Skip to content

Databricks

zenml.integrations.databricks special

Initialization of the Databricks integration for ZenML.

DatabricksIntegration (Integration)

Definition of Databricks Integration for ZenML.

Source code in zenml/integrations/databricks/__init__.py
class DatabricksIntegration(Integration):
    """Definition of Databricks Integration for ZenML."""

    NAME = DATABRICKS
    REQUIREMENTS = ["databricks-sdk==0.28.0"]

    @classmethod
    def flavors(cls) -> List[Type[Flavor]]:
        """Declare the stack component flavors for the Databricks integration.

        Returns:
            List of stack component flavors for this integration.
        """
        from zenml.integrations.databricks.flavors import (
            DatabricksOrchestratorFlavor,
            DatabricksModelDeployerFlavor,
        )

        return [
            DatabricksOrchestratorFlavor,
            DatabricksModelDeployerFlavor,
        ]

flavors() classmethod

Declare the stack component flavors for the Databricks integration.

Returns:

Type Description
List[Type[zenml.stack.flavor.Flavor]]

List of stack component flavors for this integration.

Source code in zenml/integrations/databricks/__init__.py
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Declare the stack component flavors for the Databricks integration.

    Returns:
        List of stack component flavors for this integration.
    """
    from zenml.integrations.databricks.flavors import (
        DatabricksOrchestratorFlavor,
        DatabricksModelDeployerFlavor,
    )

    return [
        DatabricksOrchestratorFlavor,
        DatabricksModelDeployerFlavor,
    ]

flavors special

Databricks integration flavors.

databricks_model_deployer_flavor

Databricks model deployer flavor.

DatabricksBaseConfig (BaseModel)

Databricks Inference Endpoint configuration.

Source code in zenml/integrations/databricks/flavors/databricks_model_deployer_flavor.py
class DatabricksBaseConfig(BaseModel):
    """Databricks Inference Endpoint configuration."""

    workload_size: str
    scale_to_zero_enabled: bool = False
    env_vars: Optional[Dict[str, str]] = None
    workload_type: Optional[str] = None
    endpoint_secret_name: Optional[str] = None
DatabricksModelDeployerConfig (BaseModelDeployerConfig)

Configuration for the Databricks model deployer.

Attributes:

Name Type Description
host str

Databricks host.

secret_name Optional[str]

Secret name to use for authentication.

client_id Optional[str]

Databricks client id.

client_secret Optional[str]

Databricks client secret.

Source code in zenml/integrations/databricks/flavors/databricks_model_deployer_flavor.py
class DatabricksModelDeployerConfig(BaseModelDeployerConfig):
    """Configuration for the Databricks model deployer.

    Attributes:
        host: Databricks host.
        secret_name: Secret name to use for authentication.
        client_id: Databricks client id.
        client_secret: Databricks client secret.
    """

    host: str
    secret_name: Optional[str] = None
    client_id: Optional[str] = SecretField(default=None)
    client_secret: Optional[str] = SecretField(default=None)
DatabricksModelDeployerFlavor (BaseModelDeployerFlavor)

Databricks Endpoint model deployer flavor.

Source code in zenml/integrations/databricks/flavors/databricks_model_deployer_flavor.py
class DatabricksModelDeployerFlavor(BaseModelDeployerFlavor):
    """Databricks Endpoint model deployer flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return DATABRICKS_MODEL_DEPLOYER_FLAVOR

    @property
    def docs_url(self) -> Optional[str]:
        """A url to point at docs explaining this flavor.

        Returns:
            A flavor docs url.
        """
        return self.generate_default_docs_url()

    @property
    def sdk_docs_url(self) -> Optional[str]:
        """A url to point at SDK docs explaining this flavor.

        Returns:
            A flavor SDK docs url.
        """
        return self.generate_default_sdk_docs_url()

    @property
    def logo_url(self) -> str:
        """A url to represent the flavor in the dashboard.

        Returns:
            The flavor logo.
        """
        return "https://public-flavor-logos.s3.eu-central-1.amazonaws.com/model_deployer/databricks.png"

    @property
    def config_class(self) -> Type[DatabricksModelDeployerConfig]:
        """Returns `DatabricksModelDeployerConfig` config class.

        Returns:
            The config class.
        """
        return DatabricksModelDeployerConfig

    @property
    def implementation_class(self) -> Type["DatabricksModelDeployer"]:
        """Implementation class for this flavor.

        Returns:
            The implementation class.
        """
        from zenml.integrations.databricks.model_deployers.databricks_model_deployer import (
            DatabricksModelDeployer,
        )

        return DatabricksModelDeployer
config_class: Type[zenml.integrations.databricks.flavors.databricks_model_deployer_flavor.DatabricksModelDeployerConfig] property readonly

Returns DatabricksModelDeployerConfig config class.

Returns:

Type Description
Type[zenml.integrations.databricks.flavors.databricks_model_deployer_flavor.DatabricksModelDeployerConfig]

The config class.

docs_url: Optional[str] property readonly

A url to point at docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor docs url.

implementation_class: Type[DatabricksModelDeployer] property readonly

Implementation class for this flavor.

Returns:

Type Description
Type[DatabricksModelDeployer]

The implementation class.

logo_url: str property readonly

A url to represent the flavor in the dashboard.

Returns:

Type Description
str

The flavor logo.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

sdk_docs_url: Optional[str] property readonly

A url to point at SDK docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor SDK docs url.

databricks_orchestrator_flavor

Databricks orchestrator base config and settings.

DatabricksAvailabilityType (StrEnum)

Databricks availability type.

Source code in zenml/integrations/databricks/flavors/databricks_orchestrator_flavor.py
class DatabricksAvailabilityType(StrEnum):
    """Databricks availability type."""

    ON_DEMAND = "ON_DEMAND"
    SPOT = "SPOT"
    SPOT_WITH_FALLBACK = "SPOT_WITH_FALLBACK"
DatabricksOrchestratorConfig (BaseOrchestratorConfig, DatabricksOrchestratorSettings)

Databricks orchestrator base config.

Attributes:

Name Type Description
host str

Databricks host.

client_id str

Databricks client id.

client_secret str

Databricks client secret.

Source code in zenml/integrations/databricks/flavors/databricks_orchestrator_flavor.py
class DatabricksOrchestratorConfig(
    BaseOrchestratorConfig, DatabricksOrchestratorSettings
):
    """Databricks orchestrator base config.

    Attributes:
        host: Databricks host.
        client_id: Databricks client id.
        client_secret: Databricks client secret.
    """

    host: str
    client_id: str = SecretField(default=None)
    client_secret: str = SecretField(default=None)

    @property
    def is_local(self) -> bool:
        """Checks if this stack component is running locally.

        Returns:
            True if this config is for a local component, False otherwise.
        """
        return False

    @property
    def is_remote(self) -> bool:
        """Checks if this stack component is running remotely.

        Returns:
            True if this config is for a remote component, False otherwise.
        """
        return True
is_local: bool property readonly

Checks if this stack component is running locally.

Returns:

Type Description
bool

True if this config is for a local component, False otherwise.

is_remote: bool property readonly

Checks if this stack component is running remotely.

Returns:

Type Description
bool

True if this config is for a remote component, False otherwise.

DatabricksOrchestratorFlavor (BaseOrchestratorFlavor)

Databricks orchestrator flavor.

Source code in zenml/integrations/databricks/flavors/databricks_orchestrator_flavor.py
class DatabricksOrchestratorFlavor(BaseOrchestratorFlavor):
    """Databricks orchestrator flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return DATABRICKS_ORCHESTRATOR_FLAVOR

    @property
    def docs_url(self) -> Optional[str]:
        """A url to point at docs explaining this flavor.

        Returns:
            A flavor docs url.
        """
        return self.generate_default_docs_url()

    @property
    def sdk_docs_url(self) -> Optional[str]:
        """A url to point at SDK docs explaining this flavor.

        Returns:
            A flavor SDK docs url.
        """
        return self.generate_default_sdk_docs_url()

    @property
    def logo_url(self) -> str:
        """A url to represent the flavor in the dashboard.

        Returns:
            The flavor logo.
        """
        return "https://public-flavor-logos.s3.eu-central-1.amazonaws.com/orchestrator/databricks.png"

    @property
    def config_class(self) -> Type[DatabricksOrchestratorConfig]:
        """Returns `KubeflowOrchestratorConfig` config class.

        Returns:
                The config class.
        """
        return DatabricksOrchestratorConfig

    @property
    def implementation_class(self) -> Type["DatabricksOrchestrator"]:
        """Implementation class for this flavor.

        Returns:
            The implementation class.
        """
        from zenml.integrations.databricks.orchestrators import (
            DatabricksOrchestrator,
        )

        return DatabricksOrchestrator
config_class: Type[zenml.integrations.databricks.flavors.databricks_orchestrator_flavor.DatabricksOrchestratorConfig] property readonly

Returns KubeflowOrchestratorConfig config class.

Returns:

Type Description
Type[zenml.integrations.databricks.flavors.databricks_orchestrator_flavor.DatabricksOrchestratorConfig]

The config class.

docs_url: Optional[str] property readonly

A url to point at docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor docs url.

implementation_class: Type[DatabricksOrchestrator] property readonly

Implementation class for this flavor.

Returns:

Type Description
Type[DatabricksOrchestrator]

The implementation class.

logo_url: str property readonly

A url to represent the flavor in the dashboard.

Returns:

Type Description
str

The flavor logo.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

sdk_docs_url: Optional[str] property readonly

A url to point at SDK docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor SDK docs url.

DatabricksOrchestratorSettings (BaseSettings)

Databricks orchestrator base settings.

Attributes:

Name Type Description
spark_version Optional[str]

Spark version.

num_workers Optional[int]

Number of workers.

node_type_id Optional[str]

Node type id.

policy_id Optional[str]

Policy id.

autotermination_minutes Optional[int]

Autotermination minutes.

autoscale Tuple[int, int]

Autoscale.

single_user_name Optional[str]

Single user name.

spark_conf Optional[Dict[str, str]]

Spark configuration.

spark_env_vars Optional[Dict[str, str]]

Spark environment variables.

schedule_timezone Optional[str]

Schedule timezone.

Source code in zenml/integrations/databricks/flavors/databricks_orchestrator_flavor.py
class DatabricksOrchestratorSettings(BaseSettings):
    """Databricks orchestrator base settings.

    Attributes:
        spark_version: Spark version.
        num_workers: Number of workers.
        node_type_id: Node type id.
        policy_id: Policy id.
        autotermination_minutes: Autotermination minutes.
        autoscale: Autoscale.
        single_user_name: Single user name.
        spark_conf: Spark configuration.
        spark_env_vars: Spark environment variables.
        schedule_timezone: Schedule timezone.
    """

    # Resources
    spark_version: Optional[str] = None
    num_workers: Optional[int] = None
    node_type_id: Optional[str] = None
    policy_id: Optional[str] = None
    autotermination_minutes: Optional[int] = None
    autoscale: Tuple[int, int] = (0, 1)
    single_user_name: Optional[str] = None
    spark_conf: Optional[Dict[str, str]] = None
    spark_env_vars: Optional[Dict[str, str]] = None
    schedule_timezone: Optional[str] = None
    availability_type: Optional[DatabricksAvailabilityType] = None

model_deployers special

Initialization of the Databricks model deployers.

databricks_model_deployer

Implementation of the Databricks Model Deployer.

DatabricksModelDeployer (BaseModelDeployer)

Databricks endpoint model deployer.

Source code in zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
class DatabricksModelDeployer(BaseModelDeployer):
    """Databricks endpoint model deployer."""

    NAME: ClassVar[str] = "Databricks"
    FLAVOR: ClassVar[Type[BaseModelDeployerFlavor]] = (
        DatabricksModelDeployerFlavor
    )

    @property
    def config(self) -> DatabricksModelDeployerConfig:
        """Config class for the Databricks Model deployer settings class.

        Returns:
            The configuration.
        """
        return cast(DatabricksModelDeployerConfig, self._config)

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates the stack.

        Returns:
            A validator that checks that the stack contains a remote artifact
            store.
        """

        def _validate_if_secret_or_token_is_present(
            stack: "Stack",
        ) -> Tuple[bool, str]:
            """Check if client id and client secret or secret name is present in the stack.

            Args:
                stack: The stack to validate.

            Returns:
                A tuple with a boolean indicating whether the stack is valid
                and a message describing the validation result.
            """
            return bool(
                (self.config.client_id and self.config.client_secret)
                or self.config.secret_name
            ), (
                "The Databricks model deployer requires either a secret name"
                " or a client id and client secret to be present in the stack."
            )

        return StackValidator(
            custom_validation_function=_validate_if_secret_or_token_is_present,
        )

    def _create_new_service(
        self, id: UUID, timeout: int, config: DatabricksDeploymentConfig
    ) -> DatabricksDeploymentService:
        """Creates a new DatabricksDeploymentService.

        Args:
            id: the UUID of the model to be deployed with Databricks model deployer.
            timeout: the timeout in seconds to wait for the Databricks inference endpoint
                to be provisioned and successfully started or updated.
            config: the configuration of the model to be deployed with Databricks model deployer.

        Returns:
            The DatabricksDeploymentConfig object that can be used to interact
            with the Databricks inference endpoint.
        """
        # create a new service for the new model
        service = DatabricksDeploymentService(uuid=id, config=config)
        logger.info(
            f"Creating an artifact {DATABRICKS_SERVICE_ARTIFACT} with service instance attached as metadata."
            " If there's an active pipeline and/or model this artifact will be associated with it."
        )
        service.start(timeout=timeout)
        return service

    def _clean_up_existing_service(
        self,
        timeout: int,
        force: bool,
        existing_service: DatabricksDeploymentService,
    ) -> None:
        """Stop existing services.

        Args:
            timeout: the timeout in seconds to wait for the Databricks
                deployment to be stopped.
            force: if True, force the service to stop
            existing_service: Existing Databricks deployment service
        """
        # stop the older service
        existing_service.stop(timeout=timeout, force=force)

    def perform_deploy_model(
        self,
        id: UUID,
        config: ServiceConfig,
        timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
    ) -> BaseService:
        """Create a new Databricks deployment service or update an existing one.

        This should serve the supplied model and deployment configuration.

        Args:
            id: the UUID of the model to be deployed with Databricks.
            config: the configuration of the model to be deployed with Databricks.
            timeout: the timeout in seconds to wait for the Databricks endpoint
                to be provisioned and successfully started or updated. If set
                to 0, the method will return immediately after the Databricks
                server is provisioned, without waiting for it to fully start.

        Returns:
            The ZenML Databricks deployment service object that can be used to
            interact with the remote Databricks inference endpoint server.
        """
        with track_handler(AnalyticsEvent.MODEL_DEPLOYED) as analytics_handler:
            config = cast(DatabricksDeploymentConfig, config)
            # create a new DatabricksDeploymentService instance
            service = self._create_new_service(
                id=id, timeout=timeout, config=config
            )
            logger.info(
                f"Creating a new Databricks inference endpoint service: {service}"
            )
            # Add telemetry with metadata that gets the stack metadata and
            # differentiates between pure model and custom code deployments
            stack = Client().active_stack
            stack_metadata = {
                component_type.value: component.flavor
                for component_type, component in stack.components.items()
            }
            analytics_handler.metadata = {
                "store_type": Client().zen_store.type.value,
                **stack_metadata,
            }

        return service

    def perform_stop_model(
        self,
        service: BaseService,
        timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
        force: bool = False,
    ) -> BaseService:
        """Method to stop a model server.

        Args:
            service: The service to stop.
            timeout: Timeout in seconds to wait for the service to stop.
            force: If True, force the service to stop.

        Returns:
            The stopped service.
        """
        service.stop(timeout=timeout, force=force)
        return service

    def perform_start_model(
        self,
        service: BaseService,
        timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
    ) -> BaseService:
        """Method to start a model server.

        Args:
            service: The service to start.
            timeout: Timeout in seconds to wait for the service to start.

        Returns:
            The started service.
        """
        service.start(timeout=timeout)
        return service

    def perform_delete_model(
        self,
        service: BaseService,
        timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
        force: bool = False,
    ) -> None:
        """Method to delete all configuration of a model server.

        Args:
            service: The service to delete.
            timeout: Timeout in seconds to wait for the service to stop.
            force: If True, force the service to stop.
        """
        service = cast(DatabricksDeploymentService, service)
        self._clean_up_existing_service(
            existing_service=service, timeout=timeout, force=force
        )

    @staticmethod
    def get_model_server_info(  # type: ignore[override]
        service_instance: "DatabricksDeploymentService",
    ) -> Dict[str, Optional[str]]:
        """Return implementation specific information that might be relevant to the user.

        Args:
            service_instance: Instance of a DatabricksDeploymentService

        Returns:
            Model server information.
        """
        return {
            "PREDICTION_URL": service_instance.get_prediction_url(),
            "HEALTH_CHECK_URL": service_instance.get_healthcheck_url(),
        }
config: DatabricksModelDeployerConfig property readonly

Config class for the Databricks Model deployer settings class.

Returns:

Type Description
DatabricksModelDeployerConfig

The configuration.

validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates the stack.

Returns:

Type Description
Optional[zenml.stack.stack_validator.StackValidator]

A validator that checks that the stack contains a remote artifact store.

FLAVOR (BaseModelDeployerFlavor)

Databricks Endpoint model deployer flavor.

Source code in zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
class DatabricksModelDeployerFlavor(BaseModelDeployerFlavor):
    """Databricks Endpoint model deployer flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return DATABRICKS_MODEL_DEPLOYER_FLAVOR

    @property
    def docs_url(self) -> Optional[str]:
        """A url to point at docs explaining this flavor.

        Returns:
            A flavor docs url.
        """
        return self.generate_default_docs_url()

    @property
    def sdk_docs_url(self) -> Optional[str]:
        """A url to point at SDK docs explaining this flavor.

        Returns:
            A flavor SDK docs url.
        """
        return self.generate_default_sdk_docs_url()

    @property
    def logo_url(self) -> str:
        """A url to represent the flavor in the dashboard.

        Returns:
            The flavor logo.
        """
        return "https://public-flavor-logos.s3.eu-central-1.amazonaws.com/model_deployer/databricks.png"

    @property
    def config_class(self) -> Type[DatabricksModelDeployerConfig]:
        """Returns `DatabricksModelDeployerConfig` config class.

        Returns:
            The config class.
        """
        return DatabricksModelDeployerConfig

    @property
    def implementation_class(self) -> Type["DatabricksModelDeployer"]:
        """Implementation class for this flavor.

        Returns:
            The implementation class.
        """
        from zenml.integrations.databricks.model_deployers.databricks_model_deployer import (
            DatabricksModelDeployer,
        )

        return DatabricksModelDeployer
config_class: Type[zenml.integrations.databricks.flavors.databricks_model_deployer_flavor.DatabricksModelDeployerConfig] property readonly

Returns DatabricksModelDeployerConfig config class.

Returns:

Type Description
Type[zenml.integrations.databricks.flavors.databricks_model_deployer_flavor.DatabricksModelDeployerConfig]

The config class.

docs_url: Optional[str] property readonly

A url to point at docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor docs url.

implementation_class: Type[DatabricksModelDeployer] property readonly

Implementation class for this flavor.

Returns:

Type Description
Type[DatabricksModelDeployer]

The implementation class.

logo_url: str property readonly

A url to represent the flavor in the dashboard.

Returns:

Type Description
str

The flavor logo.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

sdk_docs_url: Optional[str] property readonly

A url to point at SDK docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor SDK docs url.

get_model_server_info(service_instance) staticmethod

Return implementation specific information that might be relevant to the user.

Parameters:

Name Type Description Default
service_instance DatabricksDeploymentService

Instance of a DatabricksDeploymentService

required

Returns:

Type Description
Dict[str, Optional[str]]

Model server information.

Source code in zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
@staticmethod
def get_model_server_info(  # type: ignore[override]
    service_instance: "DatabricksDeploymentService",
) -> Dict[str, Optional[str]]:
    """Return implementation specific information that might be relevant to the user.

    Args:
        service_instance: Instance of a DatabricksDeploymentService

    Returns:
        Model server information.
    """
    return {
        "PREDICTION_URL": service_instance.get_prediction_url(),
        "HEALTH_CHECK_URL": service_instance.get_healthcheck_url(),
    }
perform_delete_model(self, service, timeout=300, force=False)

Method to delete all configuration of a model server.

Parameters:

Name Type Description Default
service BaseService

The service to delete.

required
timeout int

Timeout in seconds to wait for the service to stop.

300
force bool

If True, force the service to stop.

False
Source code in zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
def perform_delete_model(
    self,
    service: BaseService,
    timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
    force: bool = False,
) -> None:
    """Method to delete all configuration of a model server.

    Args:
        service: The service to delete.
        timeout: Timeout in seconds to wait for the service to stop.
        force: If True, force the service to stop.
    """
    service = cast(DatabricksDeploymentService, service)
    self._clean_up_existing_service(
        existing_service=service, timeout=timeout, force=force
    )
perform_deploy_model(self, id, config, timeout=300)

Create a new Databricks deployment service or update an existing one.

This should serve the supplied model and deployment configuration.

Parameters:

Name Type Description Default
id UUID

the UUID of the model to be deployed with Databricks.

required
config ServiceConfig

the configuration of the model to be deployed with Databricks.

required
timeout int

the timeout in seconds to wait for the Databricks endpoint to be provisioned and successfully started or updated. If set to 0, the method will return immediately after the Databricks server is provisioned, without waiting for it to fully start.

300

Returns:

Type Description
BaseService

The ZenML Databricks deployment service object that can be used to interact with the remote Databricks inference endpoint server.

Source code in zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
def perform_deploy_model(
    self,
    id: UUID,
    config: ServiceConfig,
    timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
) -> BaseService:
    """Create a new Databricks deployment service or update an existing one.

    This should serve the supplied model and deployment configuration.

    Args:
        id: the UUID of the model to be deployed with Databricks.
        config: the configuration of the model to be deployed with Databricks.
        timeout: the timeout in seconds to wait for the Databricks endpoint
            to be provisioned and successfully started or updated. If set
            to 0, the method will return immediately after the Databricks
            server is provisioned, without waiting for it to fully start.

    Returns:
        The ZenML Databricks deployment service object that can be used to
        interact with the remote Databricks inference endpoint server.
    """
    with track_handler(AnalyticsEvent.MODEL_DEPLOYED) as analytics_handler:
        config = cast(DatabricksDeploymentConfig, config)
        # create a new DatabricksDeploymentService instance
        service = self._create_new_service(
            id=id, timeout=timeout, config=config
        )
        logger.info(
            f"Creating a new Databricks inference endpoint service: {service}"
        )
        # Add telemetry with metadata that gets the stack metadata and
        # differentiates between pure model and custom code deployments
        stack = Client().active_stack
        stack_metadata = {
            component_type.value: component.flavor
            for component_type, component in stack.components.items()
        }
        analytics_handler.metadata = {
            "store_type": Client().zen_store.type.value,
            **stack_metadata,
        }

    return service
perform_start_model(self, service, timeout=300)

Method to start a model server.

Parameters:

Name Type Description Default
service BaseService

The service to start.

required
timeout int

Timeout in seconds to wait for the service to start.

300

Returns:

Type Description
BaseService

The started service.

Source code in zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
def perform_start_model(
    self,
    service: BaseService,
    timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
) -> BaseService:
    """Method to start a model server.

    Args:
        service: The service to start.
        timeout: Timeout in seconds to wait for the service to start.

    Returns:
        The started service.
    """
    service.start(timeout=timeout)
    return service
perform_stop_model(self, service, timeout=300, force=False)

Method to stop a model server.

Parameters:

Name Type Description Default
service BaseService

The service to stop.

required
timeout int

Timeout in seconds to wait for the service to stop.

300
force bool

If True, force the service to stop.

False

Returns:

Type Description
BaseService

The stopped service.

Source code in zenml/integrations/databricks/model_deployers/databricks_model_deployer.py
def perform_stop_model(
    self,
    service: BaseService,
    timeout: int = DEFAULT_DEPLOYMENT_START_STOP_TIMEOUT,
    force: bool = False,
) -> BaseService:
    """Method to stop a model server.

    Args:
        service: The service to stop.
        timeout: Timeout in seconds to wait for the service to stop.
        force: If True, force the service to stop.

    Returns:
        The stopped service.
    """
    service.stop(timeout=timeout, force=force)
    return service

orchestrators special

Initialization of the Databricks ZenML orchestrator.

databricks_orchestrator

Implementation of the Databricks orchestrator.

DatabricksOrchestrator (WheeledOrchestrator)

Base class for Orchestrator responsible for running pipelines remotely in a VM.

This orchestrator does not support running on a schedule.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
class DatabricksOrchestrator(WheeledOrchestrator):
    """Base class for Orchestrator responsible for running pipelines remotely in a VM.

    This orchestrator does not support running on a schedule.
    """

    # The default instance type to use if none is specified in settings
    DEFAULT_INSTANCE_TYPE: Optional[str] = None

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates the stack.

        In the remote case, checks that the stack contains a container registry,
        image builder and only remote components.

        Returns:
            A `StackValidator` instance.
        """

        def _validate_remote_components(
            stack: "Stack",
        ) -> Tuple[bool, str]:
            for component in stack.components.values():
                if not component.config.is_local:
                    continue

                return False, (
                    f"The Databricks orchestrator runs pipelines remotely, "
                    f"but the '{component.name}' {component.type.value} is "
                    "a local stack component and will not be available in "
                    "the Databricks step.\nPlease ensure that you always "
                    "use non-local stack components with the Databricks "
                    "orchestrator."
                )

            return True, ""

        return StackValidator(
            custom_validation_function=_validate_remote_components,
        )

    def _get_databricks_client(
        self,
    ) -> DatabricksClient:
        """Creates a Databricks client.

        Returns:
            The Databricks client.
        """
        return DatabricksClient(
            host=self.config.host,
            client_id=self.config.client_id,
            client_secret=self.config.client_secret,
        )

    @property
    def config(self) -> DatabricksOrchestratorConfig:
        """Returns the `DatabricksOrchestratorConfig` config.

        Returns:
            The configuration.
        """
        return cast(DatabricksOrchestratorConfig, self._config)

    @property
    def settings_class(self) -> Type[DatabricksOrchestratorSettings]:
        """Settings class for the Databricks orchestrator.

        Returns:
            The settings class.
        """
        return DatabricksOrchestratorSettings

    def get_orchestrator_run_id(self) -> str:
        """Returns the active orchestrator run id.

        Raises:
            RuntimeError: If no run id exists. This happens when this method
                gets called while the orchestrator is not running a pipeline.

        Returns:
            The orchestrator run id.

        Raises:
            RuntimeError: If the run id cannot be read from the environment.
        """
        try:
            return os.environ[ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID]
        except KeyError:
            raise RuntimeError(
                "Unable to read run id from environment variable "
                f"{ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID}."
            )

    @property
    def root_directory(self) -> str:
        """Path to the root directory for all files concerning this orchestrator.

        Returns:
            Path to the root directory.
        """
        return os.path.join(
            io_utils.get_global_config_directory(),
            "databricks",
            str(self.id),
        )

    @property
    def pipeline_directory(self) -> str:
        """Returns path to a directory in which the kubeflow pipeline files are stored.

        Returns:
            Path to the pipeline directory.
        """
        return os.path.join(self.root_directory, "pipelines")

    def setup_credentials(self) -> None:
        """Set up credentials for the orchestrator."""
        connector = self.get_connector()
        assert connector is not None
        connector.configure_local_client()

    def prepare_or_run_pipeline(
        self,
        deployment: "PipelineDeploymentResponse",
        stack: "Stack",
        environment: Dict[str, str],
    ) -> Any:
        """Creates a wheel and uploads the pipeline to Databricks.

        This functions as an intermediary representation of the pipeline which
        is then deployed to the kubeflow pipelines instance.

        How it works:
        -------------
        Before this method is called the `prepare_pipeline_deployment()`
        method builds a docker image that contains the code for the
        pipeline, all steps the context around these files.

        Based on this docker image a callable is created which builds
        task for each step (`_construct_databricks_pipeline`).
        To do this the entrypoint of the docker image is configured to
        run the correct step within the docker image. The dependencies
        between these task are then also configured onto each
        task by pointing at the downstream steps.

        Args:
            deployment: The pipeline deployment to prepare or run.
            stack: The stack the pipeline will run on.
            environment: Environment variables to set in the orchestration
                environment.

        Raises:
            ValueError: If the schedule is not set or if the cron expression
                is not set.
        """
        settings = cast(
            DatabricksOrchestratorSettings, self.get_settings(deployment)
        )
        if deployment.schedule:
            if (
                deployment.schedule.catchup
                or deployment.schedule.interval_second
            ):
                logger.warning(
                    "Databricks orchestrator only uses schedules with the "
                    "`cron_expression` property, with optional `start_time` and/or `end_time`. "
                    "All other properties are ignored."
                )
            if deployment.schedule.cron_expression is None:
                raise ValueError(
                    "Property `cron_expression` must be set when passing "
                    "schedule to a Databricks orchestrator."
                )
            if (
                deployment.schedule.cron_expression
                and settings.schedule_timezone is None
            ):
                raise ValueError(
                    "Property `schedule_timezone` must be set when passing "
                    "`cron_expression` to a Databricks orchestrator."
                    "Databricks orchestrator requires a Java Timezone ID to run the pipeline on schedule."
                    "Please refer to https://docs.oracle.com/middleware/1221/wcs/tag-ref/MISC/TimeZones.html for more information."
                )

        # Get deployment id
        deployment_id = deployment.id

        # Create a callable for future compilation into a dsl.Pipeline.
        def _construct_databricks_pipeline(
            zenml_project_wheel: str, job_cluster_key: str
        ) -> List[DatabricksTask]:
            """Create a databrcks task for each step.

            This should contain the name of the step or task and configures the
            entrypoint of the task to run the step.

            Additionally, this gives each task information about its
            direct downstream steps.

            Args:
                zenml_project_wheel: The wheel package containing the ZenML
                    project.
                job_cluster_key: The ID of the Databricks job cluster.

            Returns:
                A list of Databricks tasks.
            """
            tasks = []
            for step_name, step in deployment.step_configurations.items():
                # The arguments are passed to configure the entrypoint of the
                # docker container when the step is called.
                arguments = DatabricksEntrypointConfiguration.get_entrypoint_arguments(
                    step_name=step_name,
                    deployment_id=deployment_id,
                    wheel_package=self.package_name,
                    databricks_job_id=DATABRICKS_JOB_ID_PARAMETER_REFERENCE,
                )

                # Find the upstream container ops of the current step and
                # configure the current container op to run after them
                upstream_steps = [
                    f"{deployment_id}_{upstream_step_name}"
                    for upstream_step_name in step.spec.upstream_steps
                ]

                docker_settings = step.config.docker_settings
                docker_image_builder = PipelineDockerImageBuilder()
                # Gather the requirements files
                requirements_files = (
                    docker_image_builder.gather_requirements_files(
                        docker_settings=docker_settings,
                        stack=Client().active_stack,
                        log=False,
                    )
                )

                # Extract and clean the requirements
                requirements = list(
                    itertools.chain.from_iterable(
                        r[1].strip().split("\n") for r in requirements_files
                    )
                )

                # Remove empty items and duplicates
                requirements = sorted(set(filter(None, requirements)))

                task = convert_step_to_task(
                    f"{deployment_id}_{step_name}",
                    ZENML_STEP_DEFAULT_ENTRYPOINT_COMMAND,
                    arguments,
                    clean_requirements(requirements),
                    depends_on=upstream_steps,
                    zenml_project_wheel=zenml_project_wheel,
                    job_cluster_key=job_cluster_key,
                )
                tasks.append(task)
            return tasks

        # Get the orchestrator run name
        orchestrator_run_name = get_orchestrator_run_name(
            pipeline_name=deployment.pipeline_configuration.name
        )
        # Get a filepath to use to save the finished yaml to
        fileio.makedirs(self.pipeline_directory)
        pipeline_file_path = os.path.join(
            self.pipeline_directory, f"{orchestrator_run_name}.yaml"
        )

        # Copy the repository to a temporary directory and add a setup.py file
        repository_temp_dir = (
            self.copy_repository_to_temp_dir_and_add_setup_py()
        )

        # Create a wheel for the package in the temporary directory
        wheel_path = self.create_wheel(temp_dir=repository_temp_dir)

        databricks_client = self._get_databricks_client()

        # Create an empty folder in a volume.
        deployment_name = (
            deployment.pipeline.name if deployment.pipeline else "default"
        )
        databricks_directory = f"{DATABRICKS_WHEELS_DIRECTORY_PREFIX}/{deployment_name}/{orchestrator_run_name}"
        databricks_wheel_path = (
            f"{databricks_directory}/{wheel_path.rsplit('/', 1)[-1]}"
        )

        databricks_client.dbutils.fs.mkdirs(databricks_directory)
        databricks_client.dbutils.fs.cp(
            f"{DATABRICKS_LOCAL_FILESYSTEM_PREFIX}/{wheel_path}",
            databricks_wheel_path,
        )

        # Construct the env variables for the pipeline
        env_vars = environment.copy()
        spark_env_vars = settings.spark_env_vars
        if spark_env_vars:
            for key, value in spark_env_vars.items():
                env_vars[key] = value
        env_vars[ENV_ZENML_CUSTOM_SOURCE_ROOT] = (
            DATABRICKS_ZENML_DEFAULT_CUSTOM_REPOSITORY_PATH
        )

        fileio.rmtree(repository_temp_dir)

        logger.info(
            "Writing Databricks workflow definition to `%s`.",
            pipeline_file_path,
        )

        # using the databricks client uploads the pipeline to databricks
        job_cluster_key = self.sanitize_name(f"{deployment_id}")
        self._upload_and_run_pipeline(
            pipeline_name=orchestrator_run_name,
            settings=settings,
            tasks=_construct_databricks_pipeline(
                databricks_wheel_path, job_cluster_key
            ),
            env_vars=env_vars,
            job_cluster_key=job_cluster_key,
            schedule=deployment.schedule,
        )

    def _upload_and_run_pipeline(
        self,
        pipeline_name: str,
        settings: DatabricksOrchestratorSettings,
        tasks: List[DatabricksTask],
        env_vars: Dict[str, str],
        job_cluster_key: str,
        schedule: Optional["ScheduleResponse"] = None,
    ) -> None:
        """Uploads and run the pipeline on the Databricks jobs.

        Args:
            pipeline_name: The name of the pipeline.
            tasks: The list of tasks to run.
            env_vars: The environment variables.
            job_cluster_key: The ID of the Databricks job cluster.
            schedule: The schedule to run the pipeline
            settings: The settings for the Databricks orchestrator.

        Raises:
            ValueError: If the `Job Compute` policy is not found.
            ValueError: If the `schedule_timezone` is not set when passing

        """
        databricks_client = self._get_databricks_client()
        spark_conf = settings.spark_conf or {}
        spark_conf[
            "spark.databricks.driver.dbfsLibraryInstallationAllowed"
        ] = "true"

        policy_id = settings.policy_id or None
        for policy in databricks_client.cluster_policies.list():
            if policy.name == "Job Compute":
                policy_id = policy.policy_id
        if policy_id is None:
            raise ValueError(
                "Could not find the `Job Compute` policy in Databricks."
            )
        job_cluster = JobCluster(
            job_cluster_key=job_cluster_key,
            new_cluster=ClusterSpec(
                spark_version=settings.spark_version
                or DATABRICKS_SPARK_DEFAULT_VERSION,
                num_workers=settings.num_workers,
                node_type_id=settings.node_type_id or "Standard_D4s_v5",
                policy_id=policy_id,
                autoscale=AutoScale(
                    min_workers=settings.autoscale[0],
                    max_workers=settings.autoscale[1],
                ),
                single_user_name=settings.single_user_name,
                spark_env_vars=env_vars,
                spark_conf=spark_conf,
                workload_type=WorkloadType(
                    clients=ClientsTypes(jobs=True, notebooks=False)
                ),
            ),
        )
        if schedule and schedule.cron_expression:
            schedule_timezone = settings.schedule_timezone
            if schedule_timezone:
                databricks_schedule = CronSchedule(
                    quartz_cron_expression=schedule.cron_expression,
                    timezone_id=schedule_timezone,
                )
            else:
                raise ValueError(
                    "Property `schedule_timezone` must be set when passing "
                    "`cron_expression` to a Databricks orchestrator. "
                    "Databricks orchestrator requires a Java Timezone ID to run the pipeline on schedule. "
                    "Please refer to https://docs.oracle.com/middleware/1221/wcs/tag-ref/MISC/TimeZones.html for more information."
                )
        else:
            databricks_schedule = None

        job = databricks_client.jobs.create(
            name=pipeline_name,
            tasks=tasks,
            job_clusters=[job_cluster],
            schedule=databricks_schedule,
        )
        if job.job_id:
            databricks_client.jobs.run_now(job_id=job.job_id)
        else:
            raise ValueError("An error occurred while getting the job id.")

    def get_pipeline_run_metadata(
        self, run_id: UUID
    ) -> Dict[str, "MetadataType"]:
        """Get general component-specific metadata for a pipeline run.

        Args:
            run_id: The ID of the pipeline run.

        Returns:
            A dictionary of metadata.
        """
        run_url = (
            f"{self.config.host}/jobs/" f"{self.get_orchestrator_run_id()}"
        )
        return {
            METADATA_ORCHESTRATOR_URL: Uri(run_url),
        }
config: DatabricksOrchestratorConfig property readonly

Returns the DatabricksOrchestratorConfig config.

Returns:

Type Description
DatabricksOrchestratorConfig

The configuration.

pipeline_directory: str property readonly

Returns path to a directory in which the kubeflow pipeline files are stored.

Returns:

Type Description
str

Path to the pipeline directory.

root_directory: str property readonly

Path to the root directory for all files concerning this orchestrator.

Returns:

Type Description
str

Path to the root directory.

settings_class: Type[zenml.integrations.databricks.flavors.databricks_orchestrator_flavor.DatabricksOrchestratorSettings] property readonly

Settings class for the Databricks orchestrator.

Returns:

Type Description
Type[zenml.integrations.databricks.flavors.databricks_orchestrator_flavor.DatabricksOrchestratorSettings]

The settings class.

validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates the stack.

In the remote case, checks that the stack contains a container registry, image builder and only remote components.

Returns:

Type Description
Optional[zenml.stack.stack_validator.StackValidator]

A StackValidator instance.

get_orchestrator_run_id(self)

Returns the active orchestrator run id.

Exceptions:

Type Description
RuntimeError

If no run id exists. This happens when this method gets called while the orchestrator is not running a pipeline.

Returns:

Type Description
str

The orchestrator run id.

Exceptions:

Type Description
RuntimeError

If the run id cannot be read from the environment.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
def get_orchestrator_run_id(self) -> str:
    """Returns the active orchestrator run id.

    Raises:
        RuntimeError: If no run id exists. This happens when this method
            gets called while the orchestrator is not running a pipeline.

    Returns:
        The orchestrator run id.

    Raises:
        RuntimeError: If the run id cannot be read from the environment.
    """
    try:
        return os.environ[ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID]
    except KeyError:
        raise RuntimeError(
            "Unable to read run id from environment variable "
            f"{ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID}."
        )
get_pipeline_run_metadata(self, run_id)

Get general component-specific metadata for a pipeline run.

Parameters:

Name Type Description Default
run_id UUID

The ID of the pipeline run.

required

Returns:

Type Description
Dict[str, MetadataType]

A dictionary of metadata.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
def get_pipeline_run_metadata(
    self, run_id: UUID
) -> Dict[str, "MetadataType"]:
    """Get general component-specific metadata for a pipeline run.

    Args:
        run_id: The ID of the pipeline run.

    Returns:
        A dictionary of metadata.
    """
    run_url = (
        f"{self.config.host}/jobs/" f"{self.get_orchestrator_run_id()}"
    )
    return {
        METADATA_ORCHESTRATOR_URL: Uri(run_url),
    }
prepare_or_run_pipeline(self, deployment, stack, environment)

Creates a wheel and uploads the pipeline to Databricks.

This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.

How it works:

Before this method is called the prepare_pipeline_deployment() method builds a docker image that contains the code for the pipeline, all steps the context around these files.

Based on this docker image a callable is created which builds task for each step (_construct_databricks_pipeline). To do this the entrypoint of the docker image is configured to run the correct step within the docker image. The dependencies between these task are then also configured onto each task by pointing at the downstream steps.

Parameters:

Name Type Description Default
deployment PipelineDeploymentResponse

The pipeline deployment to prepare or run.

required
stack Stack

The stack the pipeline will run on.

required
environment Dict[str, str]

Environment variables to set in the orchestration environment.

required

Exceptions:

Type Description
ValueError

If the schedule is not set or if the cron expression is not set.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
def prepare_or_run_pipeline(
    self,
    deployment: "PipelineDeploymentResponse",
    stack: "Stack",
    environment: Dict[str, str],
) -> Any:
    """Creates a wheel and uploads the pipeline to Databricks.

    This functions as an intermediary representation of the pipeline which
    is then deployed to the kubeflow pipelines instance.

    How it works:
    -------------
    Before this method is called the `prepare_pipeline_deployment()`
    method builds a docker image that contains the code for the
    pipeline, all steps the context around these files.

    Based on this docker image a callable is created which builds
    task for each step (`_construct_databricks_pipeline`).
    To do this the entrypoint of the docker image is configured to
    run the correct step within the docker image. The dependencies
    between these task are then also configured onto each
    task by pointing at the downstream steps.

    Args:
        deployment: The pipeline deployment to prepare or run.
        stack: The stack the pipeline will run on.
        environment: Environment variables to set in the orchestration
            environment.

    Raises:
        ValueError: If the schedule is not set or if the cron expression
            is not set.
    """
    settings = cast(
        DatabricksOrchestratorSettings, self.get_settings(deployment)
    )
    if deployment.schedule:
        if (
            deployment.schedule.catchup
            or deployment.schedule.interval_second
        ):
            logger.warning(
                "Databricks orchestrator only uses schedules with the "
                "`cron_expression` property, with optional `start_time` and/or `end_time`. "
                "All other properties are ignored."
            )
        if deployment.schedule.cron_expression is None:
            raise ValueError(
                "Property `cron_expression` must be set when passing "
                "schedule to a Databricks orchestrator."
            )
        if (
            deployment.schedule.cron_expression
            and settings.schedule_timezone is None
        ):
            raise ValueError(
                "Property `schedule_timezone` must be set when passing "
                "`cron_expression` to a Databricks orchestrator."
                "Databricks orchestrator requires a Java Timezone ID to run the pipeline on schedule."
                "Please refer to https://docs.oracle.com/middleware/1221/wcs/tag-ref/MISC/TimeZones.html for more information."
            )

    # Get deployment id
    deployment_id = deployment.id

    # Create a callable for future compilation into a dsl.Pipeline.
    def _construct_databricks_pipeline(
        zenml_project_wheel: str, job_cluster_key: str
    ) -> List[DatabricksTask]:
        """Create a databrcks task for each step.

        This should contain the name of the step or task and configures the
        entrypoint of the task to run the step.

        Additionally, this gives each task information about its
        direct downstream steps.

        Args:
            zenml_project_wheel: The wheel package containing the ZenML
                project.
            job_cluster_key: The ID of the Databricks job cluster.

        Returns:
            A list of Databricks tasks.
        """
        tasks = []
        for step_name, step in deployment.step_configurations.items():
            # The arguments are passed to configure the entrypoint of the
            # docker container when the step is called.
            arguments = DatabricksEntrypointConfiguration.get_entrypoint_arguments(
                step_name=step_name,
                deployment_id=deployment_id,
                wheel_package=self.package_name,
                databricks_job_id=DATABRICKS_JOB_ID_PARAMETER_REFERENCE,
            )

            # Find the upstream container ops of the current step and
            # configure the current container op to run after them
            upstream_steps = [
                f"{deployment_id}_{upstream_step_name}"
                for upstream_step_name in step.spec.upstream_steps
            ]

            docker_settings = step.config.docker_settings
            docker_image_builder = PipelineDockerImageBuilder()
            # Gather the requirements files
            requirements_files = (
                docker_image_builder.gather_requirements_files(
                    docker_settings=docker_settings,
                    stack=Client().active_stack,
                    log=False,
                )
            )

            # Extract and clean the requirements
            requirements = list(
                itertools.chain.from_iterable(
                    r[1].strip().split("\n") for r in requirements_files
                )
            )

            # Remove empty items and duplicates
            requirements = sorted(set(filter(None, requirements)))

            task = convert_step_to_task(
                f"{deployment_id}_{step_name}",
                ZENML_STEP_DEFAULT_ENTRYPOINT_COMMAND,
                arguments,
                clean_requirements(requirements),
                depends_on=upstream_steps,
                zenml_project_wheel=zenml_project_wheel,
                job_cluster_key=job_cluster_key,
            )
            tasks.append(task)
        return tasks

    # Get the orchestrator run name
    orchestrator_run_name = get_orchestrator_run_name(
        pipeline_name=deployment.pipeline_configuration.name
    )
    # Get a filepath to use to save the finished yaml to
    fileio.makedirs(self.pipeline_directory)
    pipeline_file_path = os.path.join(
        self.pipeline_directory, f"{orchestrator_run_name}.yaml"
    )

    # Copy the repository to a temporary directory and add a setup.py file
    repository_temp_dir = (
        self.copy_repository_to_temp_dir_and_add_setup_py()
    )

    # Create a wheel for the package in the temporary directory
    wheel_path = self.create_wheel(temp_dir=repository_temp_dir)

    databricks_client = self._get_databricks_client()

    # Create an empty folder in a volume.
    deployment_name = (
        deployment.pipeline.name if deployment.pipeline else "default"
    )
    databricks_directory = f"{DATABRICKS_WHEELS_DIRECTORY_PREFIX}/{deployment_name}/{orchestrator_run_name}"
    databricks_wheel_path = (
        f"{databricks_directory}/{wheel_path.rsplit('/', 1)[-1]}"
    )

    databricks_client.dbutils.fs.mkdirs(databricks_directory)
    databricks_client.dbutils.fs.cp(
        f"{DATABRICKS_LOCAL_FILESYSTEM_PREFIX}/{wheel_path}",
        databricks_wheel_path,
    )

    # Construct the env variables for the pipeline
    env_vars = environment.copy()
    spark_env_vars = settings.spark_env_vars
    if spark_env_vars:
        for key, value in spark_env_vars.items():
            env_vars[key] = value
    env_vars[ENV_ZENML_CUSTOM_SOURCE_ROOT] = (
        DATABRICKS_ZENML_DEFAULT_CUSTOM_REPOSITORY_PATH
    )

    fileio.rmtree(repository_temp_dir)

    logger.info(
        "Writing Databricks workflow definition to `%s`.",
        pipeline_file_path,
    )

    # using the databricks client uploads the pipeline to databricks
    job_cluster_key = self.sanitize_name(f"{deployment_id}")
    self._upload_and_run_pipeline(
        pipeline_name=orchestrator_run_name,
        settings=settings,
        tasks=_construct_databricks_pipeline(
            databricks_wheel_path, job_cluster_key
        ),
        env_vars=env_vars,
        job_cluster_key=job_cluster_key,
        schedule=deployment.schedule,
    )
setup_credentials(self)

Set up credentials for the orchestrator.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator.py
def setup_credentials(self) -> None:
    """Set up credentials for the orchestrator."""
    connector = self.get_connector()
    assert connector is not None
    connector.configure_local_client()

databricks_orchestrator_entrypoint_config

Entrypoint configuration for ZenML Databricks pipeline steps.

DatabricksEntrypointConfiguration (StepEntrypointConfiguration)

Entrypoint configuration for ZenML Databricks pipeline steps.

The only purpose of this entrypoint configuration is to reconstruct the environment variables that exceed the maximum length of 256 characters allowed for Databricks Processor steps from their individual components.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py
class DatabricksEntrypointConfiguration(StepEntrypointConfiguration):
    """Entrypoint configuration for ZenML Databricks pipeline steps.

    The only purpose of this entrypoint configuration is to reconstruct the
    environment variables that exceed the maximum length of 256 characters
    allowed for Databricks Processor steps from their individual components.
    """

    @classmethod
    def get_entrypoint_options(cls) -> Set[str]:
        """Gets all options required for running with this configuration.

        Returns:
            The superclass options as well as an option for the wheel package.
        """
        return (
            super().get_entrypoint_options()
            | {WHEEL_PACKAGE_OPTION}
            | {DATABRICKS_JOB_ID_OPTION}
        )

    @classmethod
    def get_entrypoint_arguments(
        cls,
        **kwargs: Any,
    ) -> List[str]:
        """Gets all arguments that the entrypoint command should be called with.

        The argument list should be something that
        `argparse.ArgumentParser.parse_args(...)` can handle (e.g.
        `["--some_option", "some_value"]` or `["--some_option=some_value"]`).
        It needs to provide values for all options returned by the
        `get_entrypoint_options()` method of this class.

        Args:
            **kwargs: Kwargs, must include the step name.

        Returns:
            The superclass arguments as well as arguments for the wheel package.
        """
        return super().get_entrypoint_arguments(**kwargs) + [
            f"--{WHEEL_PACKAGE_OPTION}",
            kwargs[WHEEL_PACKAGE_OPTION],
            f"--{DATABRICKS_JOB_ID_OPTION}",
            kwargs[DATABRICKS_JOB_ID_OPTION],
        ]

    def run(self) -> None:
        """Runs the step."""
        # Get the wheel package and add it to the sys path
        wheel_package = self.entrypoint_args[WHEEL_PACKAGE_OPTION]
        distribution = pkg_resources.get_distribution(wheel_package)
        project_root = os.path.join(distribution.location, wheel_package)
        if project_root not in sys.path:
            sys.path.insert(0, project_root)
            sys.path.insert(-1, project_root)

        # Get the job id and add it to the environment
        databricks_job_id = self.entrypoint_args[DATABRICKS_JOB_ID_OPTION]
        os.environ[ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID] = (
            databricks_job_id
        )

        # Run the step
        super().run()
get_entrypoint_arguments(**kwargs) classmethod

Gets all arguments that the entrypoint command should be called with.

The argument list should be something that argparse.ArgumentParser.parse_args(...) can handle (e.g. ["--some_option", "some_value"] or ["--some_option=some_value"]). It needs to provide values for all options returned by the get_entrypoint_options() method of this class.

Parameters:

Name Type Description Default
**kwargs Any

Kwargs, must include the step name.

{}

Returns:

Type Description
List[str]

The superclass arguments as well as arguments for the wheel package.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py
@classmethod
def get_entrypoint_arguments(
    cls,
    **kwargs: Any,
) -> List[str]:
    """Gets all arguments that the entrypoint command should be called with.

    The argument list should be something that
    `argparse.ArgumentParser.parse_args(...)` can handle (e.g.
    `["--some_option", "some_value"]` or `["--some_option=some_value"]`).
    It needs to provide values for all options returned by the
    `get_entrypoint_options()` method of this class.

    Args:
        **kwargs: Kwargs, must include the step name.

    Returns:
        The superclass arguments as well as arguments for the wheel package.
    """
    return super().get_entrypoint_arguments(**kwargs) + [
        f"--{WHEEL_PACKAGE_OPTION}",
        kwargs[WHEEL_PACKAGE_OPTION],
        f"--{DATABRICKS_JOB_ID_OPTION}",
        kwargs[DATABRICKS_JOB_ID_OPTION],
    ]
get_entrypoint_options() classmethod

Gets all options required for running with this configuration.

Returns:

Type Description
Set[str]

The superclass options as well as an option for the wheel package.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py
@classmethod
def get_entrypoint_options(cls) -> Set[str]:
    """Gets all options required for running with this configuration.

    Returns:
        The superclass options as well as an option for the wheel package.
    """
    return (
        super().get_entrypoint_options()
        | {WHEEL_PACKAGE_OPTION}
        | {DATABRICKS_JOB_ID_OPTION}
    )
run(self)

Runs the step.

Source code in zenml/integrations/databricks/orchestrators/databricks_orchestrator_entrypoint_config.py
def run(self) -> None:
    """Runs the step."""
    # Get the wheel package and add it to the sys path
    wheel_package = self.entrypoint_args[WHEEL_PACKAGE_OPTION]
    distribution = pkg_resources.get_distribution(wheel_package)
    project_root = os.path.join(distribution.location, wheel_package)
    if project_root not in sys.path:
        sys.path.insert(0, project_root)
        sys.path.insert(-1, project_root)

    # Get the job id and add it to the environment
    databricks_job_id = self.entrypoint_args[DATABRICKS_JOB_ID_OPTION]
    os.environ[ENV_ZENML_DATABRICKS_ORCHESTRATOR_RUN_ID] = (
        databricks_job_id
    )

    # Run the step
    super().run()

services special

Initialization of the Databricks Service.

databricks_deployment

Implementation of the Databricks Deployment service.

DatabricksDeploymentConfig (DatabricksBaseConfig, ServiceConfig)

Databricks service configurations.

Source code in zenml/integrations/databricks/services/databricks_deployment.py
class DatabricksDeploymentConfig(DatabricksBaseConfig, ServiceConfig):
    """Databricks service configurations."""

    model_uri: Optional[str] = Field(
        None,
        description="URI of the model to deploy. This can be a local path or a cloud storage path.",
    )
    host: Optional[str] = Field(
        None, description="Databricks host URL for the deployment."
    )

    def get_databricks_deployment_labels(self) -> Dict[str, str]:
        """Generate labels for the Databricks deployment from the service configuration.

        These labels are attached to the Databricks deployment resource
        and may be used as label selectors in lookup operations.

        Returns:
            The labels for the Databricks deployment.
        """
        labels = {}
        if self.pipeline_name:
            labels["zenml_pipeline_name"] = self.pipeline_name
        if self.pipeline_step_name:
            labels["zenml_pipeline_step_name"] = self.pipeline_step_name
        if self.model_name:
            labels["zenml_model_name"] = self.model_name
        if self.model_uri:
            labels["zenml_model_uri"] = self.model_uri
        sanitize_labels(labels)
        return labels
get_databricks_deployment_labels(self)

Generate labels for the Databricks deployment from the service configuration.

These labels are attached to the Databricks deployment resource and may be used as label selectors in lookup operations.

Returns:

Type Description
Dict[str, str]

The labels for the Databricks deployment.

Source code in zenml/integrations/databricks/services/databricks_deployment.py
def get_databricks_deployment_labels(self) -> Dict[str, str]:
    """Generate labels for the Databricks deployment from the service configuration.

    These labels are attached to the Databricks deployment resource
    and may be used as label selectors in lookup operations.

    Returns:
        The labels for the Databricks deployment.
    """
    labels = {}
    if self.pipeline_name:
        labels["zenml_pipeline_name"] = self.pipeline_name
    if self.pipeline_step_name:
        labels["zenml_pipeline_step_name"] = self.pipeline_step_name
    if self.model_name:
        labels["zenml_model_name"] = self.model_name
    if self.model_uri:
        labels["zenml_model_uri"] = self.model_uri
    sanitize_labels(labels)
    return labels
DatabricksDeploymentService (BaseDeploymentService)

Databricks model deployment service.

Attributes:

Name Type Description
SERVICE_TYPE ClassVar[zenml.services.service_type.ServiceType]

a service type descriptor with information describing the Databricks deployment service class

config DatabricksDeploymentConfig

service configuration

Source code in zenml/integrations/databricks/services/databricks_deployment.py
class DatabricksDeploymentService(BaseDeploymentService):
    """Databricks model deployment service.

    Attributes:
        SERVICE_TYPE: a service type descriptor with information describing
            the Databricks deployment service class
        config: service configuration
    """

    SERVICE_TYPE = ServiceType(
        name="databricks-deployment",
        type="model-serving",
        flavor="databricks",
        description="Databricks inference endpoint prediction service",
    )
    config: DatabricksDeploymentConfig
    status: DatabricksServiceStatus = Field(
        default_factory=lambda: DatabricksServiceStatus()
    )

    def __init__(self, config: DatabricksDeploymentConfig, **attrs: Any):
        """Initialize the Databricks deployment service.

        Args:
            config: service configuration
            attrs: additional attributes to set on the service
        """
        super().__init__(config=config, **attrs)

    def get_client_id_and_secret(self) -> Tuple[str, str, str]:
        """Get the Databricks client id and secret.

        Raises:
            ValueError: If client id and secret are not found.

        Returns:
            Databricks client id and secret.
        """
        client = Client()
        client_id = None
        client_secret = None
        host = None
        from zenml.integrations.databricks.model_deployers.databricks_model_deployer import (
            DatabricksModelDeployer,
        )

        model_deployer = client.active_stack.model_deployer
        if not isinstance(model_deployer, DatabricksModelDeployer):
            raise ValueError(
                "DatabricksModelDeployer is not active in the stack."
            )
        host = model_deployer.config.host
        self.config.host = host
        if model_deployer.config.secret_name:
            secret = client.get_secret(model_deployer.config.secret_name)
            client_id = secret.secret_values["client_id"]
            client_secret = secret.secret_values["client_secret"]

        else:
            client_id = model_deployer.config.client_id
            client_secret = model_deployer.config.client_secret
        if not client_id:
            raise ValueError("Client id not found.")
        if not client_secret:
            raise ValueError("Client secret not found.")
        if not host:
            raise ValueError("Host not found.")
        return host, client_id, client_secret

    def _get_databricks_deployment_labels(self) -> Dict[str, str]:
        """Generate the labels for the Databricks deployment from the service configuration.

        Returns:
            The labels for the Databricks deployment.
        """
        labels = self.config.get_databricks_deployment_labels()
        labels["zenml_service_uuid"] = str(self.uuid)
        sanitize_labels(labels)
        return labels

    @property
    def databricks_client(self) -> DatabricksClient:
        """Get the deployed Databricks inference endpoint.

        Returns:
            databricks inference endpoint.
        """
        return DatabricksClient(
            host=self.get_client_id_and_secret()[0],
            client_id=self.get_client_id_and_secret()[1],
            client_secret=self.get_client_id_and_secret()[2],
        )

    @property
    def databricks_endpoint(self) -> ServingEndpointDetailed:
        """Get the deployed Hugging Face inference endpoint.

        Returns:
            Databricks inference endpoint.
        """
        return self.databricks_client.serving_endpoints.get(
            name=self._generate_an_endpoint_name(),
        )

    @property
    def prediction_url(self) -> Optional[str]:
        """The prediction URI exposed by the prediction service.

        Returns:
            The prediction URI exposed by the prediction service, or None if
            the service is not yet ready.
        """
        return f"{self.config.host}/serving-endpoints/{self._generate_an_endpoint_name()}/invocations"

    def provision(self) -> None:
        """Provision or update remote Databricks deployment instance."""
        from databricks.sdk.service.serving import (
            ServedModelInputWorkloadSize,
            ServedModelInputWorkloadType,
        )

        tags = []
        for key, value in self._get_databricks_deployment_labels().items():
            tags.append(EndpointTag(key=key, value=value))
        # Attempt to create and wait for the inference endpoint
        served_model = ServedModelInput(
            model_name=self.config.model_name,
            model_version=self.config.model_version,
            scale_to_zero_enabled=self.config.scale_to_zero_enabled,
            workload_type=ServedModelInputWorkloadType(
                self.config.workload_type
            ),
            workload_size=ServedModelInputWorkloadSize(
                self.config.workload_size
            ),
        )

        databricks_endpoint = (
            self.databricks_client.serving_endpoints.create_and_wait(
                name=self._generate_an_endpoint_name(),
                config=EndpointCoreConfigInput(
                    served_models=[served_model],
                ),
                tags=tags,
            )
        )
        # Check if the endpoint URL is available after provisioning
        if databricks_endpoint.endpoint_url:
            logger.info(
                f"Databricks inference endpoint successfully deployed and available. Endpoint URL: {databricks_endpoint.endpoint_url}"
            )
        else:
            logger.error(
                "Failed to start Databricks inference endpoint service: No URL available, please check the Databricks console for more details."
            )

    def check_status(self) -> Tuple[ServiceState, str]:
        """Check the the current operational state of the Databricks deployment.

        Returns:
            The operational state of the Databricks deployment and a message
            providing additional information about that state (e.g. a
            description of the error, if one is encountered).
        """
        try:
            status = self.databricks_endpoint.state or None
            if (
                status
                and status.ready
                and status.ready == EndpointStateReady.READY
            ):
                return (ServiceState.ACTIVE, "")
            elif (
                status
                and status.config_update
                and status.config_update
                == EndpointStateConfigUpdate.UPDATE_FAILED
            ):
                return (
                    ServiceState.ERROR,
                    "Databricks Inference Endpoint deployment update failed",
                )
            elif (
                status
                and status.config_update
                and status.config_update
                == EndpointStateConfigUpdate.IN_PROGRESS
            ):
                return (ServiceState.PENDING_STARTUP, "")
            return (ServiceState.PENDING_STARTUP, "")
        except Exception as e:
            return (
                ServiceState.INACTIVE,
                f"Databricks Inference Endpoint deployment is inactive or not found: {e}",
            )

    def deprovision(self, force: bool = False) -> None:
        """Deprovision the remote Databricks deployment instance.

        Args:
            force: if True, the remote deployment instance will be
                forcefully deprovisioned.
        """
        try:
            self.databricks_client.serving_endpoints.delete(
                name=self._generate_an_endpoint_name()
            )
        except Exception:
            logger.error(
                "Databricks Inference Endpoint is deleted or cannot be found."
            )

    def predict(
        self, request: Union["NDArray[Any]", pd.DataFrame]
    ) -> "NDArray[Any]":
        """Make a prediction using the service.

        Args:
            request: The input data for the prediction.

        Returns:
            The prediction result.

        Raises:
            Exception: if the service is not running
            ValueError: if the endpoint secret name is not provided.
        """
        if not self.is_running:
            raise Exception(
                "Databricks endpoint inference service is not running. "
                "Please start the service before making predictions."
            )
        if self.prediction_url is not None:
            if not self.config.endpoint_secret_name:
                raise ValueError(
                    "No endpoint secret name is provided for prediction."
                )
            databricks_token = Client().get_secret(
                self.config.endpoint_secret_name
            )
            if not databricks_token.secret_values["token"]:
                raise ValueError("No databricks token found.")
            headers = {
                "Authorization": f"Bearer {databricks_token.secret_values['token']}",
                "Content-Type": "application/json",
            }
            if isinstance(request, pd.DataFrame):
                response = requests.post(  # nosec
                    self.prediction_url,
                    json={"instances": request.to_dict("records")},
                    headers=headers,
                )
            else:
                response = requests.post(  # nosec
                    self.prediction_url,
                    json={"instances": request.tolist()},
                    headers=headers,
                )
        else:
            raise ValueError("No endpoint known for prediction.")
        response.raise_for_status()

        return np.array(response.json()["predictions"])

    def get_logs(
        self, follow: bool = False, tail: Optional[int] = None
    ) -> Generator[str, bool, None]:
        """Retrieve the service logs.

        Args:
            follow: if True, the logs will be streamed as they are written
            tail: only retrieve the last NUM lines of log output.

        Yields:
            A generator that can be accessed to get the service logs.
        """
        logger.info(
            "Databricks Endpoints provides access to the logs of your Endpoints through the UI in the `Logs` tab of your Endpoint"
        )

        def log_generator() -> Generator[str, bool, None]:
            last_log_count = 0
            while True:
                logs = self.databricks_client.serving_endpoints.logs(
                    name=self._generate_an_endpoint_name(),
                    served_model_name=self.config.model_name,
                )

                log_lines = logs.logs.split("\n")

                # Apply tail if specified and it's the first iteration
                if tail is not None and last_log_count == 0:
                    log_lines = log_lines[-tail:]

                # Yield only new lines
                for line in log_lines[last_log_count:]:
                    yield line

                last_log_count = len(log_lines)

                if not follow:
                    break

                # Add a small delay to avoid excessive API calls
                time.sleep(1)

        yield from log_generator()

    def _generate_an_endpoint_name(self) -> str:
        """Generate a unique name for the Databricks Inference Endpoint.

        Returns:
            A unique name for the Databricks Inference Endpoint.
        """
        return (
            f"{self.config.service_name}-{str(self.uuid)[:UUID_SLICE_LENGTH]}"
        )
databricks_client: databricks.sdk.WorkspaceClient property readonly

Get the deployed Databricks inference endpoint.

Returns:

Type Description
databricks.sdk.WorkspaceClient

databricks inference endpoint.

databricks_endpoint: databricks.sdk.service.serving.ServingEndpointDetailed property readonly

Get the deployed Hugging Face inference endpoint.

Returns:

Type Description
databricks.sdk.service.serving.ServingEndpointDetailed

Databricks inference endpoint.

prediction_url: Optional[str] property readonly

The prediction URI exposed by the prediction service.

Returns:

Type Description
Optional[str]

The prediction URI exposed by the prediction service, or None if the service is not yet ready.

__init__(self, config, **attrs) special

Initialize the Databricks deployment service.

Parameters:

Name Type Description Default
config DatabricksDeploymentConfig

service configuration

required
attrs Any

additional attributes to set on the service

{}
Source code in zenml/integrations/databricks/services/databricks_deployment.py
def __init__(self, config: DatabricksDeploymentConfig, **attrs: Any):
    """Initialize the Databricks deployment service.

    Args:
        config: service configuration
        attrs: additional attributes to set on the service
    """
    super().__init__(config=config, **attrs)
check_status(self)

Check the the current operational state of the Databricks deployment.

Returns:

Type Description
Tuple[zenml.services.service_status.ServiceState, str]

The operational state of the Databricks deployment and a message providing additional information about that state (e.g. a description of the error, if one is encountered).

Source code in zenml/integrations/databricks/services/databricks_deployment.py
def check_status(self) -> Tuple[ServiceState, str]:
    """Check the the current operational state of the Databricks deployment.

    Returns:
        The operational state of the Databricks deployment and a message
        providing additional information about that state (e.g. a
        description of the error, if one is encountered).
    """
    try:
        status = self.databricks_endpoint.state or None
        if (
            status
            and status.ready
            and status.ready == EndpointStateReady.READY
        ):
            return (ServiceState.ACTIVE, "")
        elif (
            status
            and status.config_update
            and status.config_update
            == EndpointStateConfigUpdate.UPDATE_FAILED
        ):
            return (
                ServiceState.ERROR,
                "Databricks Inference Endpoint deployment update failed",
            )
        elif (
            status
            and status.config_update
            and status.config_update
            == EndpointStateConfigUpdate.IN_PROGRESS
        ):
            return (ServiceState.PENDING_STARTUP, "")
        return (ServiceState.PENDING_STARTUP, "")
    except Exception as e:
        return (
            ServiceState.INACTIVE,
            f"Databricks Inference Endpoint deployment is inactive or not found: {e}",
        )
deprovision(self, force=False)

Deprovision the remote Databricks deployment instance.

Parameters:

Name Type Description Default
force bool

if True, the remote deployment instance will be forcefully deprovisioned.

False
Source code in zenml/integrations/databricks/services/databricks_deployment.py
def deprovision(self, force: bool = False) -> None:
    """Deprovision the remote Databricks deployment instance.

    Args:
        force: if True, the remote deployment instance will be
            forcefully deprovisioned.
    """
    try:
        self.databricks_client.serving_endpoints.delete(
            name=self._generate_an_endpoint_name()
        )
    except Exception:
        logger.error(
            "Databricks Inference Endpoint is deleted or cannot be found."
        )
get_client_id_and_secret(self)

Get the Databricks client id and secret.

Exceptions:

Type Description
ValueError

If client id and secret are not found.

Returns:

Type Description
Tuple[str, str, str]

Databricks client id and secret.

Source code in zenml/integrations/databricks/services/databricks_deployment.py
def get_client_id_and_secret(self) -> Tuple[str, str, str]:
    """Get the Databricks client id and secret.

    Raises:
        ValueError: If client id and secret are not found.

    Returns:
        Databricks client id and secret.
    """
    client = Client()
    client_id = None
    client_secret = None
    host = None
    from zenml.integrations.databricks.model_deployers.databricks_model_deployer import (
        DatabricksModelDeployer,
    )

    model_deployer = client.active_stack.model_deployer
    if not isinstance(model_deployer, DatabricksModelDeployer):
        raise ValueError(
            "DatabricksModelDeployer is not active in the stack."
        )
    host = model_deployer.config.host
    self.config.host = host
    if model_deployer.config.secret_name:
        secret = client.get_secret(model_deployer.config.secret_name)
        client_id = secret.secret_values["client_id"]
        client_secret = secret.secret_values["client_secret"]

    else:
        client_id = model_deployer.config.client_id
        client_secret = model_deployer.config.client_secret
    if not client_id:
        raise ValueError("Client id not found.")
    if not client_secret:
        raise ValueError("Client secret not found.")
    if not host:
        raise ValueError("Host not found.")
    return host, client_id, client_secret
get_logs(self, follow=False, tail=None)

Retrieve the service logs.

Parameters:

Name Type Description Default
follow bool

if True, the logs will be streamed as they are written

False
tail Optional[int]

only retrieve the last NUM lines of log output.

None

Yields:

Type Description
Generator[str, bool, NoneType]

A generator that can be accessed to get the service logs.

Source code in zenml/integrations/databricks/services/databricks_deployment.py
def get_logs(
    self, follow: bool = False, tail: Optional[int] = None
) -> Generator[str, bool, None]:
    """Retrieve the service logs.

    Args:
        follow: if True, the logs will be streamed as they are written
        tail: only retrieve the last NUM lines of log output.

    Yields:
        A generator that can be accessed to get the service logs.
    """
    logger.info(
        "Databricks Endpoints provides access to the logs of your Endpoints through the UI in the `Logs` tab of your Endpoint"
    )

    def log_generator() -> Generator[str, bool, None]:
        last_log_count = 0
        while True:
            logs = self.databricks_client.serving_endpoints.logs(
                name=self._generate_an_endpoint_name(),
                served_model_name=self.config.model_name,
            )

            log_lines = logs.logs.split("\n")

            # Apply tail if specified and it's the first iteration
            if tail is not None and last_log_count == 0:
                log_lines = log_lines[-tail:]

            # Yield only new lines
            for line in log_lines[last_log_count:]:
                yield line

            last_log_count = len(log_lines)

            if not follow:
                break

            # Add a small delay to avoid excessive API calls
            time.sleep(1)

    yield from log_generator()
predict(self, request)

Make a prediction using the service.

Parameters:

Name Type Description Default
request Union[NDArray[Any], pandas.core.frame.DataFrame]

The input data for the prediction.

required

Returns:

Type Description
NDArray[Any]

The prediction result.

Exceptions:

Type Description
Exception

if the service is not running

ValueError

if the endpoint secret name is not provided.

Source code in zenml/integrations/databricks/services/databricks_deployment.py
def predict(
    self, request: Union["NDArray[Any]", pd.DataFrame]
) -> "NDArray[Any]":
    """Make a prediction using the service.

    Args:
        request: The input data for the prediction.

    Returns:
        The prediction result.

    Raises:
        Exception: if the service is not running
        ValueError: if the endpoint secret name is not provided.
    """
    if not self.is_running:
        raise Exception(
            "Databricks endpoint inference service is not running. "
            "Please start the service before making predictions."
        )
    if self.prediction_url is not None:
        if not self.config.endpoint_secret_name:
            raise ValueError(
                "No endpoint secret name is provided for prediction."
            )
        databricks_token = Client().get_secret(
            self.config.endpoint_secret_name
        )
        if not databricks_token.secret_values["token"]:
            raise ValueError("No databricks token found.")
        headers = {
            "Authorization": f"Bearer {databricks_token.secret_values['token']}",
            "Content-Type": "application/json",
        }
        if isinstance(request, pd.DataFrame):
            response = requests.post(  # nosec
                self.prediction_url,
                json={"instances": request.to_dict("records")},
                headers=headers,
            )
        else:
            response = requests.post(  # nosec
                self.prediction_url,
                json={"instances": request.tolist()},
                headers=headers,
            )
    else:
        raise ValueError("No endpoint known for prediction.")
    response.raise_for_status()

    return np.array(response.json()["predictions"])
provision(self)

Provision or update remote Databricks deployment instance.

Source code in zenml/integrations/databricks/services/databricks_deployment.py
def provision(self) -> None:
    """Provision or update remote Databricks deployment instance."""
    from databricks.sdk.service.serving import (
        ServedModelInputWorkloadSize,
        ServedModelInputWorkloadType,
    )

    tags = []
    for key, value in self._get_databricks_deployment_labels().items():
        tags.append(EndpointTag(key=key, value=value))
    # Attempt to create and wait for the inference endpoint
    served_model = ServedModelInput(
        model_name=self.config.model_name,
        model_version=self.config.model_version,
        scale_to_zero_enabled=self.config.scale_to_zero_enabled,
        workload_type=ServedModelInputWorkloadType(
            self.config.workload_type
        ),
        workload_size=ServedModelInputWorkloadSize(
            self.config.workload_size
        ),
    )

    databricks_endpoint = (
        self.databricks_client.serving_endpoints.create_and_wait(
            name=self._generate_an_endpoint_name(),
            config=EndpointCoreConfigInput(
                served_models=[served_model],
            ),
            tags=tags,
        )
    )
    # Check if the endpoint URL is available after provisioning
    if databricks_endpoint.endpoint_url:
        logger.info(
            f"Databricks inference endpoint successfully deployed and available. Endpoint URL: {databricks_endpoint.endpoint_url}"
        )
    else:
        logger.error(
            "Failed to start Databricks inference endpoint service: No URL available, please check the Databricks console for more details."
        )
DatabricksServiceStatus (ServiceStatus)

Databricks service status.

Source code in zenml/integrations/databricks/services/databricks_deployment.py
class DatabricksServiceStatus(ServiceStatus):
    """Databricks service status."""

utils special

Utilities for Databricks integration.

databricks_utils

Databricks utilities.

convert_step_to_task(task_name, command, arguments, libraries=None, depends_on=None, zenml_project_wheel=None, job_cluster_key=None)

Convert a ZenML step to a Databricks task.

Parameters:

Name Type Description Default
task_name str

Name of the task.

required
command str

Command to run.

required
arguments List[str]

Arguments to pass to the command.

required
libraries Optional[List[str]]

List of libraries to install.

None
depends_on Optional[List[str]]

List of tasks to depend on.

None
zenml_project_wheel Optional[str]

Path to the ZenML project wheel.

None
job_cluster_key Optional[str]

ID of the Databricks job_cluster_key.

None

Returns:

Type Description
databricks.sdk.service.jobs.Task

Databricks task.

Source code in zenml/integrations/databricks/utils/databricks_utils.py
def convert_step_to_task(
    task_name: str,
    command: str,
    arguments: List[str],
    libraries: Optional[List[str]] = None,
    depends_on: Optional[List[str]] = None,
    zenml_project_wheel: Optional[str] = None,
    job_cluster_key: Optional[str] = None,
) -> DatabricksTask:
    """Convert a ZenML step to a Databricks task.

    Args:
        task_name: Name of the task.
        command: Command to run.
        arguments: Arguments to pass to the command.
        libraries: List of libraries to install.
        depends_on: List of tasks to depend on.
        zenml_project_wheel: Path to the ZenML project wheel.
        job_cluster_key: ID of the Databricks job_cluster_key.

    Returns:
        Databricks task.
    """
    db_libraries = []
    if libraries:
        for library in libraries:
            db_libraries.append(Library(pypi=PythonPyPiLibrary(library)))
    db_libraries.append(Library(whl=zenml_project_wheel))
    db_libraries.append(
        Library(pypi=PythonPyPiLibrary(f"zenml=={__version__}"))
    )
    return DatabricksTask(
        task_key=task_name,
        job_cluster_key=job_cluster_key,
        libraries=db_libraries,
        python_wheel_task=PythonWheelTask(
            package_name="zenml",
            entry_point=command,
            parameters=arguments,
        ),
        depends_on=[TaskDependency(task) for task in depends_on]
        if depends_on
        else None,
    )
sanitize_labels(labels)

Update the label values to be valid Kubernetes labels.

See: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set

Parameters:

Name Type Description Default
labels Dict[str, str]

the labels to sanitize.

required
Source code in zenml/integrations/databricks/utils/databricks_utils.py
def sanitize_labels(labels: Dict[str, str]) -> None:
    """Update the label values to be valid Kubernetes labels.

    See:
    https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set

    Args:
        labels: the labels to sanitize.
    """
    for key, value in labels.items():
        # Kubernetes labels must be alphanumeric, no longer than
        # 63 characters, and must begin and end with an alphanumeric
        # character ([a-z0-9A-Z])
        labels[key] = re.sub(r"[^0-9a-zA-Z-_\.]+", "_", value)[:63].strip(
            "-_."
        )