Xgboost
        zenml.integrations.xgboost
  
      special
  
    Initialization of the XGBoost integration.
        
XgboostIntegration            (Integration)
        
    Definition of xgboost integration for ZenML.
Source code in zenml/integrations/xgboost/__init__.py
          class XgboostIntegration(Integration):
    """Definition of xgboost integration for ZenML."""
    NAME = XGBOOST
    REQUIREMENTS = ["xgboost>=1.0.0"]
    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.xgboost import materializers  # noqa
activate()
  
      classmethod
  
    Activates the integration.
Source code in zenml/integrations/xgboost/__init__.py
          @classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.xgboost import materializers  # noqa
        materializers
  
      special
  
    Initialization of the XGBoost materializers.
        xgboost_booster_materializer
    Implementation of an XGBoost booster materializer.
        
XgboostBoosterMaterializer            (BaseMaterializer)
        
    Materializer to read data to and from xgboost.Booster.
Source code in zenml/integrations/xgboost/materializers/xgboost_booster_materializer.py
          class XgboostBoosterMaterializer(BaseMaterializer):
    """Materializer to read data to and from xgboost.Booster."""
    ASSOCIATED_TYPES: ClassVar[Tuple[Type[Any], ...]] = (xgb.Booster,)
    ASSOCIATED_ARTIFACT_TYPE: ClassVar[ArtifactType] = ArtifactType.MODEL
    def load(self, data_type: Type[Any]) -> xgb.Booster:
        """Reads a xgboost Booster model from a serialized JSON file.
        Args:
            data_type: A xgboost Booster type.
        Returns:
            A xgboost Booster object.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        booster = xgb.Booster()
        booster.load_model(temp_file)
        # Cleanup and return
        fileio.rmtree(temp_dir)
        return booster
    def save(self, booster: xgb.Booster) -> None:
        """Creates a JSON serialization for a xgboost Booster model.
        Args:
            booster: A xgboost Booster model.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        # Make a temporary phantom artifact
        with tempfile.NamedTemporaryFile(
            mode="w", suffix=".json", delete=False
        ) as f:
            booster.save_model(f.name)
            # Copy it into artifact store
            fileio.copy(f.name, filepath)
        # Close and remove the temporary file
        f.close()
        fileio.remove(f.name)
load(self, data_type)
    Reads a xgboost Booster model from a serialized JSON file.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| data_type | Type[Any] | A xgboost Booster type. | required | 
Returns:
| Type | Description | 
|---|---|
| xgboost.Booster | A xgboost Booster object. | 
Source code in zenml/integrations/xgboost/materializers/xgboost_booster_materializer.py
          def load(self, data_type: Type[Any]) -> xgb.Booster:
    """Reads a xgboost Booster model from a serialized JSON file.
    Args:
        data_type: A xgboost Booster type.
    Returns:
        A xgboost Booster object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    booster = xgb.Booster()
    booster.load_model(temp_file)
    # Cleanup and return
    fileio.rmtree(temp_dir)
    return booster
save(self, booster)
    Creates a JSON serialization for a xgboost Booster model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| booster | xgboost.Booster | A xgboost Booster model. | required | 
Source code in zenml/integrations/xgboost/materializers/xgboost_booster_materializer.py
          def save(self, booster: xgb.Booster) -> None:
    """Creates a JSON serialization for a xgboost Booster model.
    Args:
        booster: A xgboost Booster model.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    # Make a temporary phantom artifact
    with tempfile.NamedTemporaryFile(
        mode="w", suffix=".json", delete=False
    ) as f:
        booster.save_model(f.name)
        # Copy it into artifact store
        fileio.copy(f.name, filepath)
    # Close and remove the temporary file
    f.close()
    fileio.remove(f.name)
        xgboost_dmatrix_materializer
    Implementation of the XGBoost dmatrix materializer.
        
XgboostDMatrixMaterializer            (BaseMaterializer)
        
    Materializer to read data to and from xgboost.DMatrix.
Source code in zenml/integrations/xgboost/materializers/xgboost_dmatrix_materializer.py
          class XgboostDMatrixMaterializer(BaseMaterializer):
    """Materializer to read data to and from xgboost.DMatrix."""
    ASSOCIATED_TYPES: ClassVar[Tuple[Type[Any], ...]] = (xgb.DMatrix,)
    ASSOCIATED_ARTIFACT_TYPE: ClassVar[ArtifactType] = ArtifactType.DATA
    def load(self, data_type: Type[Any]) -> xgb.DMatrix:
        """Reads a xgboost.DMatrix binary file and loads it.
        Args:
            data_type: The datatype which should be read.
        Returns:
            Materialized xgboost matrix.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        matrix = xgb.DMatrix(temp_file)
        # Cleanup and return
        fileio.rmtree(temp_dir)
        return matrix
    def save(self, matrix: xgb.DMatrix) -> None:
        """Creates a binary serialization for a xgboost.DMatrix object.
        Args:
            matrix: A xgboost.DMatrix object.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        # Make a temporary phantom artifact
        with tempfile.NamedTemporaryFile(mode="wb", delete=False) as f:
            matrix.save_binary(f.name)
            # Copy it into artifact store
            fileio.copy(f.name, filepath)
        # Close and remove the temporary file
        f.close()
        fileio.remove(f.name)
    def extract_metadata(
        self, dataset: xgb.DMatrix
    ) -> Dict[str, "MetadataType"]:
        """Extract metadata from the given `Dataset` object.
        Args:
            dataset: The `Dataset` object to extract metadata from.
        Returns:
            The extracted metadata as a dictionary.
        """
        return {"shape": (dataset.num_row(), dataset.num_col())}
extract_metadata(self, dataset)
    Extract metadata from the given Dataset object.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| dataset | xgboost.DMatrix | The  | required | 
Returns:
| Type | Description | 
|---|---|
| Dict[str, MetadataType] | The extracted metadata as a dictionary. | 
Source code in zenml/integrations/xgboost/materializers/xgboost_dmatrix_materializer.py
          def extract_metadata(
    self, dataset: xgb.DMatrix
) -> Dict[str, "MetadataType"]:
    """Extract metadata from the given `Dataset` object.
    Args:
        dataset: The `Dataset` object to extract metadata from.
    Returns:
        The extracted metadata as a dictionary.
    """
    return {"shape": (dataset.num_row(), dataset.num_col())}
load(self, data_type)
    Reads a xgboost.DMatrix binary file and loads it.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| data_type | Type[Any] | The datatype which should be read. | required | 
Returns:
| Type | Description | 
|---|---|
| xgboost.DMatrix | Materialized xgboost matrix. | 
Source code in zenml/integrations/xgboost/materializers/xgboost_dmatrix_materializer.py
          def load(self, data_type: Type[Any]) -> xgb.DMatrix:
    """Reads a xgboost.DMatrix binary file and loads it.
    Args:
        data_type: The datatype which should be read.
    Returns:
        Materialized xgboost matrix.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    matrix = xgb.DMatrix(temp_file)
    # Cleanup and return
    fileio.rmtree(temp_dir)
    return matrix
save(self, matrix)
    Creates a binary serialization for a xgboost.DMatrix object.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| matrix | xgboost.DMatrix | A xgboost.DMatrix object. | required | 
Source code in zenml/integrations/xgboost/materializers/xgboost_dmatrix_materializer.py
          def save(self, matrix: xgb.DMatrix) -> None:
    """Creates a binary serialization for a xgboost.DMatrix object.
    Args:
        matrix: A xgboost.DMatrix object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    # Make a temporary phantom artifact
    with tempfile.NamedTemporaryFile(mode="wb", delete=False) as f:
        matrix.save_binary(f.name)
        # Copy it into artifact store
        fileio.copy(f.name, filepath)
    # Close and remove the temporary file
    f.close()
    fileio.remove(f.name)