Facets
zenml.integrations.facets
special
Facets integration for ZenML.
FacetsIntegration (Integration)
Definition of Facets integration for ZenML.
Source code in zenml/integrations/facets/__init__.py
class FacetsIntegration(Integration):
"""Definition of Facets integration for ZenML."""
NAME = FACETS
REQUIREMENTS = ["facets-overview>=1.0.0"]
REQUIREMENTS_IGNORED_ON_UNINSTALL = ["pandas"]
@classmethod
def activate(cls) -> None:
"""Activate the Facets integration."""
from zenml.integrations.facets import materializers # noqa
@classmethod
def get_requirements(cls, target_os: Optional[str] = None) -> List[str]:
"""Method to get the requirements for the integration.
Args:
target_os: The target operating system to get the requirements for.
Returns:
A list of requirements.
"""
from zenml.integrations.pandas import PandasIntegration
return cls.REQUIREMENTS + \
PandasIntegration.get_requirements(target_os=target_os)
activate()
classmethod
Activate the Facets integration.
Source code in zenml/integrations/facets/__init__.py
@classmethod
def activate(cls) -> None:
"""Activate the Facets integration."""
from zenml.integrations.facets import materializers # noqa
get_requirements(target_os=None)
classmethod
Method to get the requirements for the integration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_os |
Optional[str] |
The target operating system to get the requirements for. |
None |
Returns:
Type | Description |
---|---|
List[str] |
A list of requirements. |
Source code in zenml/integrations/facets/__init__.py
@classmethod
def get_requirements(cls, target_os: Optional[str] = None) -> List[str]:
"""Method to get the requirements for the integration.
Args:
target_os: The target operating system to get the requirements for.
Returns:
A list of requirements.
"""
from zenml.integrations.pandas import PandasIntegration
return cls.REQUIREMENTS + \
PandasIntegration.get_requirements(target_os=target_os)
materializers
special
Facets Materializers.
facets_materializer
Implementation of the FacetsMaterializer.
FacetsMaterializer (BaseMaterializer)
Materializer to save Facets visualizations.
This materializer is used to visualize and compare dataset statistics using Facets. In contrast to other materializers, this materializer only saves the visualization and not the data itself.
Source code in zenml/integrations/facets/materializers/facets_materializer.py
class FacetsMaterializer(BaseMaterializer):
"""Materializer to save Facets visualizations.
This materializer is used to visualize and compare dataset statistics using
Facets. In contrast to other materializers, this materializer only saves
the visualization and not the data itself.
"""
ASSOCIATED_TYPES = (FacetsComparison,)
ASSOCIATED_ARTIFACT_TYPE = ArtifactType.DATA_ANALYSIS
def save_visualizations(
self, data: FacetsComparison
) -> Dict[str, VisualizationType]:
"""Save a Facets visualization of the data.
Args:
data: The data to visualize.
Returns:
A dictionary of visualization URIs and their types.
"""
proto = GenericFeatureStatisticsGenerator().ProtoFromDataFrames(
data.datasets
)
protostr = base64.b64encode(proto.SerializeToString()).decode("utf-8")
template = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
"stats.html",
)
html = io_utils.read_file_contents_as_string(template)
html = html.replace("protostr", protostr)
visualization_path = os.path.join(self.uri, VISUALIZATION_FILENAME)
visualization_path = visualization_path.replace("\\", "/")
with fileio.open(visualization_path, "w") as f:
f.write(html)
return {visualization_path: VisualizationType.HTML}
save_visualizations(self, data)
Save a Facets visualization of the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
FacetsComparison |
The data to visualize. |
required |
Returns:
Type | Description |
---|---|
Dict[str, zenml.enums.VisualizationType] |
A dictionary of visualization URIs and their types. |
Source code in zenml/integrations/facets/materializers/facets_materializer.py
def save_visualizations(
self, data: FacetsComparison
) -> Dict[str, VisualizationType]:
"""Save a Facets visualization of the data.
Args:
data: The data to visualize.
Returns:
A dictionary of visualization URIs and their types.
"""
proto = GenericFeatureStatisticsGenerator().ProtoFromDataFrames(
data.datasets
)
protostr = base64.b64encode(proto.SerializeToString()).decode("utf-8")
template = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
"stats.html",
)
html = io_utils.read_file_contents_as_string(template)
html = html.replace("protostr", protostr)
visualization_path = os.path.join(self.uri, VISUALIZATION_FILENAME)
visualization_path = visualization_path.replace("\\", "/")
with fileio.open(visualization_path, "w") as f:
f.write(html)
return {visualization_path: VisualizationType.HTML}
models
Models used by the Facets integration.
FacetsComparison (BaseModel)
Facets comparison model.
Returning this from any step will automatically visualize the datasets statistics using Facets.
Attributes:
Name | Type | Description |
---|---|---|
datasets |
List[Dict[str, Union[str, pandas.DataFrame]]] |
List of datasets to compare. Should be in the format
|
Source code in zenml/integrations/facets/models.py
class FacetsComparison(BaseModel):
"""Facets comparison model.
Returning this from any step will automatically visualize the datasets
statistics using Facets.
Attributes:
datasets: List of datasets to compare. Should be in the format
`[{"name": "dataset_name", "table": pd.DataFrame}, ...]`.
"""
datasets: List[Dict[str, Union[str, pd.DataFrame]]]
model_config = ConfigDict(arbitrary_types_allowed=True)
steps
special
Facets Standard Steps.
facets_visualization_steps
Facets Standard Steps.