Skip to content

Artifacts

zenml.artifacts special

artifact_config

Artifact Config classes to support Model Control Plane feature.

ArtifactConfig (BaseModel)

Artifact configuration class.

Can be used in step definitions to define various artifact properties.

Examples:

@step
def my_step() -> Annotated[
    int, ArtifactConfig(
        name="my_artifact",  # override the default artifact name
        version=42,  # set a custom version
        artifact_type=ArtifactType.MODEL,  # Specify the artifact type
        tags=["tag1", "tag2"],  # set custom tags
    )
]:
    return ...

Attributes:

Name Type Description
name Optional[str]

The name of the artifact: - static string e.g. "name" - dynamic string e.g. "name_{date}{time}{custom_placeholder}" If you use any placeholders besides date and time, you need to provide the values for them in the substitutions argument of the step decorator or the substitutions argument of with_options of the step.

version Union[str, int]

The version of the artifact.

tags Optional[List[str]]

The tags of the artifact.

run_metadata Optional[Dict[str, Union[str, int, float, bool, Dict[Any, Any], List[Any], Set[Any], Tuple[Any, ...], zenml.metadata.metadata_types.Uri, zenml.metadata.metadata_types.Path, zenml.metadata.metadata_types.DType, zenml.metadata.metadata_types.StorageSize]]]

Metadata to add to the artifact.

artifact_type Optional[zenml.enums.ArtifactType]

Optional type of the artifact. If not given, the type specified by the materializer that is used to save this artifact is used.

Source code in zenml/artifacts/artifact_config.py
class ArtifactConfig(BaseModel):
    """Artifact configuration class.

    Can be used in step definitions to define various artifact properties.

    Example:
    ```python
    @step
    def my_step() -> Annotated[
        int, ArtifactConfig(
            name="my_artifact",  # override the default artifact name
            version=42,  # set a custom version
            artifact_type=ArtifactType.MODEL,  # Specify the artifact type
            tags=["tag1", "tag2"],  # set custom tags
        )
    ]:
        return ...
    ```

    Attributes:
        name: The name of the artifact:
            - static string e.g. "name"
            - dynamic string e.g. "name_{date}_{time}_{custom_placeholder}"
            If you use any placeholders besides `date` and `time`,
            you need to provide the values for them in the `substitutions`
            argument of the step decorator or the `substitutions` argument
            of `with_options` of the step.
        version: The version of the artifact.
        tags: The tags of the artifact.
        run_metadata: Metadata to add to the artifact.
        artifact_type: Optional type of the artifact. If not given, the type
            specified by the materializer that is used to save this artifact
            is used.
    """

    name: Optional[str] = None
    version: Optional[Union[str, int]] = Field(
        default=None, union_mode="smart"
    )
    tags: Optional[List[str]] = None
    run_metadata: Optional[Dict[str, MetadataType]] = None

    artifact_type: Optional[ArtifactType] = None

    @model_validator(mode="before")
    @classmethod
    @before_validator_handler
    def _remove_old_attributes(cls, data: Dict[str, Any]) -> Dict[str, Any]:
        """Remove old attributes that are not used anymore.

        Args:
            data: The model data.

        Raises:
            ValueError: If the artifact is configured to be
                both a model and a deployment artifact.

        Returns:
            Model data without the removed attributes.
        """
        model_name = data.pop("model_name", None)
        model_version = data.pop("model_version", None)

        if model_name or model_version:
            logger.warning(
                "Specifying a model name or version for a step output "
                "artifact is not supported anymore."
            )

        is_model_artifact = data.pop("is_model_artifact", None)
        is_deployment_artifact = data.pop("is_deployment_artifact", None)

        if is_model_artifact and is_deployment_artifact:
            raise ValueError(
                "An artifact can only be a model artifact or deployment "
                "artifact."
            )
        elif is_model_artifact:
            logger.warning(
                "`ArtifactConfig(..., is_model_artifact=True)` is deprecated "
                "and will be removed soon. Use `ArtifactConfig(..., "
                "artifact_type=ArtifactType.MODEL)` instead. For more info: "
                "https://docs.zenml.io/user-guide/starter-guide/manage-artifacts"
            )
            data.setdefault("artifact_type", ArtifactType.MODEL)
        elif is_deployment_artifact:
            logger.warning(
                "`ArtifactConfig(..., is_deployment_artifact=True)` is "
                "deprecated and will be removed soon. Use `ArtifactConfig(..., "
                "artifact_type=ArtifactType.SERVICE)` instead. For more info: "
                "https://docs.zenml.io/user-guide/starter-guide/manage-artifacts"
            )
            data.setdefault("artifact_type", ArtifactType.SERVICE)

        return data

external_artifact

External artifact definition.

ExternalArtifact (ExternalArtifactConfiguration)

External artifacts can be used to provide values as input to ZenML steps.

ZenML steps accept either artifacts (=outputs of other steps), parameters (raw, JSON serializable values) or external artifacts. External artifacts can be used to provide any value as input to a step without needing to write an additional step that returns this value.

The external artifact needs to have a value associated with it that will be uploaded to the artifact store.

Parameters:

Name Type Description Default
value

The artifact value.

required
materializer

The materializer to use for saving the artifact value to the artifact store. Only used when value is provided.

required
store_artifact_metadata

Whether metadata for the artifact should be stored. Only used when value is provided.

required
store_artifact_visualizations

Whether visualizations for the artifact should be stored. Only used when value is provided.

required

Examples:

from zenml import step, pipeline
from zenml.artifacts.external_artifact import ExternalArtifact
import numpy as np

@step
def my_step(value: np.ndarray) -> None:
  print(value)

my_array = np.array([1, 2, 3])

@pipeline
def my_pipeline():
  my_step(value=ExternalArtifact(my_array))
Source code in zenml/artifacts/external_artifact.py
class ExternalArtifact(ExternalArtifactConfiguration):
    """External artifacts can be used to provide values as input to ZenML steps.

    ZenML steps accept either artifacts (=outputs of other steps), parameters
    (raw, JSON serializable values) or external artifacts. External artifacts
    can be used to provide any value as input to a step without needing to
    write an additional step that returns this value.

    The external artifact needs to have a value associated with it
    that will be uploaded to the artifact store.

    Args:
        value: The artifact value.
        materializer: The materializer to use for saving the artifact value
            to the artifact store. Only used when `value` is provided.
        store_artifact_metadata: Whether metadata for the artifact should
            be stored. Only used when `value` is provided.
        store_artifact_visualizations: Whether visualizations for the
            artifact should be stored. Only used when `value` is provided.

    Example:
    ```
    from zenml import step, pipeline
    from zenml.artifacts.external_artifact import ExternalArtifact
    import numpy as np

    @step
    def my_step(value: np.ndarray) -> None:
      print(value)

    my_array = np.array([1, 2, 3])

    @pipeline
    def my_pipeline():
      my_step(value=ExternalArtifact(my_array))
    ```
    """

    value: Optional[Any] = None
    materializer: Optional[MaterializerClassOrSource] = Field(
        default=None, union_mode="left_to_right"
    )
    store_artifact_metadata: bool = True
    store_artifact_visualizations: bool = True

    @model_validator(mode="after")
    def external_artifact_validator(self) -> "ExternalArtifact":
        """Model validator for the external artifact.

        Raises:
            ValueError: If an ID was set.

        Returns:
            The validated instance.
        """
        if self.id:
            raise ValueError(
                "External artifacts can only be initialized with a value."
            )

        return self

    def upload_by_value(self) -> UUID:
        """Uploads the artifact by value.

        Returns:
            The uploaded artifact ID.
        """
        from zenml.artifacts.utils import save_artifact

        artifact_name = f"external_{uuid4()}"
        uri = os.path.join("external_artifacts", artifact_name)
        logger.info("Uploading external artifact to '%s'.", uri)

        artifact = save_artifact(
            name=artifact_name,
            data=self.value,
            extract_metadata=self.store_artifact_metadata,
            include_visualizations=self.store_artifact_visualizations,
            materializer=self.materializer,
            uri=uri,
            has_custom_name=False,
            save_type=ArtifactSaveType.EXTERNAL,
        )

        # To avoid duplicate uploads, switch to referencing the uploaded
        # artifact by ID
        self.id = artifact.id
        self.value = None

        logger.info("Finished uploading external artifact %s.", self.id)
        return self.id

    @property
    def config(self) -> ExternalArtifactConfiguration:
        """Returns the lightweight config without hard for JSON properties.

        Returns:
            The config object to be evaluated in runtime by step interface.
        """
        return ExternalArtifactConfiguration(
            id=self.id,
        )
config: ExternalArtifactConfiguration property readonly

Returns the lightweight config without hard for JSON properties.

Returns:

Type Description
ExternalArtifactConfiguration

The config object to be evaluated in runtime by step interface.

external_artifact_validator(self)

Model validator for the external artifact.

Exceptions:

Type Description
ValueError

If an ID was set.

Returns:

Type Description
ExternalArtifact

The validated instance.

Source code in zenml/artifacts/external_artifact.py
@model_validator(mode="after")
def external_artifact_validator(self) -> "ExternalArtifact":
    """Model validator for the external artifact.

    Raises:
        ValueError: If an ID was set.

    Returns:
        The validated instance.
    """
    if self.id:
        raise ValueError(
            "External artifacts can only be initialized with a value."
        )

    return self
upload_by_value(self)

Uploads the artifact by value.

Returns:

Type Description
UUID

The uploaded artifact ID.

Source code in zenml/artifacts/external_artifact.py
def upload_by_value(self) -> UUID:
    """Uploads the artifact by value.

    Returns:
        The uploaded artifact ID.
    """
    from zenml.artifacts.utils import save_artifact

    artifact_name = f"external_{uuid4()}"
    uri = os.path.join("external_artifacts", artifact_name)
    logger.info("Uploading external artifact to '%s'.", uri)

    artifact = save_artifact(
        name=artifact_name,
        data=self.value,
        extract_metadata=self.store_artifact_metadata,
        include_visualizations=self.store_artifact_visualizations,
        materializer=self.materializer,
        uri=uri,
        has_custom_name=False,
        save_type=ArtifactSaveType.EXTERNAL,
    )

    # To avoid duplicate uploads, switch to referencing the uploaded
    # artifact by ID
    self.id = artifact.id
    self.value = None

    logger.info("Finished uploading external artifact %s.", self.id)
    return self.id

external_artifact_config

External artifact definition.

ExternalArtifactConfiguration (BaseModel)

External artifact configuration.

Lightweight class to pass in the steps for runtime inference.

Source code in zenml/artifacts/external_artifact_config.py
class ExternalArtifactConfiguration(BaseModel):
    """External artifact configuration.

    Lightweight class to pass in the steps for runtime inference.
    """

    id: Optional[UUID] = None

    @model_validator(mode="before")
    @classmethod
    @before_validator_handler
    def _remove_old_attributes(cls, data: Dict[str, Any]) -> Dict[str, Any]:
        """Remove old attributes that are not used anymore.

        Args:
            data: The model data.

        Returns:
            Model data without the removed attributes.
        """
        data.pop("name", None)
        data.pop("version", None)
        data.pop("model", None)
        return data

    def get_artifact_version_id(self) -> UUID:
        """Get the artifact.

        Returns:
            The artifact ID.

        Raises:
            RuntimeError: If the artifact store of the referenced artifact
                is not the same as the one in the active stack.
            RuntimeError: If neither the ID nor the name of the artifact was
                provided.
        """
        from zenml.client import Client

        client = Client()

        if self.id:
            response = client.get_artifact_version(self.id)
        else:
            raise RuntimeError(
                "The ID of the artifact must be provided. "
                "- If you created this ExternalArtifact from a value, please "
                "ensure that `upload_by_value` was called before trying to "
                "fetch the artifact ID.\n- If you specified an artifact name "
                "or model name for this external artifact, this functionality "
                "was removed from the ExternalArtifact class. Use Client "
                "methods instead to dynamically fetch an artifact via name or "
                "from a model instead."
            )

        artifact_store_id = client.active_stack.artifact_store.id
        if response.artifact_store_id != artifact_store_id:
            raise RuntimeError(
                f"The artifact {response.name} (ID: {response.id}) "
                "referenced by an external artifact is not stored in the "
                "artifact store of the active stack. This will lead to "
                "issues loading the artifact. Please make sure to only "
                "reference artifact versions stored in your active artifact "
                "store."
            )

        return self.id
get_artifact_version_id(self)

Get the artifact.

Returns:

Type Description
UUID

The artifact ID.

Exceptions:

Type Description
RuntimeError

If the artifact store of the referenced artifact is not the same as the one in the active stack.

RuntimeError

If neither the ID nor the name of the artifact was provided.

Source code in zenml/artifacts/external_artifact_config.py
def get_artifact_version_id(self) -> UUID:
    """Get the artifact.

    Returns:
        The artifact ID.

    Raises:
        RuntimeError: If the artifact store of the referenced artifact
            is not the same as the one in the active stack.
        RuntimeError: If neither the ID nor the name of the artifact was
            provided.
    """
    from zenml.client import Client

    client = Client()

    if self.id:
        response = client.get_artifact_version(self.id)
    else:
        raise RuntimeError(
            "The ID of the artifact must be provided. "
            "- If you created this ExternalArtifact from a value, please "
            "ensure that `upload_by_value` was called before trying to "
            "fetch the artifact ID.\n- If you specified an artifact name "
            "or model name for this external artifact, this functionality "
            "was removed from the ExternalArtifact class. Use Client "
            "methods instead to dynamically fetch an artifact via name or "
            "from a model instead."
        )

    artifact_store_id = client.active_stack.artifact_store.id
    if response.artifact_store_id != artifact_store_id:
        raise RuntimeError(
            f"The artifact {response.name} (ID: {response.id}) "
            "referenced by an external artifact is not stored in the "
            "artifact store of the active stack. This will lead to "
            "issues loading the artifact. Please make sure to only "
            "reference artifact versions stored in your active artifact "
            "store."
        )

    return self.id

preexisting_data_materializer

Only-load materializer for directories.

PreexistingDataMaterializer (BaseMaterializer)

Materializer to load directories from the artifact store.

This materializer is very special, since it do not implement save logic at all. The save of the data to some URI inside the artifact store shall happen outside and is in user's responsibility.

This materializer solely supports the register_artifact function.

Source code in zenml/artifacts/preexisting_data_materializer.py
class PreexistingDataMaterializer(BaseMaterializer):
    """Materializer to load directories from the artifact store.

    This materializer is very special, since it do not implement save
    logic at all. The save of the data to some URI inside the artifact store
    shall happen outside and is in user's responsibility.

    This materializer solely supports the `register_artifact` function.
    """

    ASSOCIATED_TYPES: ClassVar[Tuple[Type[Any], ...]] = (Path,)
    ASSOCIATED_ARTIFACT_TYPE: ClassVar[ArtifactType] = ArtifactType.DATA
    SKIP_REGISTRATION: ClassVar[bool] = True

    def load(self, data_type: Type[Any]) -> Any:
        """Copy the artifact file(s) to a local temp directory.

        Args:
            data_type: Unused.

        Returns:
            Path to the local directory that contains the artifact files.
        """
        with self.get_temporary_directory(delete_at_exit=False) as temp_dir:
            if fileio.isdir(self.uri):
                self._copy_directory(src=self.uri, dst=temp_dir)
                return Path(temp_dir)
            else:
                dst = os.path.join(temp_dir, os.path.split(self.uri)[-1])
                fileio.copy(src=self.uri, dst=dst)
                return Path(dst)

    def save(self, data: Any) -> None:
        """Store the directory in the artifact store.

        Args:
            data: Path to a local directory to store.

        Raises:
            NotImplementedError: Always
        """
        raise NotImplementedError(
            "`PreexistingDataMaterializer` can only be used in the "
            "context of `register_artifact` function, "
            "which expects the data to be already properly saved in "
            "the Artifact Store, thus `save` logic makes no sense here."
        )

    @staticmethod
    def _copy_directory(src: str, dst: str) -> None:
        """Recursively copy a directory.

        Args:
            src: The directory to copy.
            dst: Where to copy the directory to.
        """
        for src_dir, _, files in fileio.walk(src):
            src_dir_ = str(src_dir)
            dst_dir = str(os.path.join(dst, os.path.relpath(src_dir_, src)))
            fileio.makedirs(dst_dir)

            for file in files:
                file_ = str(file)
                src_file = os.path.join(src_dir_, file_)
                dst_file = os.path.join(dst_dir, file_)
                fileio.copy(src_file, dst_file)
load(self, data_type)

Copy the artifact file(s) to a local temp directory.

Parameters:

Name Type Description Default
data_type Type[Any]

Unused.

required

Returns:

Type Description
Any

Path to the local directory that contains the artifact files.

Source code in zenml/artifacts/preexisting_data_materializer.py
def load(self, data_type: Type[Any]) -> Any:
    """Copy the artifact file(s) to a local temp directory.

    Args:
        data_type: Unused.

    Returns:
        Path to the local directory that contains the artifact files.
    """
    with self.get_temporary_directory(delete_at_exit=False) as temp_dir:
        if fileio.isdir(self.uri):
            self._copy_directory(src=self.uri, dst=temp_dir)
            return Path(temp_dir)
        else:
            dst = os.path.join(temp_dir, os.path.split(self.uri)[-1])
            fileio.copy(src=self.uri, dst=dst)
            return Path(dst)
save(self, data)

Store the directory in the artifact store.

Parameters:

Name Type Description Default
data Any

Path to a local directory to store.

required

Exceptions:

Type Description
NotImplementedError

Always

Source code in zenml/artifacts/preexisting_data_materializer.py
def save(self, data: Any) -> None:
    """Store the directory in the artifact store.

    Args:
        data: Path to a local directory to store.

    Raises:
        NotImplementedError: Always
    """
    raise NotImplementedError(
        "`PreexistingDataMaterializer` can only be used in the "
        "context of `register_artifact` function, "
        "which expects the data to be already properly saved in "
        "the Artifact Store, thus `save` logic makes no sense here."
    )

unmaterialized_artifact

Unmaterialized artifact class.

UnmaterializedArtifact (ArtifactVersionResponse)

Unmaterialized artifact class.

Typing a step input to have this type will cause ZenML to not materialize the artifact. This is useful for steps that need to access the artifact metadata instead of the actual artifact data.

Usage example:

from zenml import step
from zenml.artifacts.unmaterialized_artifact import UnmaterializedArtifact

@step
def my_step(input_artifact: UnmaterializedArtifact):
    print(input_artifact.uri)
Source code in zenml/artifacts/unmaterialized_artifact.py
class UnmaterializedArtifact(ArtifactVersionResponse):
    """Unmaterialized artifact class.

    Typing a step input to have this type will cause ZenML to not materialize
    the artifact. This is useful for steps that need to access the artifact
    metadata instead of the actual artifact data.

    Usage example:

    ```python
    from zenml import step
    from zenml.artifacts.unmaterialized_artifact import UnmaterializedArtifact

    @step
    def my_step(input_artifact: UnmaterializedArtifact):
        print(input_artifact.uri)
    ```
    """
model_post_init(/, self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Source code in zenml/artifacts/unmaterialized_artifact.py
def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
    """We need to both initialize private attributes and call the user-defined model_post_init
    method.
    """
    init_private_attributes(self, context)
    original_model_post_init(self, context)

utils

Utility functions for handling artifacts.

download_artifact_files_from_response(artifact, path, overwrite=False)

Download the given artifact into a file.

Parameters:

Name Type Description Default
artifact ArtifactVersionResponse

The artifact to download.

required
path str

The path to which to download the artifact.

required
overwrite bool

Whether to overwrite the file if it already exists.

False

Exceptions:

Type Description
FileExistsError

If the file already exists and overwrite is False.

Exception

If the artifact could not be downloaded to the zip file.

Source code in zenml/artifacts/utils.py
def download_artifact_files_from_response(
    artifact: "ArtifactVersionResponse",
    path: str,
    overwrite: bool = False,
) -> None:
    """Download the given artifact into a file.

    Args:
        artifact: The artifact to download.
        path: The path to which to download the artifact.
        overwrite: Whether to overwrite the file if it already exists.

    Raises:
        FileExistsError: If the file already exists and `overwrite` is `False`.
        Exception: If the artifact could not be downloaded to the zip file.
    """
    if not overwrite and fileio.exists(path):
        raise FileExistsError(
            f"File '{path}' already exists and `overwrite` is set to `False`."
        )

    artifact_store = _get_artifact_store_from_response_or_from_active_stack(
        artifact=artifact
    )

    if filepaths := artifact_store.listdir(artifact.uri):
        # save a zipfile to 'path' containing all the files
        # in 'filepaths' with compression
        try:
            with zipfile.ZipFile(path, "w", zipfile.ZIP_DEFLATED) as zipf:
                for file in filepaths:
                    # Ensure 'file' is a string for path operations
                    # and ZIP entry naming
                    file_str = (
                        file.decode() if isinstance(file, bytes) else file
                    )
                    file_path = str(Path(artifact.uri) / file_str)
                    with artifact_store.open(
                        file_path, mode="rb"
                    ) as store_file:
                        # Use a loop to read and write chunks of the file
                        # instead of reading the entire file into memory
                        CHUNK_SIZE = 8192
                        while True:
                            if file_content := store_file.read(CHUNK_SIZE):
                                zipf.writestr(file_str, file_content)
                            else:
                                break
        except Exception as e:
            logger.error(
                f"Failed to save artifact '{artifact.id}' to zip file "
                f" '{path}': {e}"
            )
            raise

get_artifacts_versions_of_pipeline_run(pipeline_run, only_produced=False)

Get all artifact versions produced during a pipeline run.

Parameters:

Name Type Description Default
pipeline_run PipelineRunResponse

The pipeline run.

required
only_produced bool

If only artifact versions produced by the pipeline run should be returned or also cached artifact versions.

False

Returns:

Type Description
List[ArtifactVersionResponse]

A list of all artifact versions produced during the pipeline run.

Source code in zenml/artifacts/utils.py
def get_artifacts_versions_of_pipeline_run(
    pipeline_run: "PipelineRunResponse", only_produced: bool = False
) -> List["ArtifactVersionResponse"]:
    """Get all artifact versions produced during a pipeline run.

    Args:
        pipeline_run: The pipeline run.
        only_produced: If only artifact versions produced by the pipeline run
            should be returned or also cached artifact versions.

    Returns:
        A list of all artifact versions produced during the pipeline run.
    """
    artifact_versions: List["ArtifactVersionResponse"] = []
    for step in pipeline_run.steps.values():
        if not only_produced or step.status == ExecutionStatus.COMPLETED:
            for output in step.outputs.values():
                artifact_versions.extend(output)
    return artifact_versions

get_producer_step_of_artifact(artifact)

Get the step run that produced a given artifact.

Parameters:

Name Type Description Default
artifact ArtifactVersionResponse

The artifact.

required

Returns:

Type Description
StepRunResponse

The step run that produced the artifact.

Exceptions:

Type Description
RuntimeError

If the run that created the artifact no longer exists.

Source code in zenml/artifacts/utils.py
def get_producer_step_of_artifact(
    artifact: "ArtifactVersionResponse",
) -> "StepRunResponse":
    """Get the step run that produced a given artifact.

    Args:
        artifact: The artifact.

    Returns:
        The step run that produced the artifact.

    Raises:
        RuntimeError: If the run that created the artifact no longer exists.
    """
    if not artifact.producer_step_run_id:
        raise RuntimeError(
            f"The run that produced the artifact with id '{artifact.id}' no "
            "longer exists. This can happen if the run was deleted."
        )
    return Client().get_run_step(artifact.producer_step_run_id)

load_artifact(name_or_id, version=None)

Load an artifact.

Parameters:

Name Type Description Default
name_or_id Union[str, uuid.UUID]

The name or ID of the artifact to load.

required
version Optional[str]

The version of the artifact to load, if name_or_id is a name. If not provided, the latest version will be loaded.

None

Returns:

Type Description
Any

The loaded artifact.

Source code in zenml/artifacts/utils.py
def load_artifact(
    name_or_id: Union[str, UUID],
    version: Optional[str] = None,
) -> Any:
    """Load an artifact.

    Args:
        name_or_id: The name or ID of the artifact to load.
        version: The version of the artifact to load, if `name_or_id` is a
            name. If not provided, the latest version will be loaded.

    Returns:
        The loaded artifact.
    """
    artifact = Client().get_artifact_version(name_or_id, version)
    return load_artifact_from_response(artifact)

load_artifact_from_response(artifact)

Load the given artifact into memory.

Parameters:

Name Type Description Default
artifact ArtifactVersionResponse

The artifact to load.

required

Returns:

Type Description
Any

The artifact loaded into memory.

Source code in zenml/artifacts/utils.py
def load_artifact_from_response(artifact: "ArtifactVersionResponse") -> Any:
    """Load the given artifact into memory.

    Args:
        artifact: The artifact to load.

    Returns:
        The artifact loaded into memory.
    """
    artifact_store = _get_artifact_store_from_response_or_from_active_stack(
        artifact=artifact
    )

    return _load_artifact_from_uri(
        materializer=artifact.materializer,
        data_type=artifact.data_type,
        uri=artifact.uri,
        artifact_store=artifact_store,
    )

load_artifact_visualization(artifact, index=0, zen_store=None, encode_image=False)

Load a visualization of the given artifact.

Parameters:

Name Type Description Default
artifact ArtifactVersionResponse

The artifact to visualize.

required
index int

The index of the visualization to load.

0
zen_store Optional[BaseZenStore]

The ZenStore to use for finding the artifact store. If not provided, the client's ZenStore will be used.

None
encode_image bool

Whether to base64 encode image visualizations.

False

Returns:

Type Description
LoadedVisualization

The loaded visualization.

Exceptions:

Type Description
DoesNotExistException

If the artifact does not have the requested visualization or if the visualization was not found in the artifact store.

Source code in zenml/artifacts/utils.py
def load_artifact_visualization(
    artifact: "ArtifactVersionResponse",
    index: int = 0,
    zen_store: Optional["BaseZenStore"] = None,
    encode_image: bool = False,
) -> LoadedVisualization:
    """Load a visualization of the given artifact.

    Args:
        artifact: The artifact to visualize.
        index: The index of the visualization to load.
        zen_store: The ZenStore to use for finding the artifact store. If not
            provided, the client's ZenStore will be used.
        encode_image: Whether to base64 encode image visualizations.

    Returns:
        The loaded visualization.

    Raises:
        DoesNotExistException: If the artifact does not have the requested
            visualization or if the visualization was not found in the artifact
            store.
    """
    # Get the visualization to load
    if not artifact.visualizations:
        raise DoesNotExistException(
            f"Artifact '{artifact.id}' has no visualizations."
        )
    if index < 0 or index >= len(artifact.visualizations):
        raise DoesNotExistException(
            f"Artifact '{artifact.id}' only has {len(artifact.visualizations)} "
            f"visualizations, but index {index} was requested."
        )
    visualization = artifact.visualizations[index]

    # Load the visualization from the artifact's artifact store
    if not artifact.artifact_store_id:
        raise DoesNotExistException(
            f"Artifact '{artifact.id}' cannot be visualized because the "
            "underlying artifact store was deleted."
        )
    artifact_store = _load_artifact_store(
        artifact_store_id=artifact.artifact_store_id, zen_store=zen_store
    )
    try:
        mode = "rb" if visualization.type == VisualizationType.IMAGE else "r"
        value = _load_file_from_artifact_store(
            uri=visualization.uri,
            artifact_store=artifact_store,
            mode=mode,
        )

        # Encode image visualizations if requested
        if visualization.type == VisualizationType.IMAGE and encode_image:
            value = base64.b64encode(bytes(value))

        return LoadedVisualization(type=visualization.type, value=value)
    finally:
        artifact_store.cleanup()

load_model_from_metadata(model_uri)

Load a zenml model artifact from a json file.

This function is used to load information from a Yaml file that was created by the save_model_metadata function. The information in the Yaml file is used to load the model into memory in the inference environment.

Parameters:

Name Type Description Default
model_uri str

the artifact to extract the metadata from.

required

Returns:

Type Description
Any

The ML model object loaded into memory.

Source code in zenml/artifacts/utils.py
def load_model_from_metadata(model_uri: str) -> Any:
    """Load a zenml model artifact from a json file.

    This function is used to load information from a Yaml file that was created
    by the save_model_metadata function. The information in the Yaml file is
    used to load the model into memory in the inference environment.

    Args:
        model_uri: the artifact to extract the metadata from.

    Returns:
        The ML model object loaded into memory.
    """
    # Load the model from its metadata
    artifact_versions_by_uri = Client().list_artifact_versions(uri=model_uri)
    if artifact_versions_by_uri.total == 1:
        artifact_store = (
            _get_artifact_store_from_response_or_from_active_stack(
                artifact_versions_by_uri.items[0]
            )
        )
    else:
        artifact_store = Client().active_stack.artifact_store

    with artifact_store.open(
        os.path.join(model_uri, MODEL_METADATA_YAML_FILE_NAME), "r"
    ) as f:
        metadata = read_yaml(f.name)
    data_type = metadata["datatype"]
    materializer = metadata["materializer"]
    model = _load_artifact_from_uri(
        materializer=materializer,
        data_type=data_type,
        uri=model_uri,
        artifact_store=artifact_store,
    )

    # Switch to eval mode if the model is a torch model
    try:
        import torch.nn as nn

        if isinstance(model, nn.Module):
            model.eval()
    except ImportError:
        pass

    return model

log_artifact_metadata(metadata, artifact_name=None, artifact_version=None)

Log artifact metadata.

This function can be used to log metadata for either existing artifact versions or artifact versions that are newly created in the same step.

Parameters:

Name Type Description Default
metadata Dict[str, MetadataType]

The metadata to log.

required
artifact_name Optional[str]

The name of the artifact to log metadata for. Can be omitted when being called inside a step with only one output.

None
artifact_version Optional[str]

The version of the artifact to log metadata for. If not provided, when being called inside a step that produces an artifact named artifact_name, the metadata will be associated to the corresponding newly created artifact.

None

Exceptions:

Type Description
ValueError

If no artifact name is provided and the function is not called inside a step with a single output, or, if neither an artifact nor an output with the given name exists.

Source code in zenml/artifacts/utils.py
def log_artifact_metadata(
    metadata: Dict[str, "MetadataType"],
    artifact_name: Optional[str] = None,
    artifact_version: Optional[str] = None,
) -> None:
    """Log artifact metadata.

    This function can be used to log metadata for either existing artifact
    versions or artifact versions that are newly created in the same step.

    Args:
        metadata: The metadata to log.
        artifact_name: The name of the artifact to log metadata for. Can
            be omitted when being called inside a step with only one output.
        artifact_version: The version of the artifact to log metadata for. If
            not provided, when being called inside a step that produces an
            artifact named `artifact_name`, the metadata will be associated to
            the corresponding newly created artifact.

    Raises:
        ValueError: If no artifact name is provided and the function is not
            called inside a step with a single output, or, if neither an
            artifact nor an output with the given name exists.

    """
    logger.warning(
        "The `log_artifact_metadata` function is deprecated and will soon be "
        "removed. Instead, you can consider using: "
        "`log_metadata(metadata={...}, infer_artifact=True, ...)` instead. For more "
        "info: https://docs.zenml.io/how-to/model-management-metrics/track-metrics-metadata/attach-metadata-to-an-artifact"
    )

    from zenml import log_metadata

    if artifact_name and artifact_version:
        assert artifact_name is not None

        log_metadata(
            metadata=metadata,
            artifact_name=artifact_name,
            artifact_version=artifact_version,
        )

    step_context = None
    with contextlib.suppress(RuntimeError):
        step_context = get_step_context()

    if step_context and artifact_name in step_context._outputs.keys():
        log_metadata(
            metadata=metadata,
            artifact_name=artifact_name,
            infer_artifact=True,
        )
    elif step_context and len(step_context._outputs) == 1:
        single_output_name = list(step_context._outputs.keys())[0]

        log_metadata(
            metadata=metadata,
            artifact_name=single_output_name,
            infer_artifact=True,
        )
    elif artifact_name:
        client = Client()
        logger.warning(
            "Deprecation warning! Currently, you are calling "
            "`log_artifact_metadata` from a context, where we use the "
            "`artifact_name` to fetch it and link the metadata to its "
            "latest version. This behavior is deprecated and will be "
            "removed in the future. To circumvent this, please check"
            "the `log_metadata` function."
        )
        artifact_version_model = client.get_artifact_version(
            name_id_or_prefix=artifact_name
        )
        log_metadata(
            metadata=metadata,
            artifact_version_id=artifact_version_model.id,
        )
    else:
        raise ValueError(
            "You need to call `log_artifact_metadata` either within a step "
            "(potentially with an artifact name) or outside of a step with an "
            "artifact name (and/or version)."
        )

register_artifact(folder_or_file_uri, name, version=None, artifact_type=None, tags=None, has_custom_name=True, artifact_metadata={})

Register existing data stored in the artifact store as a ZenML Artifact.

Parameters:

Name Type Description Default
folder_or_file_uri str

The full URI within the artifact store to the folder or to the file.

required
name str

The name of the artifact.

required
version Union[int, str]

The version of the artifact. If not provided, a new auto-incremented version will be used.

None
artifact_type Optional[zenml.enums.ArtifactType]

The artifact type. If not given, the type will default to data.

None
tags Optional[List[str]]

Tags to associate with the artifact.

None
has_custom_name bool

If the artifact name is custom and should be listed in the dashboard "Artifacts" tab.

True
artifact_metadata Dict[str, MetadataType]

Metadata dictionary to attach to the artifact version.

{}

Returns:

Type Description
ArtifactVersionResponse

The saved artifact response.

Exceptions:

Type Description
FileNotFoundError

If the folder URI is outside of the artifact store bounds.

Source code in zenml/artifacts/utils.py
def register_artifact(
    folder_or_file_uri: str,
    name: str,
    version: Optional[Union[int, str]] = None,
    artifact_type: Optional[ArtifactType] = None,
    tags: Optional[List[str]] = None,
    has_custom_name: bool = True,
    artifact_metadata: Dict[str, "MetadataType"] = {},
) -> "ArtifactVersionResponse":
    """Register existing data stored in the artifact store as a ZenML Artifact.

    Args:
        folder_or_file_uri: The full URI within the artifact store to the folder
            or to the file.
        name: The name of the artifact.
        version: The version of the artifact. If not provided, a new
            auto-incremented version will be used.
        artifact_type: The artifact type. If not given, the type will default
            to `data`.
        tags: Tags to associate with the artifact.
        has_custom_name: If the artifact name is custom and should be listed in
            the dashboard "Artifacts" tab.
        artifact_metadata: Metadata dictionary to attach to the artifact version.

    Returns:
        The saved artifact response.

    Raises:
        FileNotFoundError: If the folder URI is outside of the artifact store
            bounds.
    """
    client = Client()

    # Get the current artifact store
    artifact_store = client.active_stack.artifact_store

    if not folder_or_file_uri.startswith(artifact_store.path):
        raise FileNotFoundError(
            f"Folder `{folder_or_file_uri}` is outside of "
            f"artifact store bounds `{artifact_store.path}`"
        )

    _check_if_artifact_with_given_uri_already_registered(
        artifact_store=artifact_store,
        uri=folder_or_file_uri,
        name=name,
    )

    artifact_version_request = ArtifactVersionRequest(
        artifact_name=name,
        version=version,
        tags=tags,
        type=artifact_type or ArtifactType.DATA,
        save_type=ArtifactSaveType.PREEXISTING,
        uri=folder_or_file_uri,
        materializer=source_utils.resolve(PreexistingDataMaterializer),
        data_type=source_utils.resolve(Path),
        user=Client().active_user.id,
        workspace=Client().active_workspace.id,
        artifact_store_id=artifact_store.id,
        has_custom_name=has_custom_name,
        metadata=validate_metadata(artifact_metadata)
        if artifact_metadata
        else None,
    )
    artifact_version = client.zen_store.create_artifact_version(
        artifact_version=artifact_version_request
    )

    _link_artifact_version_to_the_step_and_model(
        artifact_version=artifact_version,
    )

    return artifact_version

save_artifact(data, name, version=None, artifact_type=None, tags=None, extract_metadata=True, include_visualizations=True, user_metadata=None, materializer=None, uri=None, save_type=<ArtifactSaveType.MANUAL: 'manual'>, has_custom_name=True)

Upload and publish an artifact.

Parameters:

Name Type Description Default
name str

The name of the artifact.

required
data Any

The artifact data.

required
version Union[int, str]

The version of the artifact. If not provided, a new auto-incremented version will be used.

None
tags Optional[List[str]]

Tags to associate with the artifact.

None
artifact_type Optional[zenml.enums.ArtifactType]

The artifact type. If not given, the type will be defined by the materializer that is used to save the artifact.

None
extract_metadata bool

If artifact metadata should be extracted and returned.

True
include_visualizations bool

If artifact visualizations should be generated.

True
user_metadata Optional[Dict[str, MetadataType]]

User-provided metadata to store with the artifact.

None
materializer Optional[MaterializerClassOrSource]

The materializer to use for saving the artifact to the artifact store.

None
uri Optional[str]

The URI within the artifact store to upload the artifact to. If not provided, the artifact will be uploaded to custom_artifacts/{name}/{version}.

None
save_type ArtifactSaveType

The type of save operation that created the artifact version.

<ArtifactSaveType.MANUAL: 'manual'>
has_custom_name bool

If the artifact name is custom and should be listed in the dashboard "Artifacts" tab.

True

Returns:

Type Description
ArtifactVersionResponse

The saved artifact response.

Source code in zenml/artifacts/utils.py
def save_artifact(
    data: Any,
    name: str,
    version: Optional[Union[int, str]] = None,
    artifact_type: Optional[ArtifactType] = None,
    tags: Optional[List[str]] = None,
    extract_metadata: bool = True,
    include_visualizations: bool = True,
    user_metadata: Optional[Dict[str, "MetadataType"]] = None,
    materializer: Optional["MaterializerClassOrSource"] = None,
    uri: Optional[str] = None,
    # TODO: remove these once external artifact does not use this function anymore
    save_type: ArtifactSaveType = ArtifactSaveType.MANUAL,
    has_custom_name: bool = True,
) -> "ArtifactVersionResponse":
    """Upload and publish an artifact.

    Args:
        name: The name of the artifact.
        data: The artifact data.
        version: The version of the artifact. If not provided, a new
            auto-incremented version will be used.
        tags: Tags to associate with the artifact.
        artifact_type: The artifact type. If not given, the type will be defined
            by the materializer that is used to save the artifact.
        extract_metadata: If artifact metadata should be extracted and returned.
        include_visualizations: If artifact visualizations should be generated.
        user_metadata: User-provided metadata to store with the artifact.
        materializer: The materializer to use for saving the artifact to the
            artifact store.
        uri: The URI within the artifact store to upload the artifact
            to. If not provided, the artifact will be uploaded to
            `custom_artifacts/{name}/{version}`.
        save_type: The type of save operation that created the artifact version.
        has_custom_name: If the artifact name is custom and should be listed in
            the dashboard "Artifacts" tab.

    Returns:
        The saved artifact response.
    """
    from zenml.materializers.materializer_registry import (
        materializer_registry,
    )
    from zenml.utils import source_utils

    client = Client()
    artifact_store = client.active_stack.artifact_store

    if not uri:
        uri = os.path.join("custom_artifacts", name, str(uuid4()))
    if not uri.startswith(artifact_store.path):
        uri = os.path.join(artifact_store.path, uri)

    if save_type == ArtifactSaveType.MANUAL:
        # This check is only necessary for manual saves as we already check
        # it when creating the directory for step output artifacts
        _check_if_artifact_with_given_uri_already_registered(
            artifact_store=artifact_store,
            uri=uri,
            name=name,
        )

    if isinstance(materializer, type):
        materializer_class = materializer
    elif materializer:
        materializer_class = source_utils.load_and_validate_class(
            materializer, expected_class=BaseMaterializer
        )
    else:
        materializer_class = materializer_registry[type(data)]

    artifact_version_request = _store_artifact_data_and_prepare_request(
        data=data,
        name=name,
        uri=uri,
        materializer_class=materializer_class,
        save_type=save_type,
        version=version,
        artifact_type=artifact_type,
        tags=tags,
        store_metadata=extract_metadata,
        store_visualizations=include_visualizations,
        has_custom_name=has_custom_name,
        metadata=user_metadata,
    )
    artifact_version = client.zen_store.create_artifact_version(
        artifact_version=artifact_version_request
    )

    if save_type == ArtifactSaveType.MANUAL:
        _link_artifact_version_to_the_step_and_model(
            artifact_version=artifact_version,
        )

    return artifact_version

save_model_metadata(model_artifact)

Save a zenml model artifact metadata to a YAML file.

This function is used to extract and save information from a zenml model artifact such as the model type and materializer. The extracted information will be the key to loading the model into memory in the inference environment.

datatype: the model type. This is the path to the model class. materializer: The path to the materializer class.

Parameters:

Name Type Description Default
model_artifact ArtifactVersionResponse

the artifact to extract the metadata from.

required

Returns:

Type Description
str

The path to the temporary file where the model metadata is saved

Source code in zenml/artifacts/utils.py
def save_model_metadata(model_artifact: "ArtifactVersionResponse") -> str:
    """Save a zenml model artifact metadata to a YAML file.

    This function is used to extract and save information from a zenml model
    artifact such as the model type and materializer. The extracted information
    will be the key to loading the model into memory in the inference
    environment.

    datatype: the model type. This is the path to the model class.
    materializer: The path to the materializer class.

    Args:
        model_artifact: the artifact to extract the metadata from.

    Returns:
        The path to the temporary file where the model metadata is saved
    """
    metadata = dict()
    metadata["datatype"] = model_artifact.data_type
    metadata["materializer"] = model_artifact.materializer

    with tempfile.NamedTemporaryFile(
        mode="w", suffix=".yaml", delete=False
    ) as f:
        write_yaml(f.name, metadata)
    return f.name