
str

The name of the Seldon Core deployment.

check_status(self)

Check the the current operational state of the Seldon Core deployment.

Returns:

Type Description
Tuple[zenml.services.service_status.ServiceState, str]

The operational state of the Seldon Core deployment and a message providing additional information about that state (e.g. a description of the error, if one is encountered).

Source code in zenml/integrations/seldon/services/seldon_deployment.py
def check_status(self) -> Tuple[ServiceState, str]:
    """Check the the current operational state of the Seldon Core
    deployment.

    Returns:
        The operational state of the Seldon Core deployment and a message
        providing additional information about that state (e.g. a
        description of the error, if one is encountered).
    """
    client = self._get_client()
    name = self.seldon_deployment_name
    try:
        deployment = client.get_deployment(name=name)
    except SeldonDeploymentNotFoundError:
        return (ServiceState.INACTIVE, "")

    if deployment.is_available():
        return (
            ServiceState.ACTIVE,
            f"Seldon Core deployment '{name}' is available",
        )

    if deployment.is_failed():
        return (
            ServiceState.ERROR,
            f"Seldon Core deployment '{name}' failed: "
            f"{deployment.get_error()}",
        )

    pending_message = deployment.get_pending_message() or ""
    return (
        ServiceState.PENDING_STARTUP,
        "Seldon Core deployment is being created: " + pending_message,
    )
create_from_deployment(deployment) classmethod

Recreate a Seldon Core service from a Seldon Core deployment resource and update their operational status.

Parameters:

Name Type Description Default
deployment SeldonDeployment

the Seldon Core deployment resource.

required

Returns:

Type Description
SeldonDeploymentService

The Seldon Core service corresponding to the given Seldon Core deployment resource.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
@classmethod
def create_from_deployment(
    cls, deployment: SeldonDeployment
) -> "SeldonDeploymentService":
    """Recreate a Seldon Core service from a Seldon Core
    deployment resource and update their operational status.

    Args:
        deployment: the Seldon Core deployment resource.

    Returns:
        The Seldon Core service corresponding to the given
        Seldon Core deployment resource.
    """
    config = SeldonDeploymentConfig.create_from_deployment(deployment)
    uuid = deployment.metadata.labels.get("zenml.service_uuid")
    if not uuid:
        raise ValueError(
            f"The given deployment resource does not contain a valid "
            f"'zenml.service_uuid' label: {deployment}"
        )
    service = cls(uuid=UUID(uuid), config=config)
    service.update_status()
    return service
deprovision(self, force=False)

Deprovision the remote Seldon Core deployment instance.

Parameters:

Name Type Description Default
force bool

if True, the remote deployment instance will be forcefully deprovisioned.

False
Source code in zenml/integrations/seldon/services/seldon_deployment.py
def deprovision(self, force: bool = False) -> None:
    """Deprovision the remote Seldon Core deployment instance.

    Args:
        force: if True, the remote deployment instance will be
            forcefully deprovisioned.
    """
    client = self._get_client()
    name = self.seldon_deployment_name
    try:
        client.delete_deployment(name=name, force=force)
    except SeldonDeploymentNotFoundError:
        pass
get_logs(self, follow=False, tail=None)

Get the logs of a Seldon Core model deployment.

Parameters:

Name Type Description Default
follow bool

if True, the logs will be streamed as they are written

False
tail Optional[int]

only retrieve the last NUM lines of log output.

None

Returns:

Type Description
Generator[str, bool, NoneType]

A generator that can be acccessed to get the service logs.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
def get_logs(
    self,
    follow: bool = False,
    tail: Optional[int] = None,
) -> Generator[str, bool, None]:
    """Get the logs of a Seldon Core model deployment.

    Args:
        follow: if True, the logs will be streamed as they are written
        tail: only retrieve the last NUM lines of log output.

    Returns:
        A generator that can be acccessed to get the service logs.
    """
    return self._get_client().get_deployment_logs(
        self.seldon_deployment_name,
        follow=follow,
        tail=tail,
    )
predict(self, request)

Make a prediction using the service.

Parameters:

Name Type Description Default
request NDArray[Any]

a numpy array representing the request

required

Returns:

Type Description
NDArray[Any]

A numpy array representing the prediction returned by the service.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
def predict(self, request: "NDArray[Any]") -> "NDArray[Any]":
    """Make a prediction using the service.

    Args:
        request: a numpy array representing the request

    Returns:
        A numpy array representing the prediction returned by the service.
    """
    if not self.is_running:
        raise Exception(
            "Seldon prediction service is not running. "
            "Please start the service before making predictions."
        )

    if self.prediction_url is None:
        raise ValueError("`self.prediction_url` is not set, cannot post.")
    response = requests.post(
        self.prediction_url,
        json={"data": {"ndarray": request.tolist()}},
    )
    response.raise_for_status()
    return np.array(response.json()["data"]["ndarray"])
provision(self)

Provision or update the remote Seldon Core deployment instance to match the current configuration.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
def provision(self) -> None:
    """Provision or update the remote Seldon Core deployment instance to
    match the current configuration.
    """
    client = self._get_client()

    name = self.seldon_deployment_name

    deployment = SeldonDeployment.build(
        name=name,
        model_uri=self.config.model_uri,
        model_name=self.config.model_name,
        implementation=self.config.implementation,
        secret_name=self.config.secret_name,
        labels=self._get_seldon_deployment_labels(),
        annotations=self.config.get_seldon_deployment_annotations(),
    )
    deployment.spec.replicas = self.config.replicas
    deployment.spec.predictors[0].replicas = self.config.replicas

    # check if the Seldon deployment already exists
    try:
        client.get_deployment(name=name)
        # update the existing deployment
        client.update_deployment(deployment)
    except SeldonDeploymentNotFoundError:
        # create the deployment
        client.create_deployment(deployment=deployment)
SeldonDeploymentServiceStatus (ServiceStatus) pydantic-model

Seldon Core deployment service status.

Source code in zenml/integrations/seldon/services/seldon_deployment.py
class SeldonDeploymentServiceStatus(ServiceStatus):
    """Seldon Core deployment service status."""

steps special

seldon_deployer
SeldonDeployerStepConfig (BaseStepConfig) pydantic-model

Seldon model deployer step configuration

Attributes:

Name Type Description
service_config SeldonDeploymentConfig

Seldon Core deployment service configuration.

secrets

a list of ZenML secrets containing additional configuration parameters for the Seldon Core deployment (e.g. credentials to access the Artifact Store where the models are stored). If supplied, the information fetched from these secrets is passed to the Seldon Core deployment server as a list of environment variables.

Source code in zenml/integrations/seldon/steps/seldon_deployer.py
class SeldonDeployerStepConfig(BaseStepConfig):
    """Seldon model deployer step configuration

    Attributes:
        service_config: Seldon Core deployment service configuration.
        secrets: a list of ZenML secrets containing additional configuration
            parameters for the Seldon Core deployment (e.g. credentials to
            access the Artifact Store where the models are stored). If supplied,
            the information fetched from these secrets is passed to the Seldon
            Core deployment server as a list of environment variables.
    """

    service_config: SeldonDeploymentConfig
    timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT
seldon_model_deployer_step (BaseStep)

Seldon Core model deployer pipeline step

This step can be used in a pipeline to implement continuous deployment for a ML model with Seldon Core.

Parameters:

Name Type Description Default
deploy_decision

whether to deploy the model or not

required
config

configuration for the deployer step

required
model

the model artifact to deploy

required

Returns:

Type Description

Seldon Core deployment service

CONFIG_CLASS (BaseStepConfig) pydantic-model

Seldon model deployer step configuration

Attributes:

Name Type Description
service_config SeldonDeploymentConfig

Seldon Core deployment service configuration.

secrets

a list of ZenML secrets containing additional configuration parameters for the Seldon Core deployment (e.g. credentials to access the Artifact Store where the models are stored). If supplied, the information fetched from these secrets is passed to the Seldon Core deployment server as a list of environment variables.

Source code in zenml/integrations/seldon/steps/seldon_deployer.py
class SeldonDeployerStepConfig(BaseStepConfig):
    """Seldon model deployer step configuration

    Attributes:
        service_config: Seldon Core deployment service configuration.
        secrets: a list of ZenML secrets containing additional configuration
            parameters for the Seldon Core deployment (e.g. credentials to
            access the Artifact Store where the models are stored). If supplied,
            the information fetched from these secrets is passed to the Seldon
            Core deployment server as a list of environment variables.
    """

    service_config: SeldonDeploymentConfig
    timeout: int = DEFAULT_SELDON_DEPLOYMENT_START_STOP_TIMEOUT
entrypoint(deploy_decision, config, context, model) staticmethod

Seldon Core model deployer pipeline step

This step can be used in a pipeline to implement continuous deployment for a ML model with Seldon Core.

Parameters:

Name Type Description Default
deploy_decision bool

whether to deploy the model or not

required
config SeldonDeployerStepConfig

configuration for the deployer step

required
model ModelArtifact

the model artifact to deploy

required

Returns:

Type Description
SeldonDeploymentService

Seldon Core deployment service

Source code in zenml/integrations/seldon/steps/seldon_deployer.py
@step(enable_cache=False)
def seldon_model_deployer_step(
    deploy_decision: bool,
    config: SeldonDeployerStepConfig,
    context: StepContext,
    model: ModelArtifact,
) -> SeldonDeploymentService:
    """Seldon Core model deployer pipeline step

    This step can be used in a pipeline to implement continuous
    deployment for a ML model with Seldon Core.

    Args:
        deploy_decision: whether to deploy the model or not
        config: configuration for the deployer step
        model: the model artifact to deploy

    Returns:
        Seldon Core deployment service
    """
    model_deployer = SeldonModelDeployer.get_active_model_deployer()

    # get pipeline name, step name and run id
    step_env = cast(StepEnvironment, Environment()[STEP_ENVIRONMENT_NAME])
    pipeline_name = step_env.pipeline_name
    pipeline_run_id = step_env.pipeline_run_id
    step_name = step_env.step_name

    # update the step configuration with the real pipeline runtime information
    config.service_config.pipeline_name = pipeline_name
    config.service_config.pipeline_run_id = pipeline_run_id
    config.service_config.pipeline_step_name = step_name

    def prepare_service_config(model_uri: str) -> SeldonDeploymentConfig:
        """Prepare the model files for model serving and create and return a
        Seldon service configuration for the model.

        This function ensures that the model files are in the correct format
        and file structure required by the Seldon Core server implementation
        used for model serving.

        Args:
            model_uri: the URI of the model artifact being served

        Returns:
            The URL to the model ready for serving.
        """
        served_model_uri = os.path.join(
            context.get_output_artifact_uri(), "seldon"
        )
        fileio.makedirs(served_model_uri)

        # TODO [ENG-773]: determine how to formalize how models are organized into
        #   folders and sub-folders depending on the model type/format and the
        #   Seldon Core protocol used to serve the model.

        # TODO [ENG-791]: auto-detect built-in Seldon server implementation
        #   from the model artifact type

        # TODO [ENG-792]: validate the model artifact type against the
        #   supported built-in Seldon server implementations
        if config.service_config.implementation == "TENSORFLOW_SERVER":
            # the TensorFlow server expects model artifacts to be
            # stored in numbered subdirectories, each representing a model
            # version
            io_utils.copy_dir(model_uri, os.path.join(served_model_uri, "1"))
        elif config.service_config.implementation == "SKLEARN_SERVER":
            # the sklearn server expects model artifacts to be
            # stored in a file called model.joblib
            model_uri = os.path.join(model.uri, "model")
            if not fileio.exists(model.uri):
                raise RuntimeError(
                    f"Expected sklearn model artifact was not found at "
                    f"{model_uri}"
                )
            fileio.copy(
                model_uri, os.path.join(served_model_uri, "model.joblib")
            )
        else:
            # default treatment for all other server implementations is to
            # simply reuse the model from the artifact store path where it
            # is originally stored
            served_model_uri = model_uri

        service_config = config.service_config.copy()
        service_config.model_uri = served_model_uri
        return service_config

    # fetch existing services with same pipeline name, step name and
    # model name
    existing_services = model_deployer.find_model_server(
        pipeline_name=pipeline_name,
        pipeline_step_name=step_name,
        model_name=config.service_config.model_name,
    )

    # even when the deploy decision is negative, if an existing model server
    # is not running for this pipeline/step, we still have to serve the
    # current model, to ensure that a model server is available at all times
    if not deploy_decision and existing_services:
        logger.info(
            f"Skipping model deployment because the model quality does not "
            f"meet the criteria. Reusing last model server deployed by step "
            f"'{step_name}' and pipeline '{pipeline_name}' for model "
            f"'{config.service_config.model_name}'..."
        )
        service = cast(SeldonDeploymentService, existing_services[0])
        # even when the deploy decision is negative, we still need to start
        # the previous model server if it is no longer running, to ensure that
        # a model server is available at all times
        if not service.is_running:
            service.start(timeout=config.timeout)
        return service

    # invoke the Seldon Core model deployer to create a new service
    # or update an existing one that was previously deployed for the same
    # model
    service_config = prepare_service_config(model.uri)
    service = cast(
        SeldonDeploymentService,
        model_deployer.deploy_model(
            service_config, replace=True, timeout=config.timeout
        ),
    )

    logger.info(
        f"Seldon deployment service started and reachable at:\n"
        f"    {service.prediction_url}\n"
    )

    return service

sklearn special

SklearnIntegration (Integration)

Definition of sklearn integration for ZenML.

Source code in zenml/integrations/sklearn/__init__.py
class SklearnIntegration(Integration):
    """Definition of sklearn integration for ZenML."""

    NAME = SKLEARN
    REQUIREMENTS = ["scikit-learn"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.sklearn import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/sklearn/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.sklearn import materializers  # noqa

helpers special

digits
get_digits()

Returns the digits dataset in the form of a tuple of numpy arrays.

Source code in zenml/integrations/sklearn/helpers/digits.py
def get_digits() -> Tuple[
    "NDArray[np.float64]",
    "NDArray[np.float64]",
    "NDArray[np.int64]",
    "NDArray[np.int64]",
]:
    """Returns the digits dataset in the form of a tuple of numpy
    arrays."""
    digits = load_digits()
    # flatten the images
    n_samples = len(digits.images)
    data = digits.images.reshape((n_samples, -1))

    # Split data into 50% train and 50% test subsets
    X_train, X_test, y_train, y_test = train_test_split(
        data, digits.target, test_size=0.5, shuffle=False
    )
    return X_train, X_test, y_train, y_test
get_digits_model()

Creates a support vector classifier for digits dataset.

Source code in zenml/integrations/sklearn/helpers/digits.py
def get_digits_model() -> ClassifierMixin:
    """Creates a support vector classifier for digits dataset."""
    return SVC(gamma=0.001)

materializers special

sklearn_materializer
SklearnMaterializer (BaseMaterializer)

Materializer to read data to and from sklearn.

Source code in zenml/integrations/sklearn/materializers/sklearn_materializer.py
class SklearnMaterializer(BaseMaterializer):
    """Materializer to read data to and from sklearn."""

    ASSOCIATED_TYPES = (
        BaseEstimator,
        ClassifierMixin,
        ClusterMixin,
        BiclusterMixin,
        OutlierMixin,
        RegressorMixin,
        MetaEstimatorMixin,
        MultiOutputMixin,
        DensityMixin,
        TransformerMixin,
    )
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(
        self, data_type: Type[Any]
    ) -> Union[
        BaseEstimator,
        ClassifierMixin,
        ClusterMixin,
        BiclusterMixin,
        OutlierMixin,
        RegressorMixin,
        MetaEstimatorMixin,
        MultiOutputMixin,
        DensityMixin,
        TransformerMixin,
    ]:
        """Reads a base sklearn model from a pickle file."""
        super().handle_input(data_type)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
        with fileio.open(filepath, "rb") as fid:
            clf = pickle.load(fid)
        return clf

    def handle_return(
        self,
        clf: Union[
            BaseEstimator,
            ClassifierMixin,
            ClusterMixin,
            BiclusterMixin,
            OutlierMixin,
            RegressorMixin,
            MetaEstimatorMixin,
            MultiOutputMixin,
            DensityMixin,
            TransformerMixin,
        ],
    ) -> None:
        """Creates a pickle for a sklearn model.

        Args:
            clf: A sklearn model.
        """
        super().handle_return(clf)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
        with fileio.open(filepath, "wb") as fid:
            pickle.dump(clf, fid)
handle_input(self, data_type)

Reads a base sklearn model from a pickle file.

Source code in zenml/integrations/sklearn/materializers/sklearn_materializer.py
def handle_input(
    self, data_type: Type[Any]
) -> Union[
    BaseEstimator,
    ClassifierMixin,
    ClusterMixin,
    BiclusterMixin,
    OutlierMixin,
    RegressorMixin,
    MetaEstimatorMixin,
    MultiOutputMixin,
    DensityMixin,
    TransformerMixin,
]:
    """Reads a base sklearn model from a pickle file."""
    super().handle_input(data_type)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
    with fileio.open(filepath, "rb") as fid:
        clf = pickle.load(fid)
    return clf
handle_return(self, clf)

Creates a pickle for a sklearn model.

Parameters:

Name Type Description Default
clf Union[sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin, sklearn.base.ClusterMixin, sklearn.base.BiclusterMixin, sklearn.base.OutlierMixin, sklearn.base.RegressorMixin, sklearn.base.MetaEstimatorMixin, sklearn.base.MultiOutputMixin, sklearn.base.DensityMixin, sklearn.base.TransformerMixin]

A sklearn model.

required
Source code in zenml/integrations/sklearn/materializers/sklearn_materializer.py
def handle_return(
    self,
    clf: Union[
        BaseEstimator,
        ClassifierMixin,
        ClusterMixin,
        BiclusterMixin,
        OutlierMixin,
        RegressorMixin,
        MetaEstimatorMixin,
        MultiOutputMixin,
        DensityMixin,
        TransformerMixin,
    ],
) -> None:
    """Creates a pickle for a sklearn model.

    Args:
        clf: A sklearn model.
    """
    super().handle_return(clf)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
    with fileio.open(filepath, "wb") as fid:
        pickle.dump(clf, fid)

steps special

sklearn_evaluator
SklearnEvaluator (BaseEvaluatorStep)

A simple step implementation which utilizes sklearn to evaluate the performance of a given model on a given test dataset

Source code in zenml/integrations/sklearn/steps/sklearn_evaluator.py
class SklearnEvaluator(BaseEvaluatorStep):
    """A simple step implementation which utilizes sklearn to evaluate the
    performance of a given model on a given test dataset"""

    def entrypoint(  # type: ignore[override]
        self,
        dataset: pd.DataFrame,
        model: BaseEstimator,
        config: SklearnEvaluatorConfig,
    ) -> dict:  # type: ignore[type-arg]
        """Method which is responsible for the computation of the evaluation

        Args:
            dataset: a pandas Dataframe which represents the test dataset
            model: a trained sklearn model
            config: the configuration for the step
        Returns:
            a dictionary which has the evaluation report
        """
        labels = dataset.pop(config.label_class_column)

        predictions = model.predict(dataset)
        predicted_classes = [1 if v > 0.5 else 0 for v in predictions]

        report = classification_report(
            labels, predicted_classes, output_dict=True
        )

        return report  # type: ignore[no-any-return]
CONFIG_CLASS (BaseEvaluatorConfig) pydantic-model

Config class for the sklearn evaluator

Source code in zenml/integrations/sklearn/steps/sklearn_evaluator.py
class SklearnEvaluatorConfig(BaseEvaluatorConfig):
    """Config class for the sklearn evaluator"""

    label_class_column: str
entrypoint(self, dataset, model, config)

Method which is responsible for the computation of the evaluation

Parameters:

Name Type Description Default
dataset DataFrame

a pandas Dataframe which represents the test dataset

required
model BaseEstimator

a trained sklearn model

required
config SklearnEvaluatorConfig

the configuration for the step

required

Returns:

Type Description
dict

a dictionary which has the evaluation report

Source code in zenml/integrations/sklearn/steps/sklearn_evaluator.py
def entrypoint(  # type: ignore[override]
    self,
    dataset: pd.DataFrame,
    model: BaseEstimator,
    config: SklearnEvaluatorConfig,
) -> dict:  # type: ignore[type-arg]
    """Method which is responsible for the computation of the evaluation

    Args:
        dataset: a pandas Dataframe which represents the test dataset
        model: a trained sklearn model
        config: the configuration for the step
    Returns:
        a dictionary which has the evaluation report
    """
    labels = dataset.pop(config.label_class_column)

    predictions = model.predict(dataset)
    predicted_classes = [1 if v > 0.5 else 0 for v in predictions]

    report = classification_report(
        labels, predicted_classes, output_dict=True
    )

    return report  # type: ignore[no-any-return]
SklearnEvaluatorConfig (BaseEvaluatorConfig) pydantic-model

Config class for the sklearn evaluator

Source code in zenml/integrations/sklearn/steps/sklearn_evaluator.py
class SklearnEvaluatorConfig(BaseEvaluatorConfig):
    """Config class for the sklearn evaluator"""

    label_class_column: str
sklearn_splitter
SklearnSplitter (BaseSplitStep)

A simple step implementation which utilizes sklearn to split a given dataset into train, test and validation splits

Source code in zenml/integrations/sklearn/steps/sklearn_splitter.py
class SklearnSplitter(BaseSplitStep):
    """A simple step implementation which utilizes sklearn to split a given
    dataset into train, test and validation splits"""

    def entrypoint(  # type: ignore[override]
        self,
        dataset: pd.DataFrame,
        config: SklearnSplitterConfig,
    ) -> Output(  # type:ignore[valid-type]
        train=pd.DataFrame, test=pd.DataFrame, validation=pd.DataFrame
    ):
        """Method which is responsible for the splitting logic

        Args:
            dataset: a pandas Dataframe which entire dataset
            config: the configuration for the step
        Returns:
            three dataframes representing the splits
        """
        if (
            any(
                [
                    split not in config.ratios
                    for split in ["train", "test", "validation"]
                ]
            )
            or len(config.ratios) != 3
        ):
            raise KeyError(
                f"Make sure that you only use 'train', 'test' and "
                f"'validation' as keys in the ratios dict. Current keys: "
                f"{config.ratios.keys()}"
            )

        if sum(config.ratios.values()) != 1:
            raise ValueError(
                f"Make sure that the ratios sum up to 1. Current "
                f"ratios: {config.ratios}"
            )

        train_dataset, test_dataset = train_test_split(
            dataset, test_size=config.ratios["test"]
        )

        train_dataset, val_dataset = train_test_split(
            train_dataset,
            test_size=(
                config.ratios["validation"]
                / (config.ratios["validation"] + config.ratios["train"])
            ),
        )

        return train_dataset, test_dataset, val_dataset
CONFIG_CLASS (BaseSplitStepConfig) pydantic-model

Config class for the sklearn splitter

Source code in zenml/integrations/sklearn/steps/sklearn_splitter.py
class SklearnSplitterConfig(BaseSplitStepConfig):
    """Config class for the sklearn splitter"""

    ratios: Dict[str, float]
entrypoint(self, dataset, config)

Method which is responsible for the splitting logic

Parameters:

Name Type Description Default
dataset DataFrame

a pandas Dataframe which entire dataset

required
config SklearnSplitterConfig

the configuration for the step

required

Returns:

Type Description
<zenml.steps.step_output.Output object at 0x7f20a7c56dc0>

three dataframes representing the splits

Source code in zenml/integrations/sklearn/steps/sklearn_splitter.py
def entrypoint(  # type: ignore[override]
    self,
    dataset: pd.DataFrame,
    config: SklearnSplitterConfig,
) -> Output(  # type:ignore[valid-type]
    train=pd.DataFrame, test=pd.DataFrame, validation=pd.DataFrame
):
    """Method which is responsible for the splitting logic

    Args:
        dataset: a pandas Dataframe which entire dataset
        config: the configuration for the step
    Returns:
        three dataframes representing the splits
    """
    if (
        any(
            [
                split not in config.ratios
                for split in ["train", "test", "validation"]
            ]
        )
        or len(config.ratios) != 3
    ):
        raise KeyError(
            f"Make sure that you only use 'train', 'test' and "
            f"'validation' as keys in the ratios dict. Current keys: "
            f"{config.ratios.keys()}"
        )

    if sum(config.ratios.values()) != 1:
        raise ValueError(
            f"Make sure that the ratios sum up to 1. Current "
            f"ratios: {config.ratios}"
        )

    train_dataset, test_dataset = train_test_split(
        dataset, test_size=config.ratios["test"]
    )

    train_dataset, val_dataset = train_test_split(
        train_dataset,
        test_size=(
            config.ratios["validation"]
            / (config.ratios["validation"] + config.ratios["train"])
        ),
    )

    return train_dataset, test_dataset, val_dataset
SklearnSplitterConfig (BaseSplitStepConfig) pydantic-model

Config class for the sklearn splitter

Source code in zenml/integrations/sklearn/steps/sklearn_splitter.py
class SklearnSplitterConfig(BaseSplitStepConfig):
    """Config class for the sklearn splitter"""

    ratios: Dict[str, float]
sklearn_standard_scaler
SklearnStandardScaler (BasePreprocessorStep)

Simple step implementation which utilizes the StandardScaler from sklearn to transform the numeric columns of a pd.DataFrame

Source code in zenml/integrations/sklearn/steps/sklearn_standard_scaler.py
class SklearnStandardScaler(BasePreprocessorStep):
    """Simple step implementation which utilizes the StandardScaler from sklearn
    to transform the numeric columns of a pd.DataFrame"""

    def entrypoint(  # type: ignore[override]
        self,
        train_dataset: pd.DataFrame,
        test_dataset: pd.DataFrame,
        validation_dataset: pd.DataFrame,
        statistics: pd.DataFrame,
        schema: pd.DataFrame,
        config: SklearnStandardScalerConfig,
    ) -> Output(  # type:ignore[valid-type]
        train_transformed=pd.DataFrame,
        test_transformed=pd.DataFrame,
        validation_transformed=pd.DataFrame,
    ):
        """Main entrypoint function for the StandardScaler

        Args:
            train_dataset: pd.DataFrame, the training dataset
            test_dataset: pd.DataFrame, the test dataset
            validation_dataset: pd.DataFrame, the validation dataset
            statistics: pd.DataFrame, the statistics over the train dataset
            schema: pd.DataFrame, the detected schema of the dataset
            config: the configuration for the step
        Returns:
             the transformed train, test and validation datasets as
             pd.DataFrames
        """
        schema_dict = {k: v[0] for k, v in schema.to_dict().items()}

        # Exclude columns
        feature_set = set(train_dataset.columns) - set(config.exclude_columns)
        for feature, feature_type in schema_dict.items():
            if feature_type != "int64" and feature_type != "float64":
                feature_set.remove(feature)
                logger.warning(
                    f"{feature} column is a not numeric, thus it is excluded "
                    f"from the standard scaling."
                )

        transform_feature_set = feature_set - set(config.ignore_columns)

        # Transform the datasets
        scaler = StandardScaler()
        scaler.mean_ = statistics["mean"][transform_feature_set]
        scaler.scale_ = statistics["std"][transform_feature_set]

        train_dataset[list(transform_feature_set)] = scaler.transform(
            train_dataset[transform_feature_set]
        )
        test_dataset[list(transform_feature_set)] = scaler.transform(
            test_dataset[transform_feature_set]
        )
        validation_dataset[list(transform_feature_set)] = scaler.transform(
            validation_dataset[transform_feature_set]
        )

        return train_dataset, test_dataset, validation_dataset
CONFIG_CLASS (BasePreprocessorConfig) pydantic-model

Config class for the sklearn standard scaler

ignore_columns: a list of column names which should not be scaled exclude_columns: a list of column names to be excluded from the dataset

Source code in zenml/integrations/sklearn/steps/sklearn_standard_scaler.py
class SklearnStandardScalerConfig(BasePreprocessorConfig):
    """Config class for the sklearn standard scaler

    ignore_columns: a list of column names which should not be scaled
    exclude_columns: a list of column names to be excluded from the dataset
    """

    ignore_columns: List[str] = []
    exclude_columns: List[str] = []
entrypoint(self, train_dataset, test_dataset, validation_dataset, statistics, schema, config)

Main entrypoint function for the StandardScaler

Parameters:

Name Type Description Default
train_dataset DataFrame

pd.DataFrame, the training dataset

required
test_dataset DataFrame

pd.DataFrame, the test dataset

required
validation_dataset DataFrame

pd.DataFrame, the validation dataset

required
statistics DataFrame

pd.DataFrame, the statistics over the train dataset

required
schema DataFrame

pd.DataFrame, the detected schema of the dataset

required
config SklearnStandardScalerConfig

the configuration for the step

required

Returns:

Type Description
<zenml.steps.step_output.Output object at 0x7f20a7c69640>

the transformed train, test and validation datasets as pd.DataFrames

Source code in zenml/integrations/sklearn/steps/sklearn_standard_scaler.py
def entrypoint(  # type: ignore[override]
    self,
    train_dataset: pd.DataFrame,
    test_dataset: pd.DataFrame,
    validation_dataset: pd.DataFrame,
    statistics: pd.DataFrame,
    schema: pd.DataFrame,
    config: SklearnStandardScalerConfig,
) -> Output(  # type:ignore[valid-type]
    train_transformed=pd.DataFrame,
    test_transformed=pd.DataFrame,
    validation_transformed=pd.DataFrame,
):
    """Main entrypoint function for the StandardScaler

    Args:
        train_dataset: pd.DataFrame, the training dataset
        test_dataset: pd.DataFrame, the test dataset
        validation_dataset: pd.DataFrame, the validation dataset
        statistics: pd.DataFrame, the statistics over the train dataset
        schema: pd.DataFrame, the detected schema of the dataset
        config: the configuration for the step
    Returns:
         the transformed train, test and validation datasets as
         pd.DataFrames
    """
    schema_dict = {k: v[0] for k, v in schema.to_dict().items()}

    # Exclude columns
    feature_set = set(train_dataset.columns) - set(config.exclude_columns)
    for feature, feature_type in schema_dict.items():
        if feature_type != "int64" and feature_type != "float64":
            feature_set.remove(feature)
            logger.warning(
                f"{feature} column is a not numeric, thus it is excluded "
                f"from the standard scaling."
            )

    transform_feature_set = feature_set - set(config.ignore_columns)

    # Transform the datasets
    scaler = StandardScaler()
    scaler.mean_ = statistics["mean"][transform_feature_set]
    scaler.scale_ = statistics["std"][transform_feature_set]

    train_dataset[list(transform_feature_set)] = scaler.transform(
        train_dataset[transform_feature_set]
    )
    test_dataset[list(transform_feature_set)] = scaler.transform(
        test_dataset[transform_feature_set]
    )
    validation_dataset[list(transform_feature_set)] = scaler.transform(
        validation_dataset[transform_feature_set]
    )

    return train_dataset, test_dataset, validation_dataset
SklearnStandardScalerConfig (BasePreprocessorConfig) pydantic-model

Config class for the sklearn standard scaler

ignore_columns: a list of column names which should not be scaled exclude_columns: a list of column names to be excluded from the dataset

Source code in zenml/integrations/sklearn/steps/sklearn_standard_scaler.py
class SklearnStandardScalerConfig(BasePreprocessorConfig):
    """Config class for the sklearn standard scaler

    ignore_columns: a list of column names which should not be scaled
    exclude_columns: a list of column names to be excluded from the dataset
    """

    ignore_columns: List[str] = []
    exclude_columns: List[str] = []

tensorflow special

TensorflowIntegration (Integration)

Definition of Tensorflow integration for ZenML.

Source code in zenml/integrations/tensorflow/__init__.py
class TensorflowIntegration(Integration):
    """Definition of Tensorflow integration for ZenML."""

    NAME = TENSORFLOW
    REQUIREMENTS = ["tensorflow==2.8.0", "tensorflow_io==0.24.0"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        # need to import this explicitly to load the Tensoflow file IO support
        # for S3 and other file systems
        import tensorflow_io  # type: ignore [import]

        from zenml.integrations.tensorflow import materializers  # noqa
        from zenml.integrations.tensorflow import services  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/tensorflow/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    # need to import this explicitly to load the Tensoflow file IO support
    # for S3 and other file systems
    import tensorflow_io  # type: ignore [import]

    from zenml.integrations.tensorflow import materializers  # noqa
    from zenml.integrations.tensorflow import services  # noqa

materializers special

keras_materializer
KerasMaterializer (BaseMaterializer)

Materializer to read/write Keras models.

Source code in zenml/integrations/tensorflow/materializers/keras_materializer.py
class KerasMaterializer(BaseMaterializer):
    """Materializer to read/write Keras models."""

    ASSOCIATED_TYPES = (keras.Model,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> keras.Model:
        """Reads and returns a Keras model after copying it to temporary file.

        Returns:
            A tf.keras.Model model.
        """
        super().handle_input(data_type)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)

        # Load the model from the temporary file
        model = keras.models.load_model(temp_file)

        # Cleanup and return
        fileio.rmtree(temp_dir)

        return model

    def handle_return(self, model: keras.Model) -> None:
        """Writes a keras model to the artifact store.

        Args:
            model: A tf.keras.Model model.
        """
        super().handle_return(model)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Create a temporary file to store the model
        with tempfile.NamedTemporaryFile(
            mode="w", suffix=".hdf5", delete=False
        ) as f:
            model.save(f.name)
            fileio.copy(f.name, filepath)

        # Close and remove the temporary file
        f.close()
        fileio.remove(f.name)
handle_input(self, data_type)

Reads and returns a Keras model after copying it to temporary file.

Returns:

Type Description
Model

A tf.keras.Model model.

Source code in zenml/integrations/tensorflow/materializers/keras_materializer.py
def handle_input(self, data_type: Type[Any]) -> keras.Model:
    """Reads and returns a Keras model after copying it to temporary file.

    Returns:
        A tf.keras.Model model.
    """
    super().handle_input(data_type)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)

    # Load the model from the temporary file
    model = keras.models.load_model(temp_file)

    # Cleanup and return
    fileio.rmtree(temp_dir)

    return model
handle_return(self, model)

Writes a keras model to the artifact store.

Parameters:

Name Type Description Default
model Model

A tf.keras.Model model.

required
Source code in zenml/integrations/tensorflow/materializers/keras_materializer.py
def handle_return(self, model: keras.Model) -> None:
    """Writes a keras model to the artifact store.

    Args:
        model: A tf.keras.Model model.
    """
    super().handle_return(model)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Create a temporary file to store the model
    with tempfile.NamedTemporaryFile(
        mode="w", suffix=".hdf5", delete=False
    ) as f:
        model.save(f.name)
        fileio.copy(f.name, filepath)

    # Close and remove the temporary file
    f.close()
    fileio.remove(f.name)
tf_dataset_materializer
TensorflowDatasetMaterializer (BaseMaterializer)

Materializer to read data to and from tf.data.Dataset.

Source code in zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
class TensorflowDatasetMaterializer(BaseMaterializer):
    """Materializer to read data to and from tf.data.Dataset."""

    ASSOCIATED_TYPES = (tf.data.Dataset,)
    ASSOCIATED_ARTIFACT_TYPES = (DataArtifact,)

    def handle_input(self, data_type: Type[Any]) -> Any:
        """Reads data into tf.data.Dataset"""
        super().handle_input(data_type)
        path = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
        return tf.data.experimental.load(path)

    def handle_return(self, dataset: tf.data.Dataset) -> None:
        """Persists a tf.data.Dataset object."""
        super().handle_return(dataset)
        path = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
        tf.data.experimental.save(
            dataset, path, compression=None, shard_func=None
        )
handle_input(self, data_type)

Reads data into tf.data.Dataset

Source code in zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
def handle_input(self, data_type: Type[Any]) -> Any:
    """Reads data into tf.data.Dataset"""
    super().handle_input(data_type)
    path = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
    return tf.data.experimental.load(path)
handle_return(self, dataset)

Persists a tf.data.Dataset object.

Source code in zenml/integrations/tensorflow/materializers/tf_dataset_materializer.py
def handle_return(self, dataset: tf.data.Dataset) -> None:
    """Persists a tf.data.Dataset object."""
    super().handle_return(dataset)
    path = os.path.join(self.artifact.uri, DEFAULT_FILENAME)
    tf.data.experimental.save(
        dataset, path, compression=None, shard_func=None
    )

services special

tensorboard_service
TensorboardService (LocalDaemonService) pydantic-model

Tensorboard service that can be used to start a local Tensorboard server for one or more models.

Attributes:

Name Type Description
SERVICE_TYPE ClassVar[zenml.services.service_type.ServiceType]

a service type descriptor with information describing the Tensorboard service class

config TensorboardServiceConfig

service configuration

endpoint LocalDaemonServiceEndpoint

optional service endpoint

Source code in zenml/integrations/tensorflow/services/tensorboard_service.py
class TensorboardService(LocalDaemonService):
    """Tensorboard service that can be used to start a local Tensorboard server
    for one or more models.

    Attributes:
        SERVICE_TYPE: a service type descriptor with information describing
            the Tensorboard service class
        config: service configuration
        endpoint: optional service endpoint
    """

    SERVICE_TYPE = ServiceType(
        name="tensorboard",
        type="visualization",
        flavor="tensorboard",
        description="Tensorboard visualization service",
    )

    config: TensorboardServiceConfig
    endpoint: LocalDaemonServiceEndpoint

    def __init__(
        self,
        config: Union[TensorboardServiceConfig, Dict[str, Any]],
        **attrs: Any,
    ) -> None:
        # ensure that the endpoint is created before the service is initialized
        # TODO [ENG-697]: implement a service factory or builder for Tensorboard
        #   deployment services
        if (
            isinstance(config, TensorboardServiceConfig)
            and "endpoint" not in attrs
        ):
            endpoint = LocalDaemonServiceEndpoint(
                config=LocalDaemonServiceEndpointConfig(
                    protocol=ServiceEndpointProtocol.HTTP,
                ),
                monitor=HTTPEndpointHealthMonitor(
                    config=HTTPEndpointHealthMonitorConfig(
                        healthcheck_uri_path="",
                        use_head_request=True,
                    )
                ),
            )
            attrs["endpoint"] = endpoint
        super().__init__(config=config, **attrs)

    def run(self) -> None:
        logger.info(
            "Starting Tensorboard service as blocking "
            "process... press CTRL+C once to stop it."
        )

        self.endpoint.prepare_for_start()

        try:
            tensorboard = program.TensorBoard(
                plugins=default.get_plugins(),
                subcommands=[uploader_subcommand.UploaderSubcommand()],
            )
            tensorboard.configure(
                logdir=self.config.logdir,
                port=self.endpoint.status.port,
                host="localhost",
                max_reload_threads=self.config.max_reload_threads,
                reload_interval=self.config.reload_interval,
            )
            tensorboard.main()
        except KeyboardInterrupt:
            logger.info(
                "Tensorboard service stopped. Resuming normal execution."
            )
run(self)

Run the service daemon process associated with this service.

Subclasses must implement this method to provide the service daemon functionality. This method will be executed in the context of the running daemon, not in the context of the process that calls the start method.

Source code in zenml/integrations/tensorflow/services/tensorboard_service.py
def run(self) -> None:
    logger.info(
        "Starting Tensorboard service as blocking "
        "process... press CTRL+C once to stop it."
    )

    self.endpoint.prepare_for_start()

    try:
        tensorboard = program.TensorBoard(
            plugins=default.get_plugins(),
            subcommands=[uploader_subcommand.UploaderSubcommand()],
        )
        tensorboard.configure(
            logdir=self.config.logdir,
            port=self.endpoint.status.port,
            host="localhost",
            max_reload_threads=self.config.max_reload_threads,
            reload_interval=self.config.reload_interval,
        )
        tensorboard.main()
    except KeyboardInterrupt:
        logger.info(
            "Tensorboard service stopped. Resuming normal execution."
        )
TensorboardServiceConfig (LocalDaemonServiceConfig) pydantic-model

Tensorboard service configuration.

Attributes:

Name Type Description
logdir str

location of Tensorboard log files.

max_reload_threads int

the max number of threads that TensorBoard can use to reload runs. Each thread reloads one run at a time.

reload_interval int

how often the backend should load more data, in seconds. Set to 0 to load just once at startup.

Source code in zenml/integrations/tensorflow/services/tensorboard_service.py
class TensorboardServiceConfig(LocalDaemonServiceConfig):
    """Tensorboard service configuration.

    Attributes:
        logdir: location of Tensorboard log files.
        max_reload_threads: the max number of threads that TensorBoard can use
            to reload runs. Each thread reloads one run at a time.
        reload_interval: how often the backend should load more data, in
            seconds. Set to 0 to load just once at startup.
    """

    logdir: str
    max_reload_threads: int = 1
    reload_interval: int = 5

steps special

tensorflow_trainer
TensorflowBinaryClassifier (BaseTrainerStep)

Simple step implementation which creates a simple tensorflow feedforward neural network and trains it on a given pd.DataFrame dataset

Source code in zenml/integrations/tensorflow/steps/tensorflow_trainer.py
class TensorflowBinaryClassifier(BaseTrainerStep):
    """Simple step implementation which creates a simple tensorflow feedforward
    neural network and trains it on a given pd.DataFrame dataset
    """

    def entrypoint(  # type: ignore[override]
        self,
        train_dataset: pd.DataFrame,
        validation_dataset: pd.DataFrame,
        config: TensorflowBinaryClassifierConfig,
    ) -> tf.keras.Model:
        """Main entrypoint for the tensorflow trainer

        Args:
            train_dataset: pd.DataFrame, the training dataset
            validation_dataset: pd.DataFrame, the validation dataset
            config: the configuration of the step
        Returns:
            the trained tf.keras.Model
        """
        model = tf.keras.Sequential()
        model.add(tf.keras.layers.InputLayer(input_shape=config.input_shape))
        model.add(tf.keras.layers.Flatten())

        last_layer = config.layers.pop()
        for i, layer in enumerate(config.layers):
            model.add(tf.keras.layers.Dense(layer, activation="relu"))
        model.add(tf.keras.layers.Dense(last_layer, activation="sigmoid"))

        model.compile(
            optimizer=tf.keras.optimizers.Adam(config.learning_rate),
            loss=tf.keras.losses.BinaryCrossentropy(),
            metrics=config.metrics,
        )

        train_target = train_dataset.pop(config.target_column)
        validation_target = validation_dataset.pop(config.target_column)
        model.fit(
            x=train_dataset,
            y=train_target,
            validation_data=(validation_dataset, validation_target),
            batch_size=config.batch_size,
            epochs=config.epochs,
        )
        model.summary()

        return model
CONFIG_CLASS (BaseTrainerConfig) pydantic-model

Config class for the tensorflow trainer

target_column: the name of the label column layers: the number of units in the fully connected layers input_shape: the shape of the input learning_rate: the learning rate metrics: the list of metrics to be computed epochs: the number of epochs batch_size: the size of the batch

Source code in zenml/integrations/tensorflow/steps/tensorflow_trainer.py
class TensorflowBinaryClassifierConfig(BaseTrainerConfig):
    """Config class for the tensorflow trainer

    target_column: the name of the label column
    layers: the number of units in the fully connected layers
    input_shape: the shape of the input
    learning_rate: the learning rate
    metrics: the list of metrics to be computed
    epochs: the number of epochs
    batch_size: the size of the batch
    """

    target_column: str
    layers: List[int] = [256, 64, 1]
    input_shape: Tuple[int] = (8,)
    learning_rate: float = 0.001
    metrics: List[str] = ["accuracy"]
    epochs: int = 50
    batch_size: int = 8
entrypoint(self, train_dataset, validation_dataset, config)

Main entrypoint for the tensorflow trainer

Parameters:

Name Type Description Default
train_dataset DataFrame

pd.DataFrame, the training dataset

required
validation_dataset DataFrame

pd.DataFrame, the validation dataset

required
config TensorflowBinaryClassifierConfig

the configuration of the step

required

Returns:

Type Description
Model

the trained tf.keras.Model

Source code in zenml/integrations/tensorflow/steps/tensorflow_trainer.py
def entrypoint(  # type: ignore[override]
    self,
    train_dataset: pd.DataFrame,
    validation_dataset: pd.DataFrame,
    config: TensorflowBinaryClassifierConfig,
) -> tf.keras.Model:
    """Main entrypoint for the tensorflow trainer

    Args:
        train_dataset: pd.DataFrame, the training dataset
        validation_dataset: pd.DataFrame, the validation dataset
        config: the configuration of the step
    Returns:
        the trained tf.keras.Model
    """
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.InputLayer(input_shape=config.input_shape))
    model.add(tf.keras.layers.Flatten())

    last_layer = config.layers.pop()
    for i, layer in enumerate(config.layers):
        model.add(tf.keras.layers.Dense(layer, activation="relu"))
    model.add(tf.keras.layers.Dense(last_layer, activation="sigmoid"))

    model.compile(
        optimizer=tf.keras.optimizers.Adam(config.learning_rate),
        loss=tf.keras.losses.BinaryCrossentropy(),
        metrics=config.metrics,
    )

    train_target = train_dataset.pop(config.target_column)
    validation_target = validation_dataset.pop(config.target_column)
    model.fit(
        x=train_dataset,
        y=train_target,
        validation_data=(validation_dataset, validation_target),
        batch_size=config.batch_size,
        epochs=config.epochs,
    )
    model.summary()

    return model
TensorflowBinaryClassifierConfig (BaseTrainerConfig) pydantic-model

Config class for the tensorflow trainer

target_column: the name of the label column layers: the number of units in the fully connected layers input_shape: the shape of the input learning_rate: the learning rate metrics: the list of metrics to be computed epochs: the number of epochs batch_size: the size of the batch

Source code in zenml/integrations/tensorflow/steps/tensorflow_trainer.py
class TensorflowBinaryClassifierConfig(BaseTrainerConfig):
    """Config class for the tensorflow trainer

    target_column: the name of the label column
    layers: the number of units in the fully connected layers
    input_shape: the shape of the input
    learning_rate: the learning rate
    metrics: the list of metrics to be computed
    epochs: the number of epochs
    batch_size: the size of the batch
    """

    target_column: str
    layers: List[int] = [256, 64, 1]
    input_shape: Tuple[int] = (8,)
    learning_rate: float = 0.001
    metrics: List[str] = ["accuracy"]
    epochs: int = 50
    batch_size: int = 8

visualizers special

tensorboard_visualizer
TensorboardVisualizer (BaseStepVisualizer)

The implementation of a Whylogs Visualizer.

Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
class TensorboardVisualizer(BaseStepVisualizer):
    """The implementation of a Whylogs Visualizer."""

    @classmethod
    def find_running_tensorboard_server(
        cls, logdir: str
    ) -> Optional[TensorBoardInfo]:
        """Find a local Tensorboard server instance running for the supplied
        logdir location and return its TCP port.

        Returns:
            The TensorBoardInfo describing the running Tensorboard server or
            None if no server is running for the supplied logdir location.
        """
        for server in get_all():
            if (
                server.logdir == logdir
                and server.pid
                and psutil.pid_exists(server.pid)
            ):
                return server
        return None

    def visualize(
        self,
        object: StepView,
        *args: Any,
        height: int = 800,
        **kwargs: Any,
    ) -> None:
        """Start a Tensorboard server to visualize all models logged as
        artifacts by the indicated step. The server will monitor and display
        all the models logged by past and future step runs.

        Args:
            object: StepView fetched from run.get_step().
            height: Height of the generated visualization.
        """
        for _, artifact_view in object.outputs.items():
            # filter out anything but model artifacts
            if artifact_view.type == ModelArtifact.TYPE_NAME:
                logdir = os.path.dirname(artifact_view.uri)

                # first check if a Tensorboard server is already running for
                # the same logdir location and use that one
                running_server = self.find_running_tensorboard_server(logdir)
                if running_server:
                    self.visualize_tensorboard(running_server.port, height)
                    return

                if sys.platform == "win32":
                    # Daemon service functionality is currently not supported on Windows
                    print(
                        "You can run:\n"
                        f"[italic green]    tensorboard --logdir {logdir}"
                        "[/italic green]\n"
                        "...to visualize the Tensorboard logs for your trained model."
                    )
                else:
                    # start a new Tensorboard server
                    service = TensorboardService(
                        TensorboardServiceConfig(
                            logdir=logdir,
                        )
                    )
                    service.start(timeout=20)
                    if service.endpoint.status.port:
                        self.visualize_tensorboard(
                            service.endpoint.status.port, height
                        )
                return

    def visualize_tensorboard(
        self,
        port: int,
        height: int,
    ) -> None:
        """Generate a visualization of a Tensorboard.

        Args:
            port: the TCP port where the Tensorboard server is listening for
                requests.
            height: Height of the generated visualization.
            logdir: The logdir location for the Tensorboard server.
        """
        if Environment.in_notebook():

            notebook.display(port, height=height)
            return

        print(
            "You can visit:\n"
            f"[italic green]    http://localhost:{port}/[/italic green]\n"
            "...to visualize the Tensorboard logs for your trained model."
        )

    def stop(
        self,
        object: StepView,
    ) -> None:
        """Stop the Tensorboard server previously started for a pipeline step.

        Args:
            object: StepView fetched from run.get_step().
        """
        for _, artifact_view in object.outputs.items():
            # filter out anything but model artifacts
            if artifact_view.type == ModelArtifact.TYPE_NAME:
                logdir = os.path.dirname(artifact_view.uri)

                # first check if a Tensorboard server is already running for
                # the same logdir location and use that one
                running_server = self.find_running_tensorboard_server(logdir)
                if not running_server:
                    return

                logger.debug(
                    "Stopping tensorboard server with PID '%d' ...",
                    running_server.pid,
                )
                try:
                    p = psutil.Process(running_server.pid)
                except psutil.Error:
                    logger.error(
                        "Could not find process for PID '%d' ...",
                        running_server.pid,
                    )
                    continue
                p.kill()
                return
find_running_tensorboard_server(logdir) classmethod

Find a local Tensorboard server instance running for the supplied logdir location and return its TCP port.

Returns:

Type Description
Optional[tensorboard.manager.TensorBoardInfo]

The TensorBoardInfo describing the running Tensorboard server or None if no server is running for the supplied logdir location.

Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
@classmethod
def find_running_tensorboard_server(
    cls, logdir: str
) -> Optional[TensorBoardInfo]:
    """Find a local Tensorboard server instance running for the supplied
    logdir location and return its TCP port.

    Returns:
        The TensorBoardInfo describing the running Tensorboard server or
        None if no server is running for the supplied logdir location.
    """
    for server in get_all():
        if (
            server.logdir == logdir
            and server.pid
            and psutil.pid_exists(server.pid)
        ):
            return server
    return None
stop(self, object)

Stop the Tensorboard server previously started for a pipeline step.

Parameters:

Name Type Description Default
object StepView

StepView fetched from run.get_step().

required
Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
def stop(
    self,
    object: StepView,
) -> None:
    """Stop the Tensorboard server previously started for a pipeline step.

    Args:
        object: StepView fetched from run.get_step().
    """
    for _, artifact_view in object.outputs.items():
        # filter out anything but model artifacts
        if artifact_view.type == ModelArtifact.TYPE_NAME:
            logdir = os.path.dirname(artifact_view.uri)

            # first check if a Tensorboard server is already running for
            # the same logdir location and use that one
            running_server = self.find_running_tensorboard_server(logdir)
            if not running_server:
                return

            logger.debug(
                "Stopping tensorboard server with PID '%d' ...",
                running_server.pid,
            )
            try:
                p = psutil.Process(running_server.pid)
            except psutil.Error:
                logger.error(
                    "Could not find process for PID '%d' ...",
                    running_server.pid,
                )
                continue
            p.kill()
            return
visualize(self, object, *args, *, height=800, **kwargs)

Start a Tensorboard server to visualize all models logged as artifacts by the indicated step. The server will monitor and display all the models logged by past and future step runs.

Parameters:

Name Type Description Default
object StepView

StepView fetched from run.get_step().

required
height int

Height of the generated visualization.

800
Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
def visualize(
    self,
    object: StepView,
    *args: Any,
    height: int = 800,
    **kwargs: Any,
) -> None:
    """Start a Tensorboard server to visualize all models logged as
    artifacts by the indicated step. The server will monitor and display
    all the models logged by past and future step runs.

    Args:
        object: StepView fetched from run.get_step().
        height: Height of the generated visualization.
    """
    for _, artifact_view in object.outputs.items():
        # filter out anything but model artifacts
        if artifact_view.type == ModelArtifact.TYPE_NAME:
            logdir = os.path.dirname(artifact_view.uri)

            # first check if a Tensorboard server is already running for
            # the same logdir location and use that one
            running_server = self.find_running_tensorboard_server(logdir)
            if running_server:
                self.visualize_tensorboard(running_server.port, height)
                return

            if sys.platform == "win32":
                # Daemon service functionality is currently not supported on Windows
                print(
                    "You can run:\n"
                    f"[italic green]    tensorboard --logdir {logdir}"
                    "[/italic green]\n"
                    "...to visualize the Tensorboard logs for your trained model."
                )
            else:
                # start a new Tensorboard server
                service = TensorboardService(
                    TensorboardServiceConfig(
                        logdir=logdir,
                    )
                )
                service.start(timeout=20)
                if service.endpoint.status.port:
                    self.visualize_tensorboard(
                        service.endpoint.status.port, height
                    )
            return
visualize_tensorboard(self, port, height)

Generate a visualization of a Tensorboard.

Parameters:

Name Type Description Default
port int

the TCP port where the Tensorboard server is listening for requests.

required
height int

Height of the generated visualization.

required
logdir

The logdir location for the Tensorboard server.

required
Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
def visualize_tensorboard(
    self,
    port: int,
    height: int,
) -> None:
    """Generate a visualization of a Tensorboard.

    Args:
        port: the TCP port where the Tensorboard server is listening for
            requests.
        height: Height of the generated visualization.
        logdir: The logdir location for the Tensorboard server.
    """
    if Environment.in_notebook():

        notebook.display(port, height=height)
        return

    print(
        "You can visit:\n"
        f"[italic green]    http://localhost:{port}/[/italic green]\n"
        "...to visualize the Tensorboard logs for your trained model."
    )
get_step(pipeline_name, step_name)

Get the StepView for the specified pipeline and step name.

Parameters:

Name Type Description Default
pipeline_name str

The name of the pipeline.

required
step_name str

The name of the step.

required

Returns:

Type Description
StepView

The StepView for the specified pipeline and step name.

Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
def get_step(pipeline_name: str, step_name: str) -> StepView:
    """Get the StepView for the specified pipeline and step name.

    Args:
        pipeline_name: The name of the pipeline.
        step_name: The name of the step.

    Returns:
        The StepView for the specified pipeline and step name.
    """
    repo = Repository()
    pipeline = repo.get_pipeline(pipeline_name)
    if pipeline is None:
        raise RuntimeError(f"No pipeline with name `{pipeline_name}` was found")

    last_run = pipeline.runs[-1]
    step = last_run.get_step(name=step_name)
    if step is None:
        raise RuntimeError(
            f"No pipeline step with name `{step_name}` was found in "
            f"pipeline `{pipeline_name}`"
        )
    return cast(StepView, step)
stop_tensorboard_server(pipeline_name, step_name)

Stop the Tensorboard server previously started for a pipeline step.

Parameters:

Name Type Description Default
pipeline_name str

the name of the pipeline

required
step_name str

pipeline step name

required
Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
def stop_tensorboard_server(pipeline_name: str, step_name: str) -> None:
    """Stop the Tensorboard server previously started for a pipeline step.

    Args:
        pipeline_name: the name of the pipeline
        step_name: pipeline step name
    """
    step = get_step(pipeline_name, step_name)
    TensorboardVisualizer().stop(step)
visualize_tensorboard(pipeline_name, step_name)

Start a Tensorboard server to visualize all models logged as output by the named pipeline step. The server will monitor and display all the models logged by past and future step runs.

Parameters:

Name Type Description Default
pipeline_name str

the name of the pipeline

required
step_name str

pipeline step name

required
Source code in zenml/integrations/tensorflow/visualizers/tensorboard_visualizer.py
def visualize_tensorboard(pipeline_name: str, step_name: str) -> None:
    """Start a Tensorboard server to visualize all models logged as output by
    the named pipeline step. The server will monitor and display all the models
    logged by past and future step runs.

    Args:
        pipeline_name: the name of the pipeline
        step_name: pipeline step name
    """
    step = get_step(pipeline_name, step_name)
    TensorboardVisualizer().visualize(step)

utils

get_integration_for_module(module_name)

Gets the integration class for a module inside an integration.

If the module given by module_name is not part of a ZenML integration, this method will return None. If it is part of a ZenML integration, it will return the integration class found inside the integration init file.

Source code in zenml/integrations/utils.py
def get_integration_for_module(module_name: str) -> Optional[Type[Integration]]:
    """Gets the integration class for a module inside an integration.

    If the module given by `module_name` is not part of a ZenML integration,
    this method will return `None`. If it is part of a ZenML integration,
    it will return the integration class found inside the integration
    __init__ file.
    """
    integration_prefix = "zenml.integrations."
    if not module_name.startswith(integration_prefix):
        return None

    integration_module_name = ".".join(module_name.split(".", 3)[:3])
    try:
        integration_module = sys.modules[integration_module_name]
    except KeyError:
        integration_module = importlib.import_module(integration_module_name)

    for name, member in inspect.getmembers(integration_module):
        if (
            member is not Integration
            and isinstance(member, IntegrationMeta)
            and issubclass(member, Integration)
        ):
            return cast(Type[Integration], member)

    return None

get_requirements_for_module(module_name)

Gets requirements for a module inside an integration.

If the module given by module_name is not part of a ZenML integration, this method will return an empty list. If it is part of a ZenML integration, it will return the list of requirements specified inside the integration class found inside the integration init file.

Source code in zenml/integrations/utils.py
def get_requirements_for_module(module_name: str) -> List[str]:
    """Gets requirements for a module inside an integration.

    If the module given by `module_name` is not part of a ZenML integration,
    this method will return an empty list. If it is part of a ZenML integration,
    it will return the list of requirements specified inside the integration
    class found inside the integration __init__ file.
    """
    integration = get_integration_for_module(module_name)
    return integration.REQUIREMENTS if integration else []

vertex special

The Vertex integration submodule provides a way to run ZenML pipelines in a Vertex AI environment.

VertexIntegration (Integration)

Definition of Vertex AI integration for ZenML.

Source code in zenml/integrations/vertex/__init__.py
class VertexIntegration(Integration):
    """Definition of Vertex AI integration for ZenML."""

    NAME = VERTEX
    REQUIREMENTS = ["google-cloud-aiplatform>=1.11.0"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the Vertex integration."""
        return [
            FlavorWrapper(
                name=VERTEX_STEP_OPERATOR_FLAVOR,
                source="zenml.integrations.vertex.step_operators.VertexStepOperator",
                type=StackComponentType.STEP_OPERATOR,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the Vertex integration.

Source code in zenml/integrations/vertex/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the Vertex integration."""
    return [
        FlavorWrapper(
            name=VERTEX_STEP_OPERATOR_FLAVOR,
            source="zenml.integrations.vertex.step_operators.VertexStepOperator",
            type=StackComponentType.STEP_OPERATOR,
            integration=cls.NAME,
        )
    ]

orchestrator special

vertex_ai_orchestrator
VertexOrchestrator (KubeflowOrchestrator) pydantic-model

Orchestrator responsible for running pipelines on Vertex AI.

Source code in zenml/integrations/vertex/orchestrator/vertex_ai_orchestrator.py
class VertexOrchestrator(KubeflowOrchestrator):
    """Orchestrator responsible for running pipelines on Vertex AI."""

    FLAVOR: ClassVar[str] = "vertex"

    def run(
        self,
        pipeline: "BasePipeline",
        stack: "Stack",
        runtime_configuration: "RuntimeConfiguration",
    ) -> Any:
        """Runs a pipeline on Vertex AI using the Kubeflow orchestrator."""
        raise NotImplementedError("Vertex AI orchestration is coming soon!")
        # super().run_pipeline(pipeline, stack, runtime_configuration)

        # aiplatform.init(
        #     project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_REGION
        # )

        # job = pipeline_jobs.PipelineJob(
        #     template_path=PIPELINE_DEFINITION_FILE, display_name=PIPELINE_NAME
        # )
        # job.submit()
run(self, pipeline, stack, runtime_configuration)

Runs a pipeline on Vertex AI using the Kubeflow orchestrator.

Source code in zenml/integrations/vertex/orchestrator/vertex_ai_orchestrator.py
def run(
    self,
    pipeline: "BasePipeline",
    stack: "Stack",
    runtime_configuration: "RuntimeConfiguration",
) -> Any:
    """Runs a pipeline on Vertex AI using the Kubeflow orchestrator."""
    raise NotImplementedError("Vertex AI orchestration is coming soon!")
    # super().run_pipeline(pipeline, stack, runtime_configuration)

    # aiplatform.init(
    #     project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_REGION
    # )

    # job = pipeline_jobs.PipelineJob(
    #     template_path=PIPELINE_DEFINITION_FILE, display_name=PIPELINE_NAME
    # )
    # job.submit()

step_operators special

vertex_step_operator

Code heavily inspired by TFX Implementation: https://github.com/tensorflow/tfx/blob/master/tfx/extensions/ google_cloud_ai_platform/training_clients.py

VertexStepOperator (BaseStepOperator) pydantic-model

Step operator to run a step on Vertex AI.

This class defines code that can set up a Vertex AI environment and run the ZenML entrypoint command in it.

Attributes:

Name Type Description
region str

Region name, e.g., europe-west1.

project Optional[str]

[Optional] GCP project name. If left None, inferred from the environment.

accelerator_type Optional[str]

[Optional] Accelerator type from list: https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec#AcceleratorType

accelerator_count int

[Optional] Defines number of accelerators to be used for the job.

machine_type str

[Optional] Machine type specified here: https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types

base_image Optional[str]

[Optional] Base image for building the custom job container.

encryption_spec_key_name Optional[str]

[Optional]: Encryption spec key name.

service_account_path Optional[str]

[Optional]: Path to service account file specifying credentials of the GCP user. If not provided, falls back to Default Credentials.

Source code in zenml/integrations/vertex/step_operators/vertex_step_operator.py
class VertexStepOperator(BaseStepOperator):
    """Step operator to run a step on Vertex AI.

    This class defines code that can set up a Vertex AI environment and run the
    ZenML entrypoint command in it.

    Attributes:
        region: Region name, e.g., `europe-west1`.
        project: [Optional] GCP project name. If left None, inferred from the
            environment.
        accelerator_type: [Optional] Accelerator type from list: https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec#AcceleratorType
        accelerator_count: [Optional] Defines number of accelerators to be
            used for the job.
        machine_type: [Optional] Machine type specified here: https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types
        base_image: [Optional] Base image for building the custom job container.
        encryption_spec_key_name: [Optional]: Encryption spec key name.
        service_account_path: [Optional]: Path to service account file
            specifying credentials of the GCP user. If not provided, falls back
            to Default Credentials.
    """

    region: str
    project: Optional[str] = None
    accelerator_type: Optional[str] = None
    accelerator_count: int = 0
    machine_type: str = "n1-standard-4"
    base_image: Optional[str] = None

    # customer managed encryption key resource name
    # will be applied to all Vertex AI resources if set
    encryption_spec_key_name: Optional[str] = None

    # path to google service account
    # environment default credentials used if not set
    service_account_path: Optional[str] = None

    # Class configuration
    FLAVOR: ClassVar[str] = VERTEX_STEP_OPERATOR_FLAVOR

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates that the stack contains a container registry."""

        def _ensure_local_orchestrator(stack: Stack) -> Tuple[bool, str]:
            # For now this only works on local orchestrator and GCP artifact
            #  store
            return (
                (
                    stack.orchestrator.FLAVOR == "local"
                    and stack.artifact_store.FLAVOR == "gcp"
                ),
                "Only local orchestrator and GCP artifact store are currently "
                "supported",
            )

        return StackValidator(
            required_components={StackComponentType.CONTAINER_REGISTRY},
            custom_validation_function=_ensure_local_orchestrator,
        )

    @property_validator("accelerator_type")
    def validate_accelerator_enum(cls, accelerator_type: Optional[str]) -> None:
        accepted_vals = list(
            aiplatform.gapic.AcceleratorType.__members__.keys()
        )
        if accelerator_type and accelerator_type.upper() not in accepted_vals:
            raise ValueError(
                f"Accelerator must be one of the following: {accepted_vals}"
            )

    def _get_authentication(
        self,
    ) -> Tuple[Optional[auth_credentials.Credentials], Optional[str]]:
        if self.service_account_path:
            credentials, project_id = load_credentials_from_file(
                self.service_account_path
            )
        else:
            credentials, project_id = default()
        return credentials, project_id

    def _build_and_push_docker_image(
        self,
        pipeline_name: str,
        requirements: List[str],
        entrypoint_command: List[str],
    ) -> str:
        repo = Repository()
        container_registry = repo.active_stack.container_registry

        if not container_registry:
            raise RuntimeError("Missing container registry")

        registry_uri = container_registry.uri.rstrip("/")
        image_name = f"{registry_uri}/zenml-vertex:{pipeline_name}"

        docker_utils.build_docker_image(
            build_context_path=get_source_root_path(),
            image_name=image_name,
            entrypoint=" ".join(entrypoint_command),
            requirements=set(requirements),
            base_image=self.base_image,
        )
        container_registry.push_image(image_name)
        return docker_utils.get_image_digest(image_name) or image_name

    def launch(
        self,
        pipeline_name: str,
        run_name: str,
        requirements: List[str],
        entrypoint_command: List[str],
    ) -> None:
        """Launches a step on Vertex AI.

        Args:
            pipeline_name: Name of the pipeline which the step to be executed
                is part of.
            run_name: Name of the pipeline run which the step to be executed
                is part of.
            entrypoint_command: Command that executes the step.
            requirements: List of pip requirements that must be installed
                inside the step operator environment.
        """
        job_labels = {"source": f"zenml-{__version__.replace('.', '_')}"}

        # Step 1: Authenticate with Google
        credentials, project_id = self._get_authentication()
        if self.project:
            if self.project != project_id:
                logger.warning(
                    f"Authenticated with project {project_id}, but this "
                    f"operator is configured to use project {self.project}."
                )
        else:
            self.project = project_id

        # Step 2: Build and push image
        image_name = self._build_and_push_docker_image(
            pipeline_name=pipeline_name,
            requirements=requirements,
            entrypoint_command=entrypoint_command,
        )

        # Step 3: Launch the job
        # The AI Platform services require regional API endpoints.
        client_options = {"api_endpoint": self.region + VERTEX_ENDPOINT_SUFFIX}
        # Initialize client that will be used to create and send requests.
        # This client only needs to be created once, and can be reused for multiple requests.
        client = aiplatform.gapic.JobServiceClient(
            credentials=credentials, client_options=client_options
        )
        custom_job = {
            "display_name": run_name,
            "job_spec": {
                "worker_pool_specs": [
                    {
                        "machine_spec": {
                            "machine_type": self.machine_type,
                            "accelerator_type": self.accelerator_type,
                            "accelerator_count": self.accelerator_count
                            if self.accelerator_type
                            else 0,
                        },
                        "replica_count": 1,
                        "container_spec": {
                            "image_uri": image_name,
                            "command": [],
                            "args": [],
                        },
                    }
                ]
            },
            "labels": job_labels,
            "encryption_spec": {"kmsKeyName": self.encryption_spec_key_name}
            if self.encryption_spec_key_name
            else {},
        }
        logger.debug("Vertex AI Job=%s", custom_job)

        parent = f"projects/{self.project}/locations/{self.region}"
        logger.info(
            "Submitting custom job='%s', path='%s' to Vertex AI Training.",
            custom_job["display_name"],
            parent,
        )
        response = client.create_custom_job(
            parent=parent, custom_job=custom_job
        )
        logger.debug("Vertex AI response:", response)

        # Step 4: Monitor the job

        # Monitors the long-running operation by polling the job state
        # periodically, and retries the polling when a transient connectivity
        # issue is encountered.
        #
        # Long-running operation monitoring:
        #   The possible states of "get job" response can be found at
        #   https://cloud.google.com/ai-platform/training/docs/reference/rest/v1/projects.jobs#State
        #   where SUCCEEDED/FAILED/CANCELED are considered to be final states.
        #   The following logic will keep polling the state of the job until
        #   the job enters a final state.
        #
        # During the polling, if a connection error was encountered, the GET
        # request will be retried by recreating the Python API client to
        # refresh the lifecycle of the connection being used. See
        # https://github.com/googleapis/google-api-python-client/issues/218
        # for a detailed description of the problem. If the error persists for
        # _CONNECTION_ERROR_RETRY_LIMIT consecutive attempts, the function
        # will raise ConnectionError.
        retry_count = 0
        job_id = response.name

        while response.state not in VERTEX_JOB_STATES_COMPLETED:
            time.sleep(POLLING_INTERVAL_IN_SECONDS)
            try:
                response = client.get_custom_job(name=job_id)
                retry_count = 0
            # Handle transient connection error.
            except ConnectionError as err:
                if retry_count < CONNECTION_ERROR_RETRY_LIMIT:
                    retry_count += 1
                    logger.warning(
                        "ConnectionError (%s) encountered when polling job: "
                        "%s. Trying to recreate the API client.",
                        err,
                        job_id,
                    )
                    # Recreate the Python API client.
                    client = aiplatform.gapic.JobServiceClient(
                        client_options=client_options
                    )
                else:
                    logger.error(
                        "Request failed after %s retries.",
                        CONNECTION_ERROR_RETRY_LIMIT,
                    )
                    raise

            if response.state in VERTEX_JOB_STATES_FAILED:
                err_msg = (
                    "Job '{}' did not succeed.  Detailed response {}.".format(
                        job_id, response
                    )
                )
                logger.error(err_msg)
                raise RuntimeError(err_msg)

        # Cloud training complete
        logger.info("Job '%s' successful.", job_id)
validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates that the stack contains a container registry.

launch(self, pipeline_name, run_name, requirements, entrypoint_command)

Launches a step on Vertex AI.

Parameters:

Name Type Description Default
pipeline_name str

Name of the pipeline which the step to be executed is part of.

required
run_name str

Name of the pipeline run which the step to be executed is part of.

required
entrypoint_command List[str]

Command that executes the step.

required
requirements List[str]

List of pip requirements that must be installed inside the step operator environment.

required
Source code in zenml/integrations/vertex/step_operators/vertex_step_operator.py
def launch(
    self,
    pipeline_name: str,
    run_name: str,
    requirements: List[str],
    entrypoint_command: List[str],
) -> None:
    """Launches a step on Vertex AI.

    Args:
        pipeline_name: Name of the pipeline which the step to be executed
            is part of.
        run_name: Name of the pipeline run which the step to be executed
            is part of.
        entrypoint_command: Command that executes the step.
        requirements: List of pip requirements that must be installed
            inside the step operator environment.
    """
    job_labels = {"source": f"zenml-{__version__.replace('.', '_')}"}

    # Step 1: Authenticate with Google
    credentials, project_id = self._get_authentication()
    if self.project:
        if self.project != project_id:
            logger.warning(
                f"Authenticated with project {project_id}, but this "
                f"operator is configured to use project {self.project}."
            )
    else:
        self.project = project_id

    # Step 2: Build and push image
    image_name = self._build_and_push_docker_image(
        pipeline_name=pipeline_name,
        requirements=requirements,
        entrypoint_command=entrypoint_command,
    )

    # Step 3: Launch the job
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": self.region + VERTEX_ENDPOINT_SUFFIX}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(
        credentials=credentials, client_options=client_options
    )
    custom_job = {
        "display_name": run_name,
        "job_spec": {
            "worker_pool_specs": [
                {
                    "machine_spec": {
                        "machine_type": self.machine_type,
                        "accelerator_type": self.accelerator_type,
                        "accelerator_count": self.accelerator_count
                        if self.accelerator_type
                        else 0,
                    },
                    "replica_count": 1,
                    "container_spec": {
                        "image_uri": image_name,
                        "command": [],
                        "args": [],
                    },
                }
            ]
        },
        "labels": job_labels,
        "encryption_spec": {"kmsKeyName": self.encryption_spec_key_name}
        if self.encryption_spec_key_name
        else {},
    }
    logger.debug("Vertex AI Job=%s", custom_job)

    parent = f"projects/{self.project}/locations/{self.region}"
    logger.info(
        "Submitting custom job='%s', path='%s' to Vertex AI Training.",
        custom_job["display_name"],
        parent,
    )
    response = client.create_custom_job(
        parent=parent, custom_job=custom_job
    )
    logger.debug("Vertex AI response:", response)

    # Step 4: Monitor the job

    # Monitors the long-running operation by polling the job state
    # periodically, and retries the polling when a transient connectivity
    # issue is encountered.
    #
    # Long-running operation monitoring:
    #   The possible states of "get job" response can be found at
    #   https://cloud.google.com/ai-platform/training/docs/reference/rest/v1/projects.jobs#State
    #   where SUCCEEDED/FAILED/CANCELED are considered to be final states.
    #   The following logic will keep polling the state of the job until
    #   the job enters a final state.
    #
    # During the polling, if a connection error was encountered, the GET
    # request will be retried by recreating the Python API client to
    # refresh the lifecycle of the connection being used. See
    # https://github.com/googleapis/google-api-python-client/issues/218
    # for a detailed description of the problem. If the error persists for
    # _CONNECTION_ERROR_RETRY_LIMIT consecutive attempts, the function
    # will raise ConnectionError.
    retry_count = 0
    job_id = response.name

    while response.state not in VERTEX_JOB_STATES_COMPLETED:
        time.sleep(POLLING_INTERVAL_IN_SECONDS)
        try:
            response = client.get_custom_job(name=job_id)
            retry_count = 0
        # Handle transient connection error.
        except ConnectionError as err:
            if retry_count < CONNECTION_ERROR_RETRY_LIMIT:
                retry_count += 1
                logger.warning(
                    "ConnectionError (%s) encountered when polling job: "
                    "%s. Trying to recreate the API client.",
                    err,
                    job_id,
                )
                # Recreate the Python API client.
                client = aiplatform.gapic.JobServiceClient(
                    client_options=client_options
                )
            else:
                logger.error(
                    "Request failed after %s retries.",
                    CONNECTION_ERROR_RETRY_LIMIT,
                )
                raise

        if response.state in VERTEX_JOB_STATES_FAILED:
            err_msg = (
                "Job '{}' did not succeed.  Detailed response {}.".format(
                    job_id, response
                )
            )
            logger.error(err_msg)
            raise RuntimeError(err_msg)

    # Cloud training complete
    logger.info("Job '%s' successful.", job_id)

wandb special

The wandb integrations currently enables you to use wandb tracking as a convenient way to visualize your experiment runs within the wandb ui

WandbIntegration (Integration)

Definition of Plotly integration for ZenML.

Source code in zenml/integrations/wandb/__init__.py
class WandbIntegration(Integration):
    """Definition of Plotly integration for ZenML."""

    NAME = WANDB
    REQUIREMENTS = ["wandb>=0.12.12", "Pillow>=9.1.0"]

    @classmethod
    def flavors(cls) -> List[FlavorWrapper]:
        """Declare the stack component flavors for the MLflow integration"""
        return [
            FlavorWrapper(
                name=WANDB_EXPERIMENT_TRACKER_FLAVOR,
                source="zenml.integrations.wandb.experiment_trackers.WandbExperimentTracker",
                type=StackComponentType.EXPERIMENT_TRACKER,
                integration=cls.NAME,
            )
        ]
flavors() classmethod

Declare the stack component flavors for the MLflow integration

Source code in zenml/integrations/wandb/__init__.py
@classmethod
def flavors(cls) -> List[FlavorWrapper]:
    """Declare the stack component flavors for the MLflow integration"""
    return [
        FlavorWrapper(
            name=WANDB_EXPERIMENT_TRACKER_FLAVOR,
            source="zenml.integrations.wandb.experiment_trackers.WandbExperimentTracker",
            type=StackComponentType.EXPERIMENT_TRACKER,
            integration=cls.NAME,
        )
    ]

experiment_trackers special

wandb_experiment_tracker
WandbExperimentTracker (BaseExperimentTracker) pydantic-model

Stores wandb configuration options.

ZenML should take care of configuring wandb for you, but should you still need access to the configuration inside your step you can do it using a step context:

from zenml.steps import StepContext

@enable_wandb
@step
def my_step(context: StepContext, ...)
    context.stack.experiment_tracker  # get the tracking_uri etc. from here

Attributes:

Name Type Description
entity Optional[str]

Name of an existing wandb entity.

project_name Optional[str]

Name of an existing wandb project to log to.

api_key str

API key to should be authorized to log to the configured wandb entity and project.

Source code in zenml/integrations/wandb/experiment_trackers/wandb_experiment_tracker.py
class WandbExperimentTracker(BaseExperimentTracker):
    """Stores wandb configuration options.

    ZenML should take care of configuring wandb for you, but should you still
    need access to the configuration inside your step you can do it using a
    step context:
    ```python
    from zenml.steps import StepContext

    @enable_wandb
    @step
    def my_step(context: StepContext, ...)
        context.stack.experiment_tracker  # get the tracking_uri etc. from here
    ```

    Attributes:
        entity: Name of an existing wandb entity.
        project_name: Name of an existing wandb project to log to.
        api_key: API key to should be authorized to log to the configured wandb
            entity and project.
    """

    api_key: str
    entity: Optional[str] = None
    project_name: Optional[str] = None

    # Class Configuration
    FLAVOR: ClassVar[str] = WANDB_EXPERIMENT_TRACKER_FLAVOR

    def prepare_step_run(self) -> None:
        """Sets the wandb api key."""
        os.environ[WANDB_API_KEY] = self.api_key

    @contextmanager
    def activate_wandb_run(
        self,
        run_name: str,
        tags: Tuple[str, ...] = (),
        settings: Optional[wandb.Settings] = None,
    ) -> Iterator[None]:
        """Activates a wandb run for the duration of this context manager.

        Anything logged to wandb that is run while this context manager is
        active will automatically log to the same wandb run configured by the
        run name passed as an argument to this function.

        Args:
            run_name: Name of the wandb run to create.
            tags: Tags to attach to the wandb run.
            settings: Additional settings for the wandb run.
        """
        try:
            logger.info(
                f"Initializing wandb with project name: {self.project_name}, "
                f"run_name: {run_name}, entity: {self.entity}."
            )
            wandb.init(
                project=self.project_name,
                name=run_name,
                entity=self.entity,
                settings=settings,
                tags=tags,
            )
            yield
        finally:
            wandb.finish()
activate_wandb_run(self, run_name, tags=(), settings=None)

Activates a wandb run for the duration of this context manager.

Anything logged to wandb that is run while this context manager is active will automatically log to the same wandb run configured by the run name passed as an argument to this function.

Parameters:

Name Type Description Default
run_name str

Name of the wandb run to create.

required
tags Tuple[str, ...]

Tags to attach to the wandb run.

()
settings Optional[wandb.sdk.wandb_settings.Settings]

Additional settings for the wandb run.

None
Source code in zenml/integrations/wandb/experiment_trackers/wandb_experiment_tracker.py
@contextmanager
def activate_wandb_run(
    self,
    run_name: str,
    tags: Tuple[str, ...] = (),
    settings: Optional[wandb.Settings] = None,
) -> Iterator[None]:
    """Activates a wandb run for the duration of this context manager.

    Anything logged to wandb that is run while this context manager is
    active will automatically log to the same wandb run configured by the
    run name passed as an argument to this function.

    Args:
        run_name: Name of the wandb run to create.
        tags: Tags to attach to the wandb run.
        settings: Additional settings for the wandb run.
    """
    try:
        logger.info(
            f"Initializing wandb with project name: {self.project_name}, "
            f"run_name: {run_name}, entity: {self.entity}."
        )
        wandb.init(
            project=self.project_name,
            name=run_name,
            entity=self.entity,
            settings=settings,
            tags=tags,
        )
        yield
    finally:
        wandb.finish()
prepare_step_run(self)

Sets the wandb api key.

Source code in zenml/integrations/wandb/experiment_trackers/wandb_experiment_tracker.py
def prepare_step_run(self) -> None:
    """Sets the wandb api key."""
    os.environ[WANDB_API_KEY] = self.api_key

wandb_step_decorator

enable_wandb(_step=None, *, settings=None)

Decorator to enable wandb for a step function.

Apply this decorator to a ZenML pipeline step to enable wandb experiment tracking. The wandb tracking configuration (project name, experiment name, entity) will be automatically configured before the step code is executed, so the step can simply use the wandb module to log metrics and artifacts, like so:

@enable_wandb
@step
def tf_evaluator(
    x_test: np.ndarray,
    y_test: np.ndarray,
    model: tf.keras.Model,
) -> float:
    _, test_acc = model.evaluate(x_test, y_test, verbose=2)
    wandb.log_metric("val_accuracy", test_acc)
    return test_acc

All wandb artifacts and metrics logged from all the steps in a pipeline run are by default grouped under a single experiment named after the pipeline. To log wandb artifacts and metrics from a step in a separate wandb experiment, pass a custom experiment_name argument value to the decorator.

Parameters:

Name Type Description Default
_step Optional[~S]

The decorated step class.

None
project_name

Name of project.

required
experiment_name

optional wandb experiment name to use for the step. If not provided, the name of the pipeline in the context of which the step is executed will be used as experiment name.

required

Returns:

Type Description
Union[~S, Callable[[~S], ~S]]

The inner decorator which enhances the input step class with wandb tracking functionality

Source code in zenml/integrations/wandb/wandb_step_decorator.py
def enable_wandb(
    _step: Optional[S] = None, *, settings: Optional[wandb.Settings] = None
) -> Union[S, Callable[[S], S]]:
    """Decorator to enable wandb for a step function.

    Apply this decorator to a ZenML pipeline step to enable wandb experiment
    tracking. The wandb tracking configuration (project name, experiment name,
    entity) will be automatically configured before the step code is executed,
    so the step can simply use the `wandb` module to log metrics and artifacts,
    like so:

    ```python
    @enable_wandb
    @step
    def tf_evaluator(
        x_test: np.ndarray,
        y_test: np.ndarray,
        model: tf.keras.Model,
    ) -> float:
        _, test_acc = model.evaluate(x_test, y_test, verbose=2)
        wandb.log_metric("val_accuracy", test_acc)
        return test_acc
    ```

    All wandb artifacts and metrics logged from all the steps in a pipeline
    run are by default grouped under a single experiment named after the
    pipeline. To log wandb artifacts and metrics from a step in a separate
    wandb experiment, pass a custom `experiment_name` argument value to the
    decorator.

    Args:
        _step: The decorated step class.
        project_name: Name of project.
        experiment_name: optional wandb experiment name to use for the step.
            If not provided, the name of the pipeline in the context of which
            the step is executed will be used as experiment name.

    Returns:
        The inner decorator which enhances the input step class with wandb
        tracking functionality
    """

    def inner_decorator(_step: S) -> S:
        """Inner decorator for step enable_wandb."""

        logger.debug(
            "Applying 'enable_wandb' decorator to step %s", _step.__name__
        )
        if not issubclass(_step, BaseStep):
            raise RuntimeError(
                "The `enable_wandb` decorator can only be applied to a ZenML "
                "`step` decorated function or a BaseStep subclass."
            )
        source_fn = getattr(_step, STEP_INNER_FUNC_NAME)
        return cast(
            S,
            type(  # noqa
                _step.__name__,
                (_step,),
                {
                    STEP_INNER_FUNC_NAME: staticmethod(
                        wandb_step_entrypoint(
                            settings=settings,
                        )(source_fn)
                    ),
                    "__module__": _step.__module__,
                },
            ),
        )

    if _step is None:
        return inner_decorator
    else:
        return inner_decorator(_step)
wandb_step_entrypoint(settings=None)

Decorator for a step entrypoint to enable wandb.

Parameters:

Name Type Description Default
project_name

Name of wandb project.

required
experiment_name

optional wandb experiment name to use for the step. If not provided, the name of the pipeline in the context of which the step is executed will be used as experiment name.

required

Returns:

Type Description
Callable[[~F], ~F]

the input function enhanced with wandb profiling functionality

Source code in zenml/integrations/wandb/wandb_step_decorator.py
def wandb_step_entrypoint(
    settings: Optional[wandb.Settings] = None,
) -> Callable[[F], F]:
    """Decorator for a step entrypoint to enable wandb.

    Args:
        project_name: Name of wandb project.
        experiment_name: optional wandb experiment name to use for the step.
            If not provided, the name of the pipeline in the context of which
            the step is executed will be used as experiment name.

    Returns:
        the input function enhanced with wandb profiling functionality
    """

    def inner_decorator(func: F) -> F:
        """Inner decorator for step entrypoint."""
        logger.debug(
            "Applying 'wandb_step_entrypoint' decorator to step entrypoint %s",
            func.__name__,
        )

        @functools.wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:  # noqa
            """Wrapper function for decorator"""
            logger.debug(
                "Setting up wandb backend before running step entrypoint %s",
                func.__name__,
            )
            step_env = Environment().step_environment
            run_name = f"{step_env.pipeline_run_id}_{step_env.step_name}"
            tags = (step_env.pipeline_name, step_env.pipeline_run_id)

            experiment_tracker = Repository(  # type: ignore[call-arg]
                skip_repository_check=True
            ).active_stack.experiment_tracker

            if not isinstance(experiment_tracker, WandbExperimentTracker):
                raise ValueError(
                    "The active stack needs to have a wandb experiment tracker "
                    "component registered to be able to track experiments "
                    "using wandb. You can create a new stack with a wandb "
                    "experiment tracker component or update your existing "
                    "stack to add this component, e.g.:\n\n"
                    "  'zenml experiment-tracker register wandb_tracker "
                    "--type=wandb --entity=<WANDB_ENTITY> --project_name="
                    "<WANDB_PROJECT_NAME> --api_key=<WANDB_API_KEY>'\n"
                    "  'zenml stack register stack-name -e wandb_tracker ...'\n"
                )

            with experiment_tracker.activate_wandb_run(
                run_name=run_name,
                tags=tags,
                settings=settings,
            ):
                return func(*args, **kwargs)

        return cast(F, wrapper)

    return inner_decorator

whylogs special

WhylogsIntegration (Integration)

Definition of whylogs integration for ZenML.

Source code in zenml/integrations/whylogs/__init__.py
class WhylogsIntegration(Integration):
    """Definition of [whylogs](https://github.com/whylabs/whylogs)
    integration for ZenML."""

    NAME = WHYLOGS
    REQUIREMENTS = ["whylogs>=0.6.22", "pybars3>=0.9.7"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.whylogs import materializers  # noqa
        from zenml.integrations.whylogs import visualizers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/whylogs/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.whylogs import materializers  # noqa
    from zenml.integrations.whylogs import visualizers  # noqa

materializers special

whylogs_materializer
WhylogsMaterializer (BaseMaterializer)

Materializer to read/write whylogs dataset profiles.

Source code in zenml/integrations/whylogs/materializers/whylogs_materializer.py
class WhylogsMaterializer(BaseMaterializer):
    """Materializer to read/write whylogs dataset profiles."""

    ASSOCIATED_TYPES = (DatasetProfile,)
    ASSOCIATED_ARTIFACT_TYPES = (StatisticsArtifact,)

    def handle_input(self, data_type: Type[Any]) -> DatasetProfile:
        """Reads and returns a whylogs DatasetProfile.

        Returns:
            A loaded whylogs DatasetProfile.
        """
        super().handle_input(data_type)
        filepath = os.path.join(self.artifact.uri, PROFILE_FILENAME)
        with fileio.open(filepath, "rb") as f:
            protobuf = DatasetProfile.parse_delimited(f.read())[0]
        return protobuf

    def handle_return(self, profile: DatasetProfile) -> None:
        """Writes a whylogs DatasetProfile.

        Args:
            profile: A DatasetProfile object from whylogs.
        """
        super().handle_return(profile)
        filepath = os.path.join(self.artifact.uri, PROFILE_FILENAME)
        protobuf = profile.serialize_delimited()
        with fileio.open(filepath, "wb") as f:
            f.write(protobuf)

        # TODO [ENG-439]: uploading profiles to whylabs should be enabled and
        #  configurable at step level or pipeline level instead of being
        #  globally enabled.
        if os.environ.get("WHYLABS_DEFAULT_ORG_ID"):
            upload_profile(profile)
handle_input(self, data_type)

Reads and returns a whylogs DatasetProfile.

Returns:

Type Description
DatasetProfile

A loaded whylogs DatasetProfile.

Source code in zenml/integrations/whylogs/materializers/whylogs_materializer.py
def handle_input(self, data_type: Type[Any]) -> DatasetProfile:
    """Reads and returns a whylogs DatasetProfile.

    Returns:
        A loaded whylogs DatasetProfile.
    """
    super().handle_input(data_type)
    filepath = os.path.join(self.artifact.uri, PROFILE_FILENAME)
    with fileio.open(filepath, "rb") as f:
        protobuf = DatasetProfile.parse_delimited(f.read())[0]
    return protobuf
handle_return(self, profile)

Writes a whylogs DatasetProfile.

Parameters:

Name Type Description Default
profile DatasetProfile

A DatasetProfile object from whylogs.

required
Source code in zenml/integrations/whylogs/materializers/whylogs_materializer.py
def handle_return(self, profile: DatasetProfile) -> None:
    """Writes a whylogs DatasetProfile.

    Args:
        profile: A DatasetProfile object from whylogs.
    """
    super().handle_return(profile)
    filepath = os.path.join(self.artifact.uri, PROFILE_FILENAME)
    protobuf = profile.serialize_delimited()
    with fileio.open(filepath, "wb") as f:
        f.write(protobuf)

    # TODO [ENG-439]: uploading profiles to whylabs should be enabled and
    #  configurable at step level or pipeline level instead of being
    #  globally enabled.
    if os.environ.get("WHYLABS_DEFAULT_ORG_ID"):
        upload_profile(profile)

steps special

whylogs_profiler
WhylogsProfilerConfig (BaseAnalyzerConfig) pydantic-model

Config class for the WhylogsProfiler step.

Attributes:

Name Type Description
dataset_name Optional[str]

the name of the dataset (Optional). If not specified, the pipeline step name is used

dataset_timestamp Optional[datetime.datetime]

timestamp to associate with the generated dataset profile (Optional). The current time is used if not supplied.

tags Optional[Dict[str, str]]

custom metadata tags associated with the whylogs profile

Also see WhylogsContext.log_dataframe.

Source code in zenml/integrations/whylogs/steps/whylogs_profiler.py
class WhylogsProfilerConfig(BaseAnalyzerConfig):
    """Config class for the WhylogsProfiler step.

    Attributes:

        dataset_name: the name of the dataset (Optional). If not specified,
            the pipeline step name is used
        dataset_timestamp: timestamp to associate with the generated
            dataset profile (Optional). The current time is used if not
            supplied.
        tags: custom metadata tags associated with the whylogs profile

    Also see `WhylogsContext.log_dataframe`.
    """

    dataset_name: Optional[str] = None
    dataset_timestamp: Optional[datetime.datetime]
    tags: Optional[Dict[str, str]] = None
WhylogsProfilerStep (BaseAnalyzerStep)

Simple step implementation which generates a whylogs data profile from a a given pd.DataFrame

Source code in zenml/integrations/whylogs/steps/whylogs_profiler.py
class WhylogsProfilerStep(BaseAnalyzerStep):
    """Simple step implementation which generates a whylogs data profile from a
    a given pd.DataFrame"""

    def entrypoint(  # type: ignore[override]
        self,
        dataset: pd.DataFrame,
        config: WhylogsProfilerConfig,
        context: StepContext,
    ) -> DatasetProfile:
        """Main entrypoint function for the whylogs profiler

        Args:
            dataset: pd.DataFrame, the given dataset
            config: the configuration of the step
            context: the context of the step
        Returns:
            whylogs profile with statistics generated for the input dataset
        """
        whylogs_context = WhylogsContext(context)
        profile = whylogs_context.profile_dataframe(
            dataset, dataset_name=config.dataset_name, tags=config.tags
        )
        return profile
CONFIG_CLASS (BaseAnalyzerConfig) pydantic-model

Config class for the WhylogsProfiler step.

Attributes:

Name Type Description
dataset_name Optional[str]

the name of the dataset (Optional). If not specified, the pipeline step name is used

dataset_timestamp Optional[datetime.datetime]

timestamp to associate with the generated dataset profile (Optional). The current time is used if not supplied.

tags Optional[Dict[str, str]]

custom metadata tags associated with the whylogs profile

Also see WhylogsContext.log_dataframe.

Source code in zenml/integrations/whylogs/steps/whylogs_profiler.py
class WhylogsProfilerConfig(BaseAnalyzerConfig):
    """Config class for the WhylogsProfiler step.

    Attributes:

        dataset_name: the name of the dataset (Optional). If not specified,
            the pipeline step name is used
        dataset_timestamp: timestamp to associate with the generated
            dataset profile (Optional). The current time is used if not
            supplied.
        tags: custom metadata tags associated with the whylogs profile

    Also see `WhylogsContext.log_dataframe`.
    """

    dataset_name: Optional[str] = None
    dataset_timestamp: Optional[datetime.datetime]
    tags: Optional[Dict[str, str]] = None
entrypoint(self, dataset, config, context)

Main entrypoint function for the whylogs profiler

Parameters:

Name Type Description Default
dataset DataFrame

pd.DataFrame, the given dataset

required
config WhylogsProfilerConfig

the configuration of the step

required
context StepContext

the context of the step

required

Returns:

Type Description
DatasetProfile

whylogs profile with statistics generated for the input dataset

Source code in zenml/integrations/whylogs/steps/whylogs_profiler.py
def entrypoint(  # type: ignore[override]
    self,
    dataset: pd.DataFrame,
    config: WhylogsProfilerConfig,
    context: StepContext,
) -> DatasetProfile:
    """Main entrypoint function for the whylogs profiler

    Args:
        dataset: pd.DataFrame, the given dataset
        config: the configuration of the step
        context: the context of the step
    Returns:
        whylogs profile with statistics generated for the input dataset
    """
    whylogs_context = WhylogsContext(context)
    profile = whylogs_context.profile_dataframe(
        dataset, dataset_name=config.dataset_name, tags=config.tags
    )
    return profile
whylogs_profiler_step(step_name, enable_cache=None, dataset_name=None, dataset_timestamp=None, tags=None)

Shortcut function to create a new instance of the WhylogsProfilerStep step.

The returned WhylogsProfilerStep can be used in a pipeline to generate a whylogs DatasetProfile from a given pd.DataFrame and save it as an artifact.

Parameters:

Name Type Description Default
step_name str

The name of the step

required
enable_cache Optional[bool]

Specify whether caching is enabled for this step. If no value is passed, caching is enabled by default

None
dataset_name Optional[str]

the dataset name to be used for the whylogs profile (Optional). If not specified, the step name is used

None
dataset_timestamp Optional[datetime.datetime]

timestamp to associate with the generated dataset profile (Optional). The current time is used if not supplied.

None
tags Optional[Dict[str, str]]

custom metadata tags associated with the whylogs profile

None

Returns:

Type Description
WhylogsProfilerStep

a WhylogsProfilerStep step instance

Source code in zenml/integrations/whylogs/steps/whylogs_profiler.py
def whylogs_profiler_step(
    step_name: str,
    enable_cache: Optional[bool] = None,
    dataset_name: Optional[str] = None,
    dataset_timestamp: Optional[datetime.datetime] = None,
    tags: Optional[Dict[str, str]] = None,
) -> WhylogsProfilerStep:
    """Shortcut function to create a new instance of the WhylogsProfilerStep step.

    The returned WhylogsProfilerStep can be used in a pipeline to generate a
    whylogs DatasetProfile from a given pd.DataFrame and save it as an artifact.

    Args:
        step_name: The name of the step
        enable_cache: Specify whether caching is enabled for this step. If no
            value is passed, caching is enabled by default
        dataset_name: the dataset name to be used for the whylogs profile
            (Optional). If not specified, the step name is used
        dataset_timestamp: timestamp to associate with the generated
            dataset profile (Optional). The current time is used if not
            supplied.
        tags: custom metadata tags associated with the whylogs profile
    Returns:
        a WhylogsProfilerStep step instance
    """

    # enable cache explicitly to compensate for the fact that this step
    # takes in a context object
    if enable_cache is None:
        enable_cache = True

    step_type = type(
        step_name,
        (WhylogsProfilerStep,),
        {
            INSTANCE_CONFIGURATION: {
                PARAM_ENABLE_CACHE: enable_cache,
                PARAM_CREATED_BY_FUNCTIONAL_API: True,
            },
        },
    )

    return cast(
        WhylogsProfilerStep,
        step_type(
            WhylogsProfilerConfig(
                dataset_name=dataset_name,
                dataset_timestamp=dataset_timestamp,
                tags=tags,
            )
        ),
    )

visualizers special

whylogs_visualizer
WhylogsPlots (StrEnum)

All supported whylogs plot types.

Source code in zenml/integrations/whylogs/visualizers/whylogs_visualizer.py
class WhylogsPlots(StrEnum):
    """All supported whylogs plot types."""

    DISTRIBUTION = "plot_distribution"
    MISSING_VALUES = "plot_missing_values"
    UNIQUENESS = "plot_uniqueness"
    DATA_TYPES = "plot_data_types"
    STRING_LENGTH = "plot_string_length"
    TOKEN_LENGTH = "plot_token_length"
    CHAR_POS = "plot_char_pos"
    STRING = "plot_string"
WhylogsVisualizer (BaseStepVisualizer)

The implementation of a Whylogs Visualizer.

Source code in zenml/integrations/whylogs/visualizers/whylogs_visualizer.py
class WhylogsVisualizer(BaseStepVisualizer):
    """The implementation of a Whylogs Visualizer."""

    def visualize(
        self,
        object: StepView,
        *args: Any,
        plots: Optional[List[WhylogsPlots]] = None,
        **kwargs: Any,
    ) -> None:
        """Visualize all whylogs dataset profiles present as outputs in the
        step view

        Args:
            object: StepView fetched from run.get_step().
            plots: optional list of whylogs plots to visualize. Defaults to
                using all available plot types if not set
        """
        whylogs_artifact_datatype = (
            f"{DatasetProfile.__module__}.{DatasetProfile.__name__}"
        )
        for artifact_name, artifact_view in object.outputs.items():
            # filter out anything but whylog dataset profile artifacts
            if artifact_view.data_type == whylogs_artifact_datatype:
                profile = artifact_view.read()
                # whylogs doesn't currently support visualizing multiple
                # non-related profiles side-by-side, so we open them in
                # separate viewers for now
                self.visualize_profile(artifact_name, profile, plots)

    @staticmethod
    def _get_plot_method(
        visualizer: ProfileVisualizer, plot: WhylogsPlots
    ) -> Any:
        """Get the Whylogs ProfileVisualizer plot method corresponding to a
        WhylogsPlots enum value.

        Args:
            visualizer: a ProfileVisualizer instance
            plot: a WhylogsPlots enum value

        Raises:
            ValueError: if the supplied WhylogsPlots enum value does not
                correspond to a valid ProfileVisualizer plot method

        Returns:
            The ProfileVisualizer plot method corresponding to the input
            WhylogsPlots enum value
        """
        plot_method = getattr(visualizer, plot, None)
        if plot_method is None:
            nl = "\n"
            raise ValueError(
                f"Invalid whylogs plot type: {plot} \n\n"
                f"Valid and supported options are: {nl}- "
                f'{f"{nl}- ".join(WhylogsPlots.names())}'
            )
        return plot_method

    def visualize_profile(
        self,
        name: str,
        profile: DatasetProfile,
        plots: Optional[List[WhylogsPlots]] = None,
    ) -> None:
        """Generate a visualization of a whylogs dataset profile.

        Args:
            name: name identifying the profile if multiple profiles are
                displayed at the same time
            profile: whylogs DatasetProfile to visualize
            plots: optional list of whylogs plots to visualize. Defaults to
                using all available plot types if not set
        """
        if Environment.in_notebook():
            from IPython.core.display import display

            if not plots:
                # default to using all plots if none are supplied
                plots = list(WhylogsPlots)

            for column in sorted(profile.columns):
                for plot in plots:
                    visualizer = ProfileVisualizer()
                    visualizer.set_profiles([profile])
                    plot_method = self._get_plot_method(visualizer, plot)
                    display(plot_method(column))
        else:
            logger.warning(
                "The magic functions are only usable in a Jupyter notebook."
            )
            with tempfile.NamedTemporaryFile(
                delete=False, suffix=f"-{name}.html"
            ) as f:
                logger.info("Opening %s in a new browser.." % f.name)
                profile_viewer([profile], output_path=f.name)
visualize(self, object, *args, *, plots=None, **kwargs)

Visualize all whylogs dataset profiles present as outputs in the step view

Parameters:

Name Type Description Default
object StepView

StepView fetched from run.get_step().

required
plots Optional[List[zenml.integrations.whylogs.visualizers.whylogs_visualizer.WhylogsPlots]]

optional list of whylogs plots to visualize. Defaults to using all available plot types if not set

None
Source code in zenml/integrations/whylogs/visualizers/whylogs_visualizer.py
def visualize(
    self,
    object: StepView,
    *args: Any,
    plots: Optional[List[WhylogsPlots]] = None,
    **kwargs: Any,
) -> None:
    """Visualize all whylogs dataset profiles present as outputs in the
    step view

    Args:
        object: StepView fetched from run.get_step().
        plots: optional list of whylogs plots to visualize. Defaults to
            using all available plot types if not set
    """
    whylogs_artifact_datatype = (
        f"{DatasetProfile.__module__}.{DatasetProfile.__name__}"
    )
    for artifact_name, artifact_view in object.outputs.items():
        # filter out anything but whylog dataset profile artifacts
        if artifact_view.data_type == whylogs_artifact_datatype:
            profile = artifact_view.read()
            # whylogs doesn't currently support visualizing multiple
            # non-related profiles side-by-side, so we open them in
            # separate viewers for now
            self.visualize_profile(artifact_name, profile, plots)
visualize_profile(self, name, profile, plots=None)

Generate a visualization of a whylogs dataset profile.

Parameters:

Name Type Description Default
name str

name identifying the profile if multiple profiles are displayed at the same time

required
profile DatasetProfile

whylogs DatasetProfile to visualize

required
plots Optional[List[zenml.integrations.whylogs.visualizers.whylogs_visualizer.WhylogsPlots]]

optional list of whylogs plots to visualize. Defaults to using all available plot types if not set

None
Source code in zenml/integrations/whylogs/visualizers/whylogs_visualizer.py
def visualize_profile(
    self,
    name: str,
    profile: DatasetProfile,
    plots: Optional[List[WhylogsPlots]] = None,
) -> None:
    """Generate a visualization of a whylogs dataset profile.

    Args:
        name: name identifying the profile if multiple profiles are
            displayed at the same time
        profile: whylogs DatasetProfile to visualize
        plots: optional list of whylogs plots to visualize. Defaults to
            using all available plot types if not set
    """
    if Environment.in_notebook():
        from IPython.core.display import display

        if not plots:
            # default to using all plots if none are supplied
            plots = list(WhylogsPlots)

        for column in sorted(profile.columns):
            for plot in plots:
                visualizer = ProfileVisualizer()
                visualizer.set_profiles([profile])
                plot_method = self._get_plot_method(visualizer, plot)
                display(plot_method(column))
    else:
        logger.warning(
            "The magic functions are only usable in a Jupyter notebook."
        )
        with tempfile.NamedTemporaryFile(
            delete=False, suffix=f"-{name}.html"
        ) as f:
            logger.info("Opening %s in a new browser.." % f.name)
            profile_viewer([profile], output_path=f.name)

whylogs_context

WhylogsContext

This is a step context extension that can be used to facilitate whylogs data logging and profiling inside a step function.

It acts as a wrapper built around the whylogs API that transparently incorporates ZenML specific information into the generated whylogs dataset profiles that can be used to associate whylogs profiles with the corresponding ZenML step run that produces them.

It also simplifies the whylogs profile generation process by abstracting away some of the whylogs specific details, such as whylogs session and logger initialization and management.

Source code in zenml/integrations/whylogs/whylogs_context.py
class WhylogsContext:
    """This is a step context extension that can be used to facilitate whylogs
    data logging and profiling inside a step function.

    It acts as a wrapper built around the whylogs API that transparently
    incorporates ZenML specific information into the generated whylogs dataset
    profiles that can be used to associate whylogs profiles with the
    corresponding ZenML step run that produces them.

    It also simplifies the whylogs profile generation process by abstracting
    away some of the whylogs specific details, such as whylogs session and
    logger initialization and management.
    """

    _session: Session = None

    def __init__(
        self,
        step_context: StepContext,
        project: Optional[str] = None,
        pipeline: Optional[str] = None,
        tags: Optional[Dict[str, str]] = None,
    ) -> None:
        """Create a ZenML whylogs context based on a generic step context.

        Args:
            step_context: a StepContext instance that provides information
                about the currently running step, such as the step name
            project: optional project name to use for the whylogs session
            pipeline: optional pipeline name to use for the whylogs session
            tags: optional list of tags to apply to all whylogs profiles
                generated through this context
        """
        self._step_context = step_context
        self._project = project
        self._pipeline = pipeline
        self._tags = tags

    def get_whylogs_session(
        self,
    ) -> Session:
        """Get the whylogs session associated with the current step.

        Returns:
            The whylogs Session instance associated with the current step
        """
        if self._session is not None:
            return self._session

        self._session = Session(
            project=self._project or self._step_context.step_name,
            pipeline=self._pipeline or self._step_context.step_name,
            # keeping the writers list empty, serialization is done in the
            # materializer
            writers=[],
        )

        return self._session

    def profile_dataframe(
        self,
        df: pd.DataFrame,
        dataset_name: Optional[str] = None,
        dataset_timestamp: Optional[datetime.datetime] = None,
        tags: Optional[Dict[str, str]] = None,
    ) -> DatasetProfile:
        """Generate whylogs statistics for a Pandas dataframe.

        Args:
            df: a Pandas dataframe to profile.
            dataset_name: the name of the dataset (Optional). If not specified,
                the pipeline step name is used
            dataset_timestamp: timestamp to associate with the generated
                dataset profile (Optional). The current time is used if not
                supplied.
            tags: custom metadata tags associated with the whylogs profile

        Returns:
            A whylogs DatasetProfile with the statistics generated from the
            input dataset.
        """
        session = self.get_whylogs_session()
        # TODO [ENG-437]: use a default whylogs dataset_name that is unique across
        #  multiple pipelines
        dataset_name = dataset_name or self._step_context.step_name
        final_tags = self._tags.copy() if self._tags else dict()
        # TODO [ENG-438]: add more zenml specific tags to the whylogs profile, such
        #  as the pipeline name and run ID
        final_tags["zenml.step"] = self._step_context.step_name
        # the datasetId tag is used to identify dataset profiles in whylabs.
        # dataset profiles with the same datasetID are considered to belong
        # to the same dataset/model.
        final_tags.setdefault("datasetId", dataset_name)
        if tags:
            final_tags.update(tags)
        logger = session.logger(
            dataset_name, dataset_timestamp=dataset_timestamp, tags=final_tags
        )
        logger.log_dataframe(df)
        return logger.close()
__init__(self, step_context, project=None, pipeline=None, tags=None) special

Create a ZenML whylogs context based on a generic step context.

Parameters:

Name Type Description Default
step_context StepContext

a StepContext instance that provides information about the currently running step, such as the step name

required
project Optional[str]

optional project name to use for the whylogs session

None
pipeline Optional[str]

optional pipeline name to use for the whylogs session

None
tags Optional[Dict[str, str]]

optional list of tags to apply to all whylogs profiles generated through this context

None
Source code in zenml/integrations/whylogs/whylogs_context.py
def __init__(
    self,
    step_context: StepContext,
    project: Optional[str] = None,
    pipeline: Optional[str] = None,
    tags: Optional[Dict[str, str]] = None,
) -> None:
    """Create a ZenML whylogs context based on a generic step context.

    Args:
        step_context: a StepContext instance that provides information
            about the currently running step, such as the step name
        project: optional project name to use for the whylogs session
        pipeline: optional pipeline name to use for the whylogs session
        tags: optional list of tags to apply to all whylogs profiles
            generated through this context
    """
    self._step_context = step_context
    self._project = project
    self._pipeline = pipeline
    self._tags = tags
get_whylogs_session(self)

Get the whylogs session associated with the current step.

Returns:

Type Description
Session

The whylogs Session instance associated with the current step

Source code in zenml/integrations/whylogs/whylogs_context.py
def get_whylogs_session(
    self,
) -> Session:
    """Get the whylogs session associated with the current step.

    Returns:
        The whylogs Session instance associated with the current step
    """
    if self._session is not None:
        return self._session

    self._session = Session(
        project=self._project or self._step_context.step_name,
        pipeline=self._pipeline or self._step_context.step_name,
        # keeping the writers list empty, serialization is done in the
        # materializer
        writers=[],
    )

    return self._session
profile_dataframe(self, df, dataset_name=None, dataset_timestamp=None, tags=None)

Generate whylogs statistics for a Pandas dataframe.

Parameters:

Name Type Description Default
df DataFrame

a Pandas dataframe to profile.

required
dataset_name Optional[str]

the name of the dataset (Optional). If not specified, the pipeline step name is used

None
dataset_timestamp Optional[datetime.datetime]

timestamp to associate with the generated dataset profile (Optional). The current time is used if not supplied.

None
tags Optional[Dict[str, str]]

custom metadata tags associated with the whylogs profile

None

Returns:

Type Description
DatasetProfile

A whylogs DatasetProfile with the statistics generated from the input dataset.

Source code in zenml/integrations/whylogs/whylogs_context.py
def profile_dataframe(
    self,
    df: pd.DataFrame,
    dataset_name: Optional[str] = None,
    dataset_timestamp: Optional[datetime.datetime] = None,
    tags: Optional[Dict[str, str]] = None,
) -> DatasetProfile:
    """Generate whylogs statistics for a Pandas dataframe.

    Args:
        df: a Pandas dataframe to profile.
        dataset_name: the name of the dataset (Optional). If not specified,
            the pipeline step name is used
        dataset_timestamp: timestamp to associate with the generated
            dataset profile (Optional). The current time is used if not
            supplied.
        tags: custom metadata tags associated with the whylogs profile

    Returns:
        A whylogs DatasetProfile with the statistics generated from the
        input dataset.
    """
    session = self.get_whylogs_session()
    # TODO [ENG-437]: use a default whylogs dataset_name that is unique across
    #  multiple pipelines
    dataset_name = dataset_name or self._step_context.step_name
    final_tags = self._tags.copy() if self._tags else dict()
    # TODO [ENG-438]: add more zenml specific tags to the whylogs profile, such
    #  as the pipeline name and run ID
    final_tags["zenml.step"] = self._step_context.step_name
    # the datasetId tag is used to identify dataset profiles in whylabs.
    # dataset profiles with the same datasetID are considered to belong
    # to the same dataset/model.
    final_tags.setdefault("datasetId", dataset_name)
    if tags:
        final_tags.update(tags)
    logger = session.logger(
        dataset_name, dataset_timestamp=dataset_timestamp, tags=final_tags
    )
    logger.log_dataframe(df)
    return logger.close()

whylogs_step_decorator

enable_whylogs(_step=None, *, project=None, pipeline=None, tags=None)

Decorator to enable whylogs profiling for a step function.

Apply this decorator to a ZenML pipeline step to enable whylogs profiling. The decorated function will be given access to a StepContext whylogs field that facilitates access to the whylogs dataset profiling API, like so:

@enable_whylogs
@step(enable_cache=True)
def data_loader(
    context: StepContext,
) -> Output(data=pd.DataFrame, profile=DatasetProfile,):
    ...
    data = pd.DataFrame(...)
    profile = context.whylogs.profile_dataframe(data, dataset_name="input_data")
    ...
    return data, profile

Parameters:

Name Type Description Default
_step Optional[~S]

The decorated step class.

None
project Optional[str]

optional project name to use for the whylogs session

None
pipeline Optional[str]

optional pipeline name to use for the whylogs session

None
tags Optional[Dict[str, str]]

optional list of tags to apply to all profiles generated by this step

None

Returns:

Type Description
Union[~S, Callable[[~S], ~S]]

the inner decorator which enhaces the input step class with whylogs profiling functionality

Source code in zenml/integrations/whylogs/whylogs_step_decorator.py
def enable_whylogs(
    _step: Optional[S] = None,
    *,
    project: Optional[str] = None,
    pipeline: Optional[str] = None,
    tags: Optional[Dict[str, str]] = None,
) -> Union[S, Callable[[S], S]]:
    """Decorator to enable whylogs profiling for a step function.

    Apply this decorator to a ZenML pipeline step to enable whylogs profiling.
    The decorated function will be given access to a StepContext `whylogs`
    field that facilitates access to the whylogs dataset profiling API,
    like so:

    ```python
    @enable_whylogs
    @step(enable_cache=True)
    def data_loader(
        context: StepContext,
    ) -> Output(data=pd.DataFrame, profile=DatasetProfile,):
        ...
        data = pd.DataFrame(...)
        profile = context.whylogs.profile_dataframe(data, dataset_name="input_data")
        ...
        return data, profile
    ```

    Args:
        _step: The decorated step class.
        project: optional project name to use for the whylogs session
        pipeline: optional pipeline name to use for the whylogs session
        tags: optional list of tags to apply to all profiles generated by this
            step

    Returns:
        the inner decorator which enhaces the input step class with whylogs
        profiling functionality
    """

    def inner_decorator(_step: S) -> S:

        source_fn = _step.entrypoint
        return cast(
            S,
            type(  # noqa
                _step.__name__,
                (_step,),
                {
                    STEP_INNER_FUNC_NAME: staticmethod(
                        whylogs_entrypoint(project, pipeline, tags)(source_fn)
                    ),
                    "__module__": _step.__module__,
                },
            ),
        )

    if _step is None:
        return inner_decorator
    else:
        return inner_decorator(_step)
whylogs_entrypoint(project=None, pipeline=None, tags=None)

Decorator for a step entrypoint to enable whylogs.

Apply this decorator to a ZenML pipeline step to enable whylogs profiling. The decorated function will be given access to a StepContext whylogs field that facilitates access to the whylogs dataset profiling API, like so:

.. highlight:: python .. code-block:: python

@step(enable_cache=True)
@whylogs_entrypoint()
def data_loader(
    context: StepContext,
) -> Output(data=pd.DataFrame, profile=DatasetProfile,):
    ...
    data = pd.DataFrame(...)
    profile = context.whylogs.profile_dataframe(data, dataset_name="input_data")
    ...
    return data, profile

Parameters:

Name Type Description Default
project Optional[str]

optional project name to use for the whylogs session

None
pipeline Optional[str]

optional pipeline name to use for the whylogs session

None
tags Optional[Dict[str, str]]

optional list of tags to apply to all profiles generated by this step

None

Returns:

Type Description
Callable[[~F], ~F]

the input function enhanced with whylogs profiling functionality

Source code in zenml/integrations/whylogs/whylogs_step_decorator.py
def whylogs_entrypoint(
    project: Optional[str] = None,
    pipeline: Optional[str] = None,
    tags: Optional[Dict[str, str]] = None,
) -> Callable[[F], F]:
    """Decorator for a step entrypoint to enable whylogs.

    Apply this decorator to a ZenML pipeline step to enable whylogs profiling.
    The decorated function will be given access to a StepContext `whylogs`
    field that facilitates access to the whylogs dataset profiling API,
    like so:

    .. highlight:: python
    .. code-block:: python

        @step(enable_cache=True)
        @whylogs_entrypoint()
        def data_loader(
            context: StepContext,
        ) -> Output(data=pd.DataFrame, profile=DatasetProfile,):
            ...
            data = pd.DataFrame(...)
            profile = context.whylogs.profile_dataframe(data, dataset_name="input_data")
            ...
            return data, profile

    Args:
        project: optional project name to use for the whylogs session
        pipeline: optional pipeline name to use for the whylogs session
        tags: optional list of tags to apply to all profiles generated by this
            step

    Returns:
        the input function enhanced with whylogs profiling functionality
    """

    def inner_decorator(func: F) -> F:
        @functools.wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:  # noqa

            for arg in args + tuple(kwargs.values()):
                if isinstance(arg, StepContext):
                    arg.__dict__["whylogs"] = WhylogsContext(
                        arg, project, pipeline, tags
                    )
                    break
            return func(*args, **kwargs)

        return cast(F, wrapper)

    return inner_decorator

xgboost special

XgboostIntegration (Integration)

Definition of xgboost integration for ZenML.

Source code in zenml/integrations/xgboost/__init__.py
class XgboostIntegration(Integration):
    """Definition of xgboost integration for ZenML."""

    NAME = XGBOOST
    REQUIREMENTS = ["xgboost>=1.0.0"]

    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.xgboost import materializers  # noqa
activate() classmethod

Activates the integration.

Source code in zenml/integrations/xgboost/__init__.py
@classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.xgboost import materializers  # noqa

materializers special

xgboost_booster_materializer
XgboostBoosterMaterializer (BaseMaterializer)

Materializer to read data to and from xgboost.Booster.

Source code in zenml/integrations/xgboost/materializers/xgboost_booster_materializer.py
class XgboostBoosterMaterializer(BaseMaterializer):
    """Materializer to read data to and from xgboost.Booster."""

    ASSOCIATED_TYPES = (xgb.Booster,)
    ASSOCIATED_ARTIFACT_TYPES = (ModelArtifact,)

    def handle_input(self, data_type: Type[Any]) -> xgb.Booster:
        """Reads a xgboost Booster model from a serialized JSON file."""
        super().handle_input(data_type)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        booster = xgb.Booster()
        booster.load_model(temp_file)

        # Cleanup and return
        fileio.rmtree(temp_dir)
        return booster

    def handle_return(self, booster: xgb.Booster) -> None:
        """Creates a JSON serialization for a xgboost Booster model.

        Args:
            booster: A xgboost Booster model.
        """
        super().handle_return(booster)

        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Make a temporary phantom artifact
        with tempfile.NamedTemporaryFile(
            mode="w", suffix=".json", delete=False
        ) as f:
            booster.save_model(f.name)
            # Copy it into artifact store
            fileio.copy(f.name, filepath)

        # Close and remove the temporary file
        f.close()
        fileio.remove(f.name)
handle_input(self, data_type)

Reads a xgboost Booster model from a serialized JSON file.

Source code in zenml/integrations/xgboost/materializers/xgboost_booster_materializer.py
def handle_input(self, data_type: Type[Any]) -> xgb.Booster:
    """Reads a xgboost Booster model from a serialized JSON file."""
    super().handle_input(data_type)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    booster = xgb.Booster()
    booster.load_model(temp_file)

    # Cleanup and return
    fileio.rmtree(temp_dir)
    return booster
handle_return(self, booster)

Creates a JSON serialization for a xgboost Booster model.

Parameters:

Name Type Description Default
booster Booster

A xgboost Booster model.

required
Source code in zenml/integrations/xgboost/materializers/xgboost_booster_materializer.py
def handle_return(self, booster: xgb.Booster) -> None:
    """Creates a JSON serialization for a xgboost Booster model.

    Args:
        booster: A xgboost Booster model.
    """
    super().handle_return(booster)

    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Make a temporary phantom artifact
    with tempfile.NamedTemporaryFile(
        mode="w", suffix=".json", delete=False
    ) as f:
        booster.save_model(f.name)
        # Copy it into artifact store
        fileio.copy(f.name, filepath)

    # Close and remove the temporary file
    f.close()
    fileio.remove(f.name)
xgboost_dmatrix_materializer
XgboostDMatrixMaterializer (BaseMaterializer)

Materializer to read data to and from xgboost.DMatrix

Source code in zenml/integrations/xgboost/materializers/xgboost_dmatrix_materializer.py
class XgboostDMatrixMaterializer(BaseMaterializer):
    """Materializer to read data to and from xgboost.DMatrix"""

    ASSOCIATED_TYPES = (xgb.DMatrix,)
    ASSOCIATED_ARTIFACT_TYPES = (DataArtifact,)

    def handle_input(self, data_type: Type[Any]) -> xgb.DMatrix:
        """Reads a xgboost.DMatrix binary file and loads it."""
        super().handle_input(data_type)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        matrix = xgb.DMatrix(temp_file)

        # Cleanup and return
        fileio.rmtree(temp_dir)
        return matrix

    def handle_return(self, matrix: xgb.DMatrix) -> None:
        """Creates a binary serialization for a xgboost.DMatrix object.

        Args:
            matrix: A xgboost.DMatrix object.
        """
        super().handle_return(matrix)
        filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

        # Make a temporary phantom artifact
        with tempfile.NamedTemporaryFile(mode="wb", delete=False) as f:
            matrix.save_binary(f.name)
            # Copy it into artifact store
            fileio.copy(f.name, filepath)

        # Close and remove the temporary file
        f.close()
        fileio.remove(f.name)
handle_input(self, data_type)

Reads a xgboost.DMatrix binary file and loads it.

Source code in zenml/integrations/xgboost/materializers/xgboost_dmatrix_materializer.py
def handle_input(self, data_type: Type[Any]) -> xgb.DMatrix:
    """Reads a xgboost.DMatrix binary file and loads it."""
    super().handle_input(data_type)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)

    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    matrix = xgb.DMatrix(temp_file)

    # Cleanup and return
    fileio.rmtree(temp_dir)
    return matrix
handle_return(self, matrix)

Creates a binary serialization for a xgboost.DMatrix object.

Parameters:

Name Type Description Default
matrix DMatrix

A xgboost.DMatrix object.

required
Source code in zenml/integrations/xgboost/materializers/xgboost_dmatrix_materializer.py
def handle_return(self, matrix: xgb.DMatrix) -> None:
    """Creates a binary serialization for a xgboost.DMatrix object.

    Args:
        matrix: A xgboost.DMatrix object.
    """
    super().handle_return(matrix)
    filepath = os.path.join(self.artifact.uri, DEFAULT_FILENAME)

    # Make a temporary phantom artifact
    with tempfile.NamedTemporaryFile(mode="wb", delete=False) as f:
        matrix.save_binary(f.name)
        # Copy it into artifact store
        fileio.copy(f.name, filepath)

    # Close and remove the temporary file
    f.close()
    fileio.remove(f.name)