Lightgbm
        zenml.integrations.lightgbm
  
      special
  
    Initialization of the LightGBM integration.
        
LightGBMIntegration            (Integration)
        
    Definition of lightgbm integration for ZenML.
Source code in zenml/integrations/lightgbm/__init__.py
          class LightGBMIntegration(Integration):
    """Definition of lightgbm integration for ZenML."""
    NAME = LIGHTGBM
    REQUIREMENTS = ["lightgbm>=1.0.0"]
    APT_PACKAGES = ["libgomp1"]
    @classmethod
    def activate(cls) -> None:
        """Activates the integration."""
        from zenml.integrations.lightgbm import materializers  # noqa
activate()
  
      classmethod
  
    Activates the integration.
Source code in zenml/integrations/lightgbm/__init__.py
          @classmethod
def activate(cls) -> None:
    """Activates the integration."""
    from zenml.integrations.lightgbm import materializers  # noqa
        materializers
  
      special
  
    Initialization of the Neural Prophet materializer.
        lightgbm_booster_materializer
    Implementation of the LightGBM booster materializer.
        
LightGBMBoosterMaterializer            (BaseMaterializer)
        
    Materializer to read data to and from lightgbm.Booster.
Source code in zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
          class LightGBMBoosterMaterializer(BaseMaterializer):
    """Materializer to read data to and from lightgbm.Booster."""
    ASSOCIATED_TYPES: ClassVar[Tuple[Type[Any], ...]] = (lgb.Booster,)
    ASSOCIATED_ARTIFACT_TYPE: ClassVar[ArtifactType] = ArtifactType.MODEL
    def load(self, data_type: Type[Any]) -> lgb.Booster:
        """Reads a lightgbm Booster model from a serialized JSON file.
        Args:
            data_type: A lightgbm Booster type.
        Returns:
            A lightgbm Booster object.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        booster = lgb.Booster(model_file=temp_file)
        # Cleanup and return
        fileio.rmtree(temp_dir)
        return booster
    def save(self, booster: lgb.Booster) -> None:
        """Creates a JSON serialization for a lightgbm Booster model.
        Args:
            booster: A lightgbm Booster model.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tmp_path = os.path.join(tmp_dir, "model.txt")
            booster.save_model(tmp_path)
            fileio.copy(tmp_path, filepath)
load(self, data_type)
    Reads a lightgbm Booster model from a serialized JSON file.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| data_type | Type[Any] | A lightgbm Booster type. | required | 
Returns:
| Type | Description | 
|---|---|
| lightgbm.Booster | A lightgbm Booster object. | 
Source code in zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
          def load(self, data_type: Type[Any]) -> lgb.Booster:
    """Reads a lightgbm Booster model from a serialized JSON file.
    Args:
        data_type: A lightgbm Booster type.
    Returns:
        A lightgbm Booster object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    booster = lgb.Booster(model_file=temp_file)
    # Cleanup and return
    fileio.rmtree(temp_dir)
    return booster
save(self, booster)
    Creates a JSON serialization for a lightgbm Booster model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| booster | lightgbm.Booster | A lightgbm Booster model. | required | 
Source code in zenml/integrations/lightgbm/materializers/lightgbm_booster_materializer.py
          def save(self, booster: lgb.Booster) -> None:
    """Creates a JSON serialization for a lightgbm Booster model.
    Args:
        booster: A lightgbm Booster model.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    with tempfile.TemporaryDirectory() as tmp_dir:
        tmp_path = os.path.join(tmp_dir, "model.txt")
        booster.save_model(tmp_path)
        fileio.copy(tmp_path, filepath)
        lightgbm_dataset_materializer
    Implementation of the LightGBM materializer.
        
LightGBMDatasetMaterializer            (BaseMaterializer)
        
    Materializer to read data to and from lightgbm.Dataset.
Source code in zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
          class LightGBMDatasetMaterializer(BaseMaterializer):
    """Materializer to read data to and from lightgbm.Dataset."""
    ASSOCIATED_TYPES: ClassVar[Tuple[Type[Any], ...]] = (lgb.Dataset,)
    ASSOCIATED_ARTIFACT_TYPE: ClassVar[ArtifactType] = ArtifactType.DATA
    def load(self, data_type: Type[Any]) -> lgb.Dataset:
        """Reads a lightgbm.Dataset binary file and loads it.
        Args:
            data_type: A lightgbm.Dataset type.
        Returns:
            A lightgbm.Dataset object.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        # Create a temporary folder
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
        # Copy from artifact store to temporary file
        fileio.copy(filepath, temp_file)
        matrix = lgb.Dataset(temp_file, free_raw_data=False)
        # No clean up this time because matrix is lazy loaded
        return matrix
    def save(self, matrix: lgb.Dataset) -> None:
        """Creates a binary serialization for a lightgbm.Dataset object.
        Args:
            matrix: A lightgbm.Dataset object.
        """
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        # Make a temporary phantom artifact
        temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
        temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
        matrix.save_binary(temp_file)
        # Copy it into artifact store
        fileio.copy(temp_file, filepath)
        fileio.rmtree(temp_dir)
    def extract_metadata(
        self, matrix: lgb.Dataset
    ) -> Dict[str, "MetadataType"]:
        """Extract metadata from the given `Dataset` object.
        Args:
            matrix: The `Dataset` object to extract metadata from.
        Returns:
            The extracted metadata as a dictionary.
        """
        return {"shape": (matrix.num_data(), matrix.num_feature())}
extract_metadata(self, matrix)
    Extract metadata from the given Dataset object.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| matrix | lightgbm.Dataset | The  | required | 
Returns:
| Type | Description | 
|---|---|
| Dict[str, MetadataType] | The extracted metadata as a dictionary. | 
Source code in zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
          def extract_metadata(
    self, matrix: lgb.Dataset
) -> Dict[str, "MetadataType"]:
    """Extract metadata from the given `Dataset` object.
    Args:
        matrix: The `Dataset` object to extract metadata from.
    Returns:
        The extracted metadata as a dictionary.
    """
    return {"shape": (matrix.num_data(), matrix.num_feature())}
load(self, data_type)
    Reads a lightgbm.Dataset binary file and loads it.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| data_type | Type[Any] | A lightgbm.Dataset type. | required | 
Returns:
| Type | Description | 
|---|---|
| lightgbm.Dataset | A lightgbm.Dataset object. | 
Source code in zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
          def load(self, data_type: Type[Any]) -> lgb.Dataset:
    """Reads a lightgbm.Dataset binary file and loads it.
    Args:
        data_type: A lightgbm.Dataset type.
    Returns:
        A lightgbm.Dataset object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    # Create a temporary folder
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
    # Copy from artifact store to temporary file
    fileio.copy(filepath, temp_file)
    matrix = lgb.Dataset(temp_file, free_raw_data=False)
    # No clean up this time because matrix is lazy loaded
    return matrix
save(self, matrix)
    Creates a binary serialization for a lightgbm.Dataset object.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| matrix | lightgbm.Dataset | A lightgbm.Dataset object. | required | 
Source code in zenml/integrations/lightgbm/materializers/lightgbm_dataset_materializer.py
          def save(self, matrix: lgb.Dataset) -> None:
    """Creates a binary serialization for a lightgbm.Dataset object.
    Args:
        matrix: A lightgbm.Dataset object.
    """
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    # Make a temporary phantom artifact
    temp_dir = tempfile.mkdtemp(prefix="zenml-temp-")
    temp_file = os.path.join(str(temp_dir), DEFAULT_FILENAME)
    matrix.save_binary(temp_file)
    # Copy it into artifact store
    fileio.copy(temp_file, filepath)
    fileio.rmtree(temp_dir)