Pycaret
        zenml.integrations.pycaret
  
      special
  
    Initialization of the PyCaret integration.
        
PyCaretIntegration            (Integration)
        
    Definition of PyCaret integration for ZenML.
Source code in zenml/integrations/pycaret/__init__.py
          class PyCaretIntegration(Integration):
    """Definition of PyCaret integration for ZenML."""
    NAME = PYCARET
    REQUIREMENTS = [
        "pycaret>=3.0.0",
        "scikit-learn",
        "xgboost",
        "catboost",
        "lightgbm",
    ]
    REQUIREMENTS_IGNORED_ON_UNINSTALL = [
        "scikit-learn",
        "xgboost",
        "catboost",
        "lightgbm",
    ]
    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.pycaret import materializers  # noqa
activate()
  
      classmethod
  
    Activates the integration.
Source code in zenml/integrations/pycaret/__init__.py
          @classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.pycaret import materializers  # noqa
        materializers
  
      special
  
    Initialization for the PyCaret materializers.
        model_materializer
    PyCaret materializer.
        
PyCaretMaterializer            (BaseMaterializer)
        
    Materializer to read/write PyCaret models.
Source code in zenml/integrations/pycaret/materializers/model_materializer.py
          class PyCaretMaterializer(BaseMaterializer):
    """Materializer to read/write PyCaret models."""
    ASSOCIATED_TYPES = (
        # Classification
        LogisticRegression,
        KNeighborsClassifier,
        GaussianNB,
        DecisionTreeClassifier,
        SGDClassifier,
        SVC,
        GaussianProcessClassifier,
        MLPClassifier,
        RidgeClassifier,
        RandomForestClassifier,
        QuadraticDiscriminantAnalysis,
        AdaBoostClassifier,
        GradientBoostingClassifier,
        LinearDiscriminantAnalysis,
        ExtraTreesClassifier,
        XGBClassifier,
        CatBoostClassifier,
        LGBMClassifier,
        # Regression
        LinearRegression,
        Lasso,
        Ridge,
        ElasticNet,
        Lars,
        LassoLars,
        OrthogonalMatchingPursuit,
        BayesianRidge,
        ARDRegression,
        PassiveAggressiveRegressor,
        RANSACRegressor,
        TheilSenRegressor,
        HuberRegressor,
        KernelRidge,
        SVR,
        KNeighborsRegressor,
        DecisionTreeRegressor,
        RandomForestRegressor,
        ExtraTreesRegressor,
        AdaBoostRegressor,
        GradientBoostingRegressor,
        MLPRegressor,
        XGBRegressor,
        CatBoostRegressor,
        BaggingRegressor,
        AdaBoostRegressor,
        LGBMRegressor,
    )
    ASSOCIATED_ARTIFACT_TYPE = ArtifactType.MODEL
    def load(self, data_type: Type[Any]) -> Any:
        """Reads and returns a PyCaret model after copying it to temporary path.
        Args:
            data_type: The type of the data to read.
        Returns:
            A PyCaret model.
        """
        # Create a temporary directory to store the model
        temp_dir = tempfile.TemporaryDirectory()
        # Copy from artifact store to temporary directory
        io_utils.copy_dir(self.uri, temp_dir.name)
        # Load the model from the temporary directory
        model = load_model(temp_dir.name)
        # Cleanup and return
        fileio.rmtree(temp_dir.name)
        return model
    def save(self, model: Any) -> None:
        """Writes a PyCaret model to the artifact store.
        Args:
            model: Any of the supported models.
        """
        # Create a temporary directory to store the model
        temp_dir = tempfile.TemporaryDirectory()
        save_model(model, temp_dir.name)
        io_utils.copy_dir(temp_dir.name, self.uri)
        # Remove the temporary directory
        fileio.rmtree(temp_dir.name)
load(self, data_type)
    Reads and returns a PyCaret model after copying it to temporary path.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| data_type | Type[Any] | The type of the data to read. | required | 
Returns:
| Type | Description | 
|---|---|
| Any | A PyCaret model. | 
Source code in zenml/integrations/pycaret/materializers/model_materializer.py
          def load(self, data_type: Type[Any]) -> Any:
    """Reads and returns a PyCaret model after copying it to temporary path.
    Args:
        data_type: The type of the data to read.
    Returns:
        A PyCaret model.
    """
    # Create a temporary directory to store the model
    temp_dir = tempfile.TemporaryDirectory()
    # Copy from artifact store to temporary directory
    io_utils.copy_dir(self.uri, temp_dir.name)
    # Load the model from the temporary directory
    model = load_model(temp_dir.name)
    # Cleanup and return
    fileio.rmtree(temp_dir.name)
    return model
save(self, model)
    Writes a PyCaret model to the artifact store.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| model | Any | Any of the supported models. | required | 
Source code in zenml/integrations/pycaret/materializers/model_materializer.py
          def save(self, model: Any) -> None:
    """Writes a PyCaret model to the artifact store.
    Args:
        model: Any of the supported models.
    """
    # Create a temporary directory to store the model
    temp_dir = tempfile.TemporaryDirectory()
    save_model(model, temp_dir.name)
    io_utils.copy_dir(temp_dir.name, self.uri)
    # Remove the temporary directory
    fileio.rmtree(temp_dir.name)