Scipy
        zenml.integrations.scipy
  
      special
  
    Initialization of the Scipy integration.
        
ScipyIntegration            (Integration)
        
    Definition of scipy integration for ZenML.
Source code in zenml/integrations/scipy/__init__.py
          class ScipyIntegration(Integration):
    """Definition of scipy integration for ZenML."""
    NAME = SCIPY
    REQUIREMENTS = ["scipy"]
    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.scipy import materializers  # noqa
activate()
  
      classmethod
  
    Activates the integration.
Source code in zenml/integrations/scipy/__init__.py
          @classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.scipy import materializers  # noqa
        materializers
  
      special
  
    Initialization of the Scipy materializers.
        sparse_materializer
    Implementation of the Scipy Sparse Materializer.
        
SparseMaterializer            (BaseMaterializer)
        
    Materializer to read and write scipy sparse matrices.
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
          class SparseMaterializer(BaseMaterializer):
    """Materializer to read and write scipy sparse matrices."""
    ASSOCIATED_TYPES: ClassVar[Tuple[Type[Any], ...]] = (spmatrix,)
    ASSOCIATED_ARTIFACT_TYPE: ClassVar[ArtifactType] = ArtifactType.DATA
    def load(self, data_type: Type[Any]) -> spmatrix:
        """Reads spmatrix from npz file.
        Args:
            data_type: The type of the spmatrix to load.
        Returns:
            A spmatrix object.
        """
        with fileio.open(os.path.join(self.uri, DATA_FILENAME), "rb") as f:
            mat = load_npz(f)
        return mat
    def save(self, mat: spmatrix) -> None:
        """Writes a spmatrix to the artifact store as a npz file.
        Args:
            mat: The spmatrix to write.
        """
        with fileio.open(os.path.join(self.uri, DATA_FILENAME), "wb") as f:
            save_npz(f, mat)
    def extract_metadata(self, mat: spmatrix) -> Dict[str, "MetadataType"]:
        """Extract metadata from the given `spmatrix` object.
        Args:
            mat: The `spmatrix` object to extract metadata from.
        Returns:
            The extracted metadata as a dictionary.
        """
        return {
            "shape": mat.shape,
            "dtype": DType(mat.dtype),
            "nnz": mat.nnz,
        }
extract_metadata(self, mat)
    Extract metadata from the given spmatrix object.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| mat | scipy.sparse.spmatrix | The  | required | 
Returns:
| Type | Description | 
|---|---|
| Dict[str, MetadataType] | The extracted metadata as a dictionary. | 
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
          def extract_metadata(self, mat: spmatrix) -> Dict[str, "MetadataType"]:
    """Extract metadata from the given `spmatrix` object.
    Args:
        mat: The `spmatrix` object to extract metadata from.
    Returns:
        The extracted metadata as a dictionary.
    """
    return {
        "shape": mat.shape,
        "dtype": DType(mat.dtype),
        "nnz": mat.nnz,
    }
load(self, data_type)
    Reads spmatrix from npz file.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| data_type | Type[Any] | The type of the spmatrix to load. | required | 
Returns:
| Type | Description | 
|---|---|
| scipy.sparse.spmatrix | A spmatrix object. | 
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
          def load(self, data_type: Type[Any]) -> spmatrix:
    """Reads spmatrix from npz file.
    Args:
        data_type: The type of the spmatrix to load.
    Returns:
        A spmatrix object.
    """
    with fileio.open(os.path.join(self.uri, DATA_FILENAME), "rb") as f:
        mat = load_npz(f)
    return mat
save(self, mat)
    Writes a spmatrix to the artifact store as a npz file.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| mat | scipy.sparse.spmatrix | The spmatrix to write. | required | 
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
          def save(self, mat: spmatrix) -> None:
    """Writes a spmatrix to the artifact store as a npz file.
    Args:
        mat: The spmatrix to write.
    """
    with fileio.open(os.path.join(self.uri, DATA_FILENAME), "wb") as f:
        save_npz(f, mat)