Stack
zenml.stack
special
Initialization of the ZenML Stack.
The stack is essentially all the configuration for the infrastructure of your MLOps platform.
A stack is made up of multiple components. Some examples are:
- An Artifact Store
- An Orchestrator
- A Step Operator (Optional)
- A Container Registry (Optional)
authentication_mixin
Stack component mixin for authentication.
AuthenticationConfigMixin (StackComponentConfig)
Base config for authentication mixins.
Any stack component that implements AuthenticationMixin
should have a
config that inherits from this class.
Attributes:
Name | Type | Description |
---|---|---|
authentication_secret |
Optional[str] |
Name of the secret that stores the authentication credentials. |
Source code in zenml/stack/authentication_mixin.py
class AuthenticationConfigMixin(StackComponentConfig):
"""Base config for authentication mixins.
Any stack component that implements `AuthenticationMixin` should have a
config that inherits from this class.
Attributes:
authentication_secret: Name of the secret that stores the
authentication credentials.
"""
authentication_secret: Optional[str] = None
AuthenticationMixin (StackComponent)
Stack component mixin for authentication.
Any stack component that implements this mixin should have a config that
inherits from AuthenticationConfigMixin
.
Source code in zenml/stack/authentication_mixin.py
class AuthenticationMixin(StackComponent):
"""Stack component mixin for authentication.
Any stack component that implements this mixin should have a config that
inherits from `AuthenticationConfigMixin`.
"""
@property
def config(self) -> AuthenticationConfigMixin:
"""Returns the `AuthenticationConfigMixin` config.
Returns:
The configuration.
"""
return cast(AuthenticationConfigMixin, self._config)
def get_authentication_secret(
self,
) -> Optional[SecretResponse]:
"""Gets the secret referred to by the authentication secret attribute.
Returns:
The secret if the `authentication_secret` attribute is set,
`None` otherwise.
Raises:
KeyError: If the secret does not exist.
"""
if not self.config.authentication_secret:
return None
# Try to resolve the secret using the secret store
try:
return Client().get_secret_by_name_and_scope(
name=self.config.authentication_secret,
)
except (KeyError, NotImplementedError):
raise KeyError(
f"The authentication secret {self.config.authentication_secret} "
f"referenced by the `{self.name}` `{self.type}` stack "
"component does not exist."
)
def get_typed_authentication_secret(
self, expected_schema_type: Type[T]
) -> Optional[T]:
"""Gets a typed secret referred to by the authentication secret attribute.
Args:
expected_schema_type: A Pydantic model class that represents the
expected schema type of the secret.
Returns:
The secret values extracted from the secret and converted into the
indicated Pydantic type, if the `authentication_secret` attribute is
set, `None` otherwise.
Raises:
TypeError: If the secret cannot be converted into the indicated
Pydantic type.
"""
secret = self.get_authentication_secret()
if not secret:
return None
try:
typed_secret = expected_schema_type(
**secret.secret_values,
)
except (TypeError, ValueError) as e:
raise TypeError(
f"Authentication secret `{self.config.authentication_secret}` "
f"referenced by the `{self.name}` `{self.type}` stack component"
f"could not be converted to {expected_schema_type}: {e}"
)
return typed_secret
config: AuthenticationConfigMixin
property
readonly
Returns the AuthenticationConfigMixin
config.
Returns:
Type | Description |
---|---|
AuthenticationConfigMixin |
The configuration. |
get_authentication_secret(self)
Gets the secret referred to by the authentication secret attribute.
Returns:
Type | Description |
---|---|
Optional[zenml.models.v2.core.secret.SecretResponse] |
The secret if the |
Exceptions:
Type | Description |
---|---|
KeyError |
If the secret does not exist. |
Source code in zenml/stack/authentication_mixin.py
def get_authentication_secret(
self,
) -> Optional[SecretResponse]:
"""Gets the secret referred to by the authentication secret attribute.
Returns:
The secret if the `authentication_secret` attribute is set,
`None` otherwise.
Raises:
KeyError: If the secret does not exist.
"""
if not self.config.authentication_secret:
return None
# Try to resolve the secret using the secret store
try:
return Client().get_secret_by_name_and_scope(
name=self.config.authentication_secret,
)
except (KeyError, NotImplementedError):
raise KeyError(
f"The authentication secret {self.config.authentication_secret} "
f"referenced by the `{self.name}` `{self.type}` stack "
"component does not exist."
)
get_typed_authentication_secret(self, expected_schema_type)
Gets a typed secret referred to by the authentication secret attribute.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
expected_schema_type |
Type[~T] |
A Pydantic model class that represents the expected schema type of the secret. |
required |
Returns:
Type | Description |
---|---|
Optional[~T] |
The secret values extracted from the secret and converted into the
indicated Pydantic type, if the |
Exceptions:
Type | Description |
---|---|
TypeError |
If the secret cannot be converted into the indicated Pydantic type. |
Source code in zenml/stack/authentication_mixin.py
def get_typed_authentication_secret(
self, expected_schema_type: Type[T]
) -> Optional[T]:
"""Gets a typed secret referred to by the authentication secret attribute.
Args:
expected_schema_type: A Pydantic model class that represents the
expected schema type of the secret.
Returns:
The secret values extracted from the secret and converted into the
indicated Pydantic type, if the `authentication_secret` attribute is
set, `None` otherwise.
Raises:
TypeError: If the secret cannot be converted into the indicated
Pydantic type.
"""
secret = self.get_authentication_secret()
if not secret:
return None
try:
typed_secret = expected_schema_type(
**secret.secret_values,
)
except (TypeError, ValueError) as e:
raise TypeError(
f"Authentication secret `{self.config.authentication_secret}` "
f"referenced by the `{self.name}` `{self.type}` stack component"
f"could not be converted to {expected_schema_type}: {e}"
)
return typed_secret
flavor
Base ZenML Flavor implementation.
Flavor
Class for ZenML Flavors.
Source code in zenml/stack/flavor.py
class Flavor:
"""Class for ZenML Flavors."""
@property
@abstractmethod
def name(self) -> str:
"""The flavor name.
Returns:
The flavor name.
"""
@property
def docs_url(self) -> Optional[str]:
"""A url to point at docs explaining this flavor.
Returns:
A flavor docs url.
"""
return None
@property
def sdk_docs_url(self) -> Optional[str]:
"""A url to point at SDK docs explaining this flavor.
Returns:
A flavor SDK docs url.
"""
return None
@property
def logo_url(self) -> Optional[str]:
"""A url to represent the flavor in the dashboard.
Returns:
The flavor logo.
"""
return None
@property
@abstractmethod
def type(self) -> StackComponentType:
"""The stack component type.
Returns:
The stack component type.
"""
@property
@abstractmethod
def implementation_class(self) -> Type[StackComponent]:
"""Implementation class for this flavor.
Returns:
The implementation class for this flavor.
"""
@property
@abstractmethod
def config_class(self) -> Type[StackComponentConfig]:
"""Returns `StackComponentConfig` config class.
Returns:
The config class.
"""
@property
def config_schema(self) -> Dict[str, Any]:
"""The config schema for a flavor.
Returns:
The config schema.
"""
return self.config_class.model_json_schema()
@property
def service_connector_requirements(
self,
) -> Optional[ServiceConnectorRequirements]:
"""Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available
service connector types that are compatible with this flavor.
Returns:
Requirements for compatible service connectors, if a service
connector is required for this flavor.
"""
return None
@classmethod
def from_model(cls, flavor_model: FlavorResponse) -> "Flavor":
"""Loads a flavor from a model.
Args:
flavor_model: The model to load from.
Returns:
The loaded flavor.
"""
flavor = source_utils.load(flavor_model.source)()
return cast(Flavor, flavor)
def to_model(
self,
integration: Optional[str] = None,
is_custom: bool = True,
) -> FlavorRequest:
"""Converts a flavor to a model.
Args:
integration: The integration to use for the model.
is_custom: Whether the flavor is a custom flavor. Custom flavors
are then scoped by user and workspace
Returns:
The model.
"""
from zenml.client import Client
client = Client()
connector_requirements = self.service_connector_requirements
connector_type = (
connector_requirements.connector_type
if connector_requirements
else None
)
resource_type = (
connector_requirements.resource_type
if connector_requirements
else None
)
resource_id_attr = (
connector_requirements.resource_id_attr
if connector_requirements
else None
)
model_class = FlavorRequest if is_custom else InternalFlavorRequest
model = model_class(
user=client.active_user.id if is_custom else None,
workspace=client.active_workspace.id if is_custom else None,
name=self.name,
type=self.type,
source=source_utils.resolve(self.__class__).import_path,
config_schema=self.config_schema,
connector_type=connector_type,
connector_resource_type=resource_type,
connector_resource_id_attr=resource_id_attr,
integration=integration,
logo_url=self.logo_url,
docs_url=self.docs_url,
sdk_docs_url=self.sdk_docs_url,
is_custom=is_custom,
)
return model
def generate_default_docs_url(self) -> str:
"""Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors,
which do not have any docs in the main zenml docs.
Returns:
The complete url to the zenml documentation
"""
from zenml import __version__
component_type = self.type.plural.replace("_", "-")
name = self.name.replace("_", "-")
try:
is_latest = is_latest_zenml_version()
except RuntimeError:
# We assume in error cases that we are on the latest version
is_latest = True
if is_latest:
base = "https://docs.zenml.io"
else:
base = f"https://zenml-io.gitbook.io/zenml-legacy-documentation/v/{__version__}"
return f"{base}/stack-components/{component_type}/{name}"
def generate_default_sdk_docs_url(self) -> str:
"""Generate SDK docs url for a flavor.
Returns:
The complete url to the zenml SDK docs
"""
from zenml import __version__
base = f"https://sdkdocs.zenml.io/{__version__}"
component_type = self.type.plural
if "zenml.integrations" in self.__module__:
# Get integration name out of module path which will look something
# like this "zenml.integrations.<integration>....
integration = self.__module__.split(
"zenml.integrations.", maxsplit=1
)[1].split(".")[0]
return (
f"{base}/integration_code_docs"
f"/integrations-{integration}/#{self.__module__}"
)
else:
return (
f"{base}/core_code_docs/core-{component_type}/"
f"#{self.__module__}"
)
config_class: Type[zenml.stack.stack_component.StackComponentConfig]
property
readonly
Returns StackComponentConfig
config class.
Returns:
Type | Description |
---|---|
Type[zenml.stack.stack_component.StackComponentConfig] |
The config class. |
config_schema: Dict[str, Any]
property
readonly
The config schema for a flavor.
Returns:
Type | Description |
---|---|
Dict[str, Any] |
The config schema. |
docs_url: Optional[str]
property
readonly
A url to point at docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str] |
A flavor docs url. |
implementation_class: Type[zenml.stack.stack_component.StackComponent]
property
readonly
Implementation class for this flavor.
Returns:
Type | Description |
---|---|
Type[zenml.stack.stack_component.StackComponent] |
The implementation class for this flavor. |
logo_url: Optional[str]
property
readonly
A url to represent the flavor in the dashboard.
Returns:
Type | Description |
---|---|
Optional[str] |
The flavor logo. |
name: str
property
readonly
The flavor name.
Returns:
Type | Description |
---|---|
str |
The flavor name. |
sdk_docs_url: Optional[str]
property
readonly
A url to point at SDK docs explaining this flavor.
Returns:
Type | Description |
---|---|
Optional[str] |
A flavor SDK docs url. |
service_connector_requirements: Optional[zenml.models.v2.misc.service_connector_type.ServiceConnectorRequirements]
property
readonly
Service connector resource requirements for service connectors.
Specifies resource requirements that are used to filter the available service connector types that are compatible with this flavor.
Returns:
Type | Description |
---|---|
Optional[zenml.models.v2.misc.service_connector_type.ServiceConnectorRequirements] |
Requirements for compatible service connectors, if a service connector is required for this flavor. |
type: StackComponentType
property
readonly
The stack component type.
Returns:
Type | Description |
---|---|
StackComponentType |
The stack component type. |
from_model(flavor_model)
classmethod
Loads a flavor from a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flavor_model |
FlavorResponse |
The model to load from. |
required |
Returns:
Type | Description |
---|---|
Flavor |
The loaded flavor. |
Source code in zenml/stack/flavor.py
@classmethod
def from_model(cls, flavor_model: FlavorResponse) -> "Flavor":
"""Loads a flavor from a model.
Args:
flavor_model: The model to load from.
Returns:
The loaded flavor.
"""
flavor = source_utils.load(flavor_model.source)()
return cast(Flavor, flavor)
generate_default_docs_url(self)
Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors, which do not have any docs in the main zenml docs.
Returns:
Type | Description |
---|---|
str |
The complete url to the zenml documentation |
Source code in zenml/stack/flavor.py
def generate_default_docs_url(self) -> str:
"""Generate the doc urls for all inbuilt and integration flavors.
Note that this method is not going to be useful for custom flavors,
which do not have any docs in the main zenml docs.
Returns:
The complete url to the zenml documentation
"""
from zenml import __version__
component_type = self.type.plural.replace("_", "-")
name = self.name.replace("_", "-")
try:
is_latest = is_latest_zenml_version()
except RuntimeError:
# We assume in error cases that we are on the latest version
is_latest = True
if is_latest:
base = "https://docs.zenml.io"
else:
base = f"https://zenml-io.gitbook.io/zenml-legacy-documentation/v/{__version__}"
return f"{base}/stack-components/{component_type}/{name}"
generate_default_sdk_docs_url(self)
Generate SDK docs url for a flavor.
Returns:
Type | Description |
---|---|
str |
The complete url to the zenml SDK docs |
Source code in zenml/stack/flavor.py
def generate_default_sdk_docs_url(self) -> str:
"""Generate SDK docs url for a flavor.
Returns:
The complete url to the zenml SDK docs
"""
from zenml import __version__
base = f"https://sdkdocs.zenml.io/{__version__}"
component_type = self.type.plural
if "zenml.integrations" in self.__module__:
# Get integration name out of module path which will look something
# like this "zenml.integrations.<integration>....
integration = self.__module__.split(
"zenml.integrations.", maxsplit=1
)[1].split(".")[0]
return (
f"{base}/integration_code_docs"
f"/integrations-{integration}/#{self.__module__}"
)
else:
return (
f"{base}/core_code_docs/core-{component_type}/"
f"#{self.__module__}"
)
to_model(self, integration=None, is_custom=True)
Converts a flavor to a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integration |
Optional[str] |
The integration to use for the model. |
None |
is_custom |
bool |
Whether the flavor is a custom flavor. Custom flavors are then scoped by user and workspace |
True |
Returns:
Type | Description |
---|---|
FlavorRequest |
The model. |
Source code in zenml/stack/flavor.py
def to_model(
self,
integration: Optional[str] = None,
is_custom: bool = True,
) -> FlavorRequest:
"""Converts a flavor to a model.
Args:
integration: The integration to use for the model.
is_custom: Whether the flavor is a custom flavor. Custom flavors
are then scoped by user and workspace
Returns:
The model.
"""
from zenml.client import Client
client = Client()
connector_requirements = self.service_connector_requirements
connector_type = (
connector_requirements.connector_type
if connector_requirements
else None
)
resource_type = (
connector_requirements.resource_type
if connector_requirements
else None
)
resource_id_attr = (
connector_requirements.resource_id_attr
if connector_requirements
else None
)
model_class = FlavorRequest if is_custom else InternalFlavorRequest
model = model_class(
user=client.active_user.id if is_custom else None,
workspace=client.active_workspace.id if is_custom else None,
name=self.name,
type=self.type,
source=source_utils.resolve(self.__class__).import_path,
config_schema=self.config_schema,
connector_type=connector_type,
connector_resource_type=resource_type,
connector_resource_id_attr=resource_id_attr,
integration=integration,
logo_url=self.logo_url,
docs_url=self.docs_url,
sdk_docs_url=self.sdk_docs_url,
is_custom=is_custom,
)
return model
validate_flavor_source(source, component_type)
Import a StackComponent class from a given source and validate its type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str |
source path of the implementation |
required |
component_type |
StackComponentType |
the type of the stack component |
required |
Returns:
Type | Description |
---|---|
Type[Flavor] |
the imported class |
Exceptions:
Type | Description |
---|---|
ValueError |
If ZenML cannot find the given module path |
TypeError |
If the given module path does not point to a subclass of a StackComponent which has the right component type. |
Source code in zenml/stack/flavor.py
def validate_flavor_source(
source: str, component_type: StackComponentType
) -> Type["Flavor"]:
"""Import a StackComponent class from a given source and validate its type.
Args:
source: source path of the implementation
component_type: the type of the stack component
Returns:
the imported class
Raises:
ValueError: If ZenML cannot find the given module path
TypeError: If the given module path does not point to a subclass of a
StackComponent which has the right component type.
"""
from zenml.stack.stack_component import (
StackComponent,
StackComponentConfig,
)
from zenml.utils import source_utils
try:
flavor_class = source_utils.load(source)
except (ValueError, AttributeError, ImportError) as e:
raise ValueError(
f"ZenML can not import the flavor class '{source}': {e}"
)
if not (
isinstance(flavor_class, type) and issubclass(flavor_class, Flavor)
):
raise TypeError(
f"The source '{source}' does not point to a subclass of the ZenML"
f"Flavor."
)
flavor = flavor_class()
try:
impl_class = flavor.implementation_class
except (ModuleNotFoundError, ImportError, NotImplementedError) as e:
raise ValueError(
f"The implementation class defined within the "
f"'{flavor_class.__name__}' can not be imported: {e}"
)
if not issubclass(impl_class, StackComponent):
raise TypeError(
f"The implementation class '{impl_class.__name__}' of a flavor "
f"needs to be a subclass of the ZenML StackComponent."
)
if flavor.type != component_type: # noqa
raise TypeError(
f"The source points to a {impl_class.type}, not a " # noqa
f"{component_type}."
)
try:
conf_class = flavor.config_class
except (ModuleNotFoundError, ImportError, NotImplementedError) as e:
raise ValueError(
f"The config class defined within the "
f"'{flavor_class.__name__}' can not be imported: {e}"
)
if not issubclass(conf_class, StackComponentConfig):
raise TypeError(
f"The config class '{conf_class.__name__}' of a flavor "
f"needs to be a subclass of the ZenML StackComponentConfig."
)
return flavor_class
flavor_registry
Implementation of the ZenML flavor registry.
FlavorRegistry
Registry for stack component flavors.
The flavors defined by ZenML must be registered here.
Source code in zenml/stack/flavor_registry.py
class FlavorRegistry:
"""Registry for stack component flavors.
The flavors defined by ZenML must be registered here.
"""
def __init__(self) -> None:
"""Initialization of the flavors."""
self._flavors: DefaultDict[
StackComponentType, Dict[str, FlavorResponse]
] = defaultdict(dict)
def register_flavors(self, store: BaseZenStore) -> None:
"""Register all flavors to the DB.
Args:
store: The instance of a store to use for persistence
"""
self.register_builtin_flavors(store=store)
self.register_integration_flavors(store=store)
@property
def builtin_flavors(self) -> List[Type[Flavor]]:
"""A list of all default in-built flavors.
Returns:
A list of builtin flavors.
"""
from zenml.artifact_stores import LocalArtifactStoreFlavor
from zenml.container_registries import (
AzureContainerRegistryFlavor,
DefaultContainerRegistryFlavor,
DockerHubContainerRegistryFlavor,
GCPContainerRegistryFlavor,
GitHubContainerRegistryFlavor,
)
from zenml.image_builders import LocalImageBuilderFlavor
from zenml.orchestrators import (
LocalDockerOrchestratorFlavor,
LocalOrchestratorFlavor,
)
flavors = [
LocalArtifactStoreFlavor,
LocalOrchestratorFlavor,
LocalDockerOrchestratorFlavor,
DefaultContainerRegistryFlavor,
AzureContainerRegistryFlavor,
DockerHubContainerRegistryFlavor,
GCPContainerRegistryFlavor,
GitHubContainerRegistryFlavor,
LocalImageBuilderFlavor,
]
return flavors
@property
def integration_flavors(self) -> List[Type[Flavor]]:
"""A list of all default integration flavors.
Returns:
A list of integration flavors.
"""
integrated_flavors = []
for _, integration in integration_registry.integrations.items():
for flavor in integration.flavors():
integrated_flavors.append(flavor)
return integrated_flavors
def register_builtin_flavors(self, store: BaseZenStore) -> None:
"""Registers the default built-in flavors.
Args:
store: The instance of the zen_store to use
"""
with analytics_disabler():
for flavor in self.builtin_flavors:
flavor_request_model = flavor().to_model(
integration="built-in",
is_custom=False,
)
existing_flavor = store.list_flavors(
FlavorFilter(
name=flavor_request_model.name,
type=flavor_request_model.type,
)
)
if len(existing_flavor) == 0:
store.create_flavor(flavor_request_model)
else:
flavor_update_model = FlavorUpdate.model_validate(
dict(flavor_request_model)
)
store.update_flavor(
existing_flavor[0].id, flavor_update_model
)
@staticmethod
def register_integration_flavors(store: BaseZenStore) -> None:
"""Registers the flavors implemented by integrations.
Args:
store: The instance of the zen_store to use
"""
with analytics_disabler():
for name, integration in integration_registry.integrations.items():
try:
integrated_flavors = integration.flavors()
for flavor in integrated_flavors:
flavor_request_model = flavor().to_model(
integration=name,
is_custom=False,
)
existing_flavor = store.list_flavors(
FlavorFilter(
name=flavor_request_model.name,
type=flavor_request_model.type,
)
)
if len(existing_flavor) == 0:
store.create_flavor(flavor_request_model)
else:
flavor_update_model = FlavorUpdate.model_validate(
dict(flavor_request_model)
)
store.update_flavor(
existing_flavor[0].id, flavor_update_model
)
except Exception as e:
logger.warning(
f"Integration {name} failed to register flavors. "
f"Error: {e}"
)
builtin_flavors: List[Type[zenml.stack.flavor.Flavor]]
property
readonly
A list of all default in-built flavors.
Returns:
Type | Description |
---|---|
List[Type[zenml.stack.flavor.Flavor]] |
A list of builtin flavors. |
integration_flavors: List[Type[zenml.stack.flavor.Flavor]]
property
readonly
A list of all default integration flavors.
Returns:
Type | Description |
---|---|
List[Type[zenml.stack.flavor.Flavor]] |
A list of integration flavors. |
__init__(self)
special
Initialization of the flavors.
Source code in zenml/stack/flavor_registry.py
def __init__(self) -> None:
"""Initialization of the flavors."""
self._flavors: DefaultDict[
StackComponentType, Dict[str, FlavorResponse]
] = defaultdict(dict)
register_builtin_flavors(self, store)
Registers the default built-in flavors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
store |
BaseZenStore |
The instance of the zen_store to use |
required |
Source code in zenml/stack/flavor_registry.py
def register_builtin_flavors(self, store: BaseZenStore) -> None:
"""Registers the default built-in flavors.
Args:
store: The instance of the zen_store to use
"""
with analytics_disabler():
for flavor in self.builtin_flavors:
flavor_request_model = flavor().to_model(
integration="built-in",
is_custom=False,
)
existing_flavor = store.list_flavors(
FlavorFilter(
name=flavor_request_model.name,
type=flavor_request_model.type,
)
)
if len(existing_flavor) == 0:
store.create_flavor(flavor_request_model)
else:
flavor_update_model = FlavorUpdate.model_validate(
dict(flavor_request_model)
)
store.update_flavor(
existing_flavor[0].id, flavor_update_model
)
register_flavors(self, store)
Register all flavors to the DB.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
store |
BaseZenStore |
The instance of a store to use for persistence |
required |
Source code in zenml/stack/flavor_registry.py
def register_flavors(self, store: BaseZenStore) -> None:
"""Register all flavors to the DB.
Args:
store: The instance of a store to use for persistence
"""
self.register_builtin_flavors(store=store)
self.register_integration_flavors(store=store)
register_integration_flavors(store)
staticmethod
Registers the flavors implemented by integrations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
store |
BaseZenStore |
The instance of the zen_store to use |
required |
Source code in zenml/stack/flavor_registry.py
@staticmethod
def register_integration_flavors(store: BaseZenStore) -> None:
"""Registers the flavors implemented by integrations.
Args:
store: The instance of the zen_store to use
"""
with analytics_disabler():
for name, integration in integration_registry.integrations.items():
try:
integrated_flavors = integration.flavors()
for flavor in integrated_flavors:
flavor_request_model = flavor().to_model(
integration=name,
is_custom=False,
)
existing_flavor = store.list_flavors(
FlavorFilter(
name=flavor_request_model.name,
type=flavor_request_model.type,
)
)
if len(existing_flavor) == 0:
store.create_flavor(flavor_request_model)
else:
flavor_update_model = FlavorUpdate.model_validate(
dict(flavor_request_model)
)
store.update_flavor(
existing_flavor[0].id, flavor_update_model
)
except Exception as e:
logger.warning(
f"Integration {name} failed to register flavors. "
f"Error: {e}"
)
stack
Implementation of the ZenML Stack class.
Stack
ZenML stack class.
A ZenML stack is a collection of multiple stack components that are required to run ZenML pipelines. Some of these components (orchestrator, and artifact store) are required to run any kind of pipeline, other components like the container registry are only required if other stack components depend on them.
Source code in zenml/stack/stack.py
class Stack:
"""ZenML stack class.
A ZenML stack is a collection of multiple stack components that are
required to run ZenML pipelines. Some of these components (orchestrator,
and artifact store) are required to run any kind of
pipeline, other components like the container registry are only required
if other stack components depend on them.
"""
def __init__(
self,
id: UUID,
name: str,
*,
orchestrator: "BaseOrchestrator",
artifact_store: "BaseArtifactStore",
container_registry: Optional["BaseContainerRegistry"] = None,
step_operator: Optional["BaseStepOperator"] = None,
feature_store: Optional["BaseFeatureStore"] = None,
model_deployer: Optional["BaseModelDeployer"] = None,
experiment_tracker: Optional["BaseExperimentTracker"] = None,
alerter: Optional["BaseAlerter"] = None,
annotator: Optional["BaseAnnotator"] = None,
data_validator: Optional["BaseDataValidator"] = None,
image_builder: Optional["BaseImageBuilder"] = None,
model_registry: Optional["BaseModelRegistry"] = None,
):
"""Initializes and validates a stack instance.
Args:
id: Unique ID of the stack.
name: Name of the stack.
orchestrator: Orchestrator component of the stack.
artifact_store: Artifact store component of the stack.
container_registry: Container registry component of the stack.
step_operator: Step operator component of the stack.
feature_store: Feature store component of the stack.
model_deployer: Model deployer component of the stack.
experiment_tracker: Experiment tracker component of the stack.
alerter: Alerter component of the stack.
annotator: Annotator component of the stack.
data_validator: Data validator component of the stack.
image_builder: Image builder component of the stack.
model_registry: Model registry component of the stack.
"""
self._id = id
self._name = name
self._orchestrator = orchestrator
self._artifact_store = artifact_store
self._container_registry = container_registry
self._step_operator = step_operator
self._feature_store = feature_store
self._model_deployer = model_deployer
self._experiment_tracker = experiment_tracker
self._alerter = alerter
self._annotator = annotator
self._data_validator = data_validator
self._model_registry = model_registry
self._image_builder = image_builder
@classmethod
def from_model(cls, stack_model: "StackResponse") -> "Stack":
"""Creates a Stack instance from a StackModel.
Args:
stack_model: The StackModel to create the Stack from.
Returns:
The created Stack instance.
"""
global _STACK_CACHE
key = (stack_model.id, stack_model.updated)
if key in _STACK_CACHE:
return _STACK_CACHE[key]
from zenml.stack import StackComponent
# Run a hydrated list call once to avoid one request per component
component_models = pagination_utils.depaginate(
list_method=functools.partial(
Client().list_stack_components,
stack_id=stack_model.id,
hydrate=True,
)
)
stack_components = {
model.type: StackComponent.from_model(model)
for model in component_models
}
stack = Stack.from_components(
id=stack_model.id,
name=stack_model.name,
components=stack_components,
)
_STACK_CACHE[key] = stack
client = Client()
if stack_model.id == client.active_stack_model.id:
if stack_model.updated > client.active_stack_model.updated:
if client._config:
client._config.set_active_stack(stack_model)
else:
GlobalConfiguration().set_active_stack(stack_model)
return stack
@classmethod
def from_components(
cls,
id: UUID,
name: str,
components: Dict[StackComponentType, "StackComponent"],
) -> "Stack":
"""Creates a stack instance from a dict of stack components.
# noqa: DAR402
Args:
id: Unique ID of the stack.
name: The name of the stack.
components: The components of the stack.
Returns:
A stack instance consisting of the given components.
Raises:
TypeError: If a required component is missing or a component
doesn't inherit from the expected base class.
"""
from zenml.alerter import BaseAlerter
from zenml.annotators import BaseAnnotator
from zenml.artifact_stores import BaseArtifactStore
from zenml.container_registries import BaseContainerRegistry
from zenml.data_validators import BaseDataValidator
from zenml.experiment_trackers import BaseExperimentTracker
from zenml.feature_stores import BaseFeatureStore
from zenml.image_builders import BaseImageBuilder
from zenml.model_deployers import BaseModelDeployer
from zenml.model_registries import BaseModelRegistry
from zenml.orchestrators import BaseOrchestrator
from zenml.step_operators import BaseStepOperator
def _raise_type_error(
component: Optional["StackComponent"], expected_class: Type[Any]
) -> NoReturn:
"""Raises a TypeError that the component has an unexpected type.
Args:
component: The component that has an unexpected type.
expected_class: The expected type of the component.
Raises:
TypeError: If the component has an unexpected type.
"""
raise TypeError(
f"Unable to create stack: Wrong stack component type "
f"`{component.__class__.__name__}` (expected: subclass "
f"of `{expected_class.__name__}`)"
)
orchestrator = components.get(StackComponentType.ORCHESTRATOR)
if not isinstance(orchestrator, BaseOrchestrator):
_raise_type_error(orchestrator, BaseOrchestrator)
artifact_store = components.get(StackComponentType.ARTIFACT_STORE)
if not isinstance(artifact_store, BaseArtifactStore):
_raise_type_error(artifact_store, BaseArtifactStore)
container_registry = components.get(
StackComponentType.CONTAINER_REGISTRY
)
if container_registry is not None and not isinstance(
container_registry, BaseContainerRegistry
):
_raise_type_error(container_registry, BaseContainerRegistry)
step_operator = components.get(StackComponentType.STEP_OPERATOR)
if step_operator is not None and not isinstance(
step_operator, BaseStepOperator
):
_raise_type_error(step_operator, BaseStepOperator)
feature_store = components.get(StackComponentType.FEATURE_STORE)
if feature_store is not None and not isinstance(
feature_store, BaseFeatureStore
):
_raise_type_error(feature_store, BaseFeatureStore)
model_deployer = components.get(StackComponentType.MODEL_DEPLOYER)
if model_deployer is not None and not isinstance(
model_deployer, BaseModelDeployer
):
_raise_type_error(model_deployer, BaseModelDeployer)
experiment_tracker = components.get(
StackComponentType.EXPERIMENT_TRACKER
)
if experiment_tracker is not None and not isinstance(
experiment_tracker, BaseExperimentTracker
):
_raise_type_error(experiment_tracker, BaseExperimentTracker)
alerter = components.get(StackComponentType.ALERTER)
if alerter is not None and not isinstance(alerter, BaseAlerter):
_raise_type_error(alerter, BaseAlerter)
annotator = components.get(StackComponentType.ANNOTATOR)
if annotator is not None and not isinstance(annotator, BaseAnnotator):
_raise_type_error(annotator, BaseAnnotator)
data_validator = components.get(StackComponentType.DATA_VALIDATOR)
if data_validator is not None and not isinstance(
data_validator, BaseDataValidator
):
_raise_type_error(data_validator, BaseDataValidator)
image_builder = components.get(StackComponentType.IMAGE_BUILDER)
if image_builder is not None and not isinstance(
image_builder, BaseImageBuilder
):
_raise_type_error(image_builder, BaseImageBuilder)
model_registry = components.get(StackComponentType.MODEL_REGISTRY)
if model_registry is not None and not isinstance(
model_registry, BaseModelRegistry
):
_raise_type_error(model_registry, BaseModelRegistry)
return Stack(
id=id,
name=name,
orchestrator=orchestrator,
artifact_store=artifact_store,
container_registry=container_registry,
step_operator=step_operator,
feature_store=feature_store,
model_deployer=model_deployer,
experiment_tracker=experiment_tracker,
alerter=alerter,
annotator=annotator,
data_validator=data_validator,
image_builder=image_builder,
model_registry=model_registry,
)
@property
def components(self) -> Dict[StackComponentType, "StackComponent"]:
"""All components of the stack.
Returns:
A dictionary of all components of the stack.
"""
return {
component.type: component
for component in [
self.orchestrator,
self.artifact_store,
self.container_registry,
self.step_operator,
self.feature_store,
self.model_deployer,
self.experiment_tracker,
self.alerter,
self.annotator,
self.data_validator,
self.image_builder,
self.model_registry,
]
if component is not None
}
@property
def id(self) -> UUID:
"""The ID of the stack.
Returns:
The ID of the stack.
"""
return self._id
@property
def name(self) -> str:
"""The name of the stack.
Returns:
str: The name of the stack.
"""
return self._name
@property
def orchestrator(self) -> "BaseOrchestrator":
"""The orchestrator of the stack.
Returns:
The orchestrator of the stack.
"""
return self._orchestrator
@property
def artifact_store(self) -> "BaseArtifactStore":
"""The artifact store of the stack.
Returns:
The artifact store of the stack.
"""
return self._artifact_store
@property
def container_registry(self) -> Optional["BaseContainerRegistry"]:
"""The container registry of the stack.
Returns:
The container registry of the stack or None if the stack does not
have a container registry.
"""
return self._container_registry
@property
def step_operator(self) -> Optional["BaseStepOperator"]:
"""The step operator of the stack.
Returns:
The step operator of the stack.
"""
return self._step_operator
@property
def feature_store(self) -> Optional["BaseFeatureStore"]:
"""The feature store of the stack.
Returns:
The feature store of the stack.
"""
return self._feature_store
@property
def model_deployer(self) -> Optional["BaseModelDeployer"]:
"""The model deployer of the stack.
Returns:
The model deployer of the stack.
"""
return self._model_deployer
@property
def experiment_tracker(self) -> Optional["BaseExperimentTracker"]:
"""The experiment tracker of the stack.
Returns:
The experiment tracker of the stack.
"""
return self._experiment_tracker
@property
def alerter(self) -> Optional["BaseAlerter"]:
"""The alerter of the stack.
Returns:
The alerter of the stack.
"""
return self._alerter
@property
def annotator(self) -> Optional["BaseAnnotator"]:
"""The annotator of the stack.
Returns:
The annotator of the stack.
"""
return self._annotator
@property
def data_validator(self) -> Optional["BaseDataValidator"]:
"""The data validator of the stack.
Returns:
The data validator of the stack.
"""
return self._data_validator
@property
def image_builder(self) -> Optional["BaseImageBuilder"]:
"""The image builder of the stack.
Returns:
The image builder of the stack.
"""
return self._image_builder
@property
def model_registry(self) -> Optional["BaseModelRegistry"]:
"""The model registry of the stack.
Returns:
The model registry of the stack.
"""
return self._model_registry
def dict(self) -> Dict[str, str]:
"""Converts the stack into a dictionary.
Returns:
A dictionary containing the stack components.
"""
component_dict = {
component_type.value: json.dumps(
component.config.model_dump(mode="json"), sort_keys=True
)
for component_type, component in self.components.items()
}
component_dict.update({"name": self.name})
return component_dict
def requirements(
self,
exclude_components: Optional[AbstractSet[StackComponentType]] = None,
) -> Set[str]:
"""Set of PyPI requirements for the stack.
This method combines the requirements of all stack components (except
the ones specified in `exclude_components`).
Args:
exclude_components: Set of component types for which the
requirements should not be included in the output.
Returns:
Set of PyPI requirements.
"""
exclude_components = exclude_components or set()
requirements = [
component.requirements
for component in self.components.values()
if component.type not in exclude_components
]
return set.union(*requirements) if requirements else set()
@property
def apt_packages(self) -> List[str]:
"""List of APT package requirements for the stack.
Returns:
A list of APT package requirements for the stack.
"""
return [
package
for component in self.components.values()
for package in component.apt_packages
]
def check_local_paths(self) -> bool:
"""Checks if the stack has local paths.
Returns:
True if the stack has local paths, False otherwise.
Raises:
ValueError: If the stack has local paths that do not conform to
the convention that all local path must be relative to the
local stores directory.
"""
from zenml.config.global_config import GlobalConfiguration
local_stores_path = GlobalConfiguration().local_stores_path
# go through all stack components and identify those that advertise
# a local path where they persist information that they need to be
# available when running pipelines.
has_local_paths = False
for stack_comp in self.components.values():
local_path = stack_comp.local_path
if not local_path:
continue
# double-check this convention, just in case it wasn't respected
# as documented in `StackComponent.local_path`
if not local_path.startswith(local_stores_path):
raise ValueError(
f"Local path {local_path} for component "
f"{stack_comp.name} is not in the local stores "
f"directory ({local_stores_path})."
)
has_local_paths = True
return has_local_paths
@property
def required_secrets(self) -> Set["secret_utils.SecretReference"]:
"""All required secrets for this stack.
Returns:
The required secrets of this stack.
"""
secrets = [
component.config.required_secrets
for component in self.components.values()
]
return set.union(*secrets) if secrets else set()
@property
def setting_classes(self) -> Dict[str, Type["BaseSettings"]]:
"""Setting classes of all components of this stack.
Returns:
All setting classes and their respective keys.
"""
setting_classes = {}
for component in self.components.values():
if component.settings_class:
key = settings_utils.get_stack_component_setting_key(component)
setting_classes[key] = component.settings_class
return setting_classes
@property
def requires_remote_server(self) -> bool:
"""If the stack requires a remote ZenServer to run.
This is the case if any code is getting executed remotely. This is the
case for both remote orchestrators as well as remote step operators.
Returns:
If the stack requires a remote ZenServer to run.
"""
return self.orchestrator.config.is_remote or (
self.step_operator is not None
and self.step_operator.config.is_remote
)
def _validate_secrets(self, raise_exception: bool) -> None:
"""Validates that all secrets of the stack exists.
Args:
raise_exception: If `True`, raises an exception if a secret is
missing. Otherwise a warning is logged.
# noqa: DAR402
Raises:
StackValidationError: If a secret is missing.
"""
env_value = os.getenv(
ENV_ZENML_SECRET_VALIDATION_LEVEL,
default=SecretValidationLevel.SECRET_AND_KEY_EXISTS.value,
)
secret_validation_level = SecretValidationLevel(env_value)
required_secrets = self.required_secrets
if (
secret_validation_level != SecretValidationLevel.NONE
and required_secrets
):
def _handle_error(message: str) -> None:
"""Handles the error by raising an exception or logging.
Args:
message: The error message.
Raises:
StackValidationError: If called and `raise_exception` of
the outer method is `True`.
"""
if raise_exception:
raise StackValidationError(message)
else:
message += (
"\nYou need to solve this issue before running "
"a pipeline on this stack."
)
logger.warning(message)
client = Client()
# Attempt to resolve secrets through the secrets store
for secret_ref in required_secrets.copy():
try:
secret = client.get_secret(secret_ref.name)
if (
secret_validation_level
== SecretValidationLevel.SECRET_AND_KEY_EXISTS
):
_ = secret.values[secret_ref.key]
except (KeyError, NotImplementedError):
pass
else:
# Drop this secret from the list of required secrets
required_secrets.remove(secret_ref)
if not required_secrets:
return
secrets_msg = ", ".join(
[
f"{secret_ref.name}.{secret_ref.key}"
for secret_ref in required_secrets
]
)
_handle_error(
f"Some components in the `{self.name}` stack reference secrets "
f"or secret keys that do not exist in the secret store: "
f"{secrets_msg}.\nTo register the "
"missing secrets for this stack, run `zenml stack "
f"register-secrets {self.name}`\nIf you want to "
"adjust the degree to which ZenML validates the existence "
"of secrets in your stack, you can do so by setting the "
f"environment variable {ENV_ZENML_SECRET_VALIDATION_LEVEL} "
"to one of the following values: "
f"{SecretValidationLevel.values()}."
)
def validate(
self,
fail_if_secrets_missing: bool = False,
) -> None:
"""Checks whether the stack configuration is valid.
To check if a stack configuration is valid, the following criteria must
be met:
- the stack must have an image builder if other components require it
- the `StackValidator` of each stack component has to validate the
stack to make sure all the components are compatible with each other
- the required secrets of all components need to exist
Args:
fail_if_secrets_missing: If this is `True`, an error will be raised
if a secret for a component is missing. Otherwise, only a
warning will be logged.
"""
self.validate_image_builder()
for component in self.components.values():
if component.validator:
component.validator.validate(stack=self)
self._validate_secrets(raise_exception=fail_if_secrets_missing)
def validate_image_builder(self) -> None:
"""Validates that the stack has an image builder if required.
If the stack requires an image builder, but none is specified, a
local image builder will be created and assigned to the stack to
ensure backwards compatibility.
"""
requires_image_builder = (
self.orchestrator.flavor != "local"
or self.step_operator
or (self.model_deployer and self.model_deployer.flavor != "mlflow")
)
skip_default_image_builder = handle_bool_env_var(
ENV_ZENML_SKIP_IMAGE_BUILDER_DEFAULT, default=False
)
if (
requires_image_builder
and not skip_default_image_builder
and not self.image_builder
):
from datetime import datetime
from uuid import uuid4
from zenml.image_builders import (
LocalImageBuilder,
LocalImageBuilderConfig,
LocalImageBuilderFlavor,
)
flavor = LocalImageBuilderFlavor()
image_builder = LocalImageBuilder(
id=uuid4(),
name="temporary_default",
flavor=flavor.name,
type=flavor.type,
config=LocalImageBuilderConfig(),
user=Client().active_user.id,
workspace=Client().active_workspace.id,
created=datetime.utcnow(),
updated=datetime.utcnow(),
)
logger.warning(
"The stack `%s` contains components that require building "
"Docker images. Older versions of ZenML always built these "
"images locally, but since version 0.32.0 this behavior can be "
"configured using the `image_builder` stack component. This "
"stack will temporarily default to a local image builder that "
"mirrors the previous behavior, but this will be removed in "
"future versions of ZenML. Please add an image builder to this "
"stack:\n"
"`zenml image-builder register <NAME> ...\n"
"zenml stack update %s -i <NAME>`",
self.name,
self.id,
)
self._image_builder = image_builder
def prepare_pipeline_deployment(
self, deployment: "PipelineDeploymentResponse"
) -> None:
"""Prepares the stack for a pipeline deployment.
This method is called before a pipeline is deployed.
Args:
deployment: The pipeline deployment
Raises:
StackValidationError: If the stack component is not running.
RuntimeError: If trying to deploy a pipeline that requires a remote
ZenML server with a local one.
"""
self.validate(fail_if_secrets_missing=True)
for component in self.components.values():
if not component.is_running:
raise StackValidationError(
f"The '{component.name}' {component.type} stack component "
f"is not currently running. Please run the following "
f"command to provision and start the component:\n\n"
f" `zenml stack up`\n"
f"It is worth noting that the provision command will "
f" be deprecated in the future. ZenML will no longer "
f"be responsible for provisioning infrastructure, "
f"or port-forwarding directly. Instead of managing "
f"the state of the components, ZenML will be utilizing "
f"the already running stack or stack components directly. "
f"Additionally, we are also providing a variety of "
f" deployment recipes for popular Kubernetes-based "
f"integrations such as Kubeflow, Tekton, and Seldon etc."
f"Check out https://docs.zenml.io/how-to/stack-deployment/deploy-a-stack-using-mlstacks"
f"for more information."
)
if self.requires_remote_server and Client().zen_store.is_local_store():
raise RuntimeError(
"Stacks with remote components such as remote orchestrators "
"and step operators require a remote "
"ZenML server. To run a pipeline with this stack you need to "
"connect to a remote ZenML server first. Check out "
"https://docs.zenml.io/getting-started/deploying-zenml "
"for more information on how to deploy ZenML."
)
for component in self.components.values():
component.prepare_pipeline_deployment(
deployment=deployment, stack=self
)
def get_docker_builds(
self, deployment: "PipelineDeploymentBase"
) -> List["BuildConfiguration"]:
"""Gets the Docker builds required for the stack.
Args:
deployment: The pipeline deployment for which to get the builds.
Returns:
The required Docker builds.
"""
return list(
itertools.chain.from_iterable(
component.get_docker_builds(deployment=deployment)
for component in self.components.values()
)
)
def deploy_pipeline(
self,
deployment: "PipelineDeploymentResponse",
) -> Any:
"""Deploys a pipeline on this stack.
Args:
deployment: The pipeline deployment.
Returns:
The return value of the call to `orchestrator.run_pipeline(...)`.
"""
return self.orchestrator.run(deployment=deployment, stack=self)
def _get_active_components_for_step(
self, step_config: "StepConfiguration"
) -> Dict[StackComponentType, "StackComponent"]:
"""Gets all the active stack components for a stack.
Args:
step_config: Configuration of the step for which to get the active
components.
Returns:
Dictionary of active stack components.
"""
def _is_active(component: "StackComponent") -> bool:
"""Checks whether a stack component is actively used in the step.
Args:
component: The component to check.
Returns:
If the component is used in this step.
"""
if component.type == StackComponentType.STEP_OPERATOR:
return component.name == step_config.step_operator
if component.type == StackComponentType.EXPERIMENT_TRACKER:
return component.name == step_config.experiment_tracker
return True
return {
component_type: component
for component_type, component in self.components.items()
if _is_active(component)
}
def prepare_step_run(self, info: "StepRunInfo") -> None:
"""Prepares running a step.
Args:
info: Info about the step that will be executed.
"""
for component in self._get_active_components_for_step(
info.config
).values():
component.prepare_step_run(info=info)
def get_pipeline_run_metadata(
self, run_id: UUID
) -> Dict[UUID, Dict[str, MetadataType]]:
"""Get general component-specific metadata for a pipeline run.
Args:
run_id: ID of the pipeline run.
Returns:
A dictionary mapping component IDs to the metadata they created.
"""
pipeline_run_metadata: Dict[UUID, Dict[str, MetadataType]] = {}
for component in self.components.values():
try:
component_metadata = component.get_pipeline_run_metadata(
run_id=run_id
)
if component_metadata:
pipeline_run_metadata[component.id] = component_metadata
except Exception as e:
logger.warning(
f"Extracting pipeline run metadata failed for component "
f"'{component.name}' of type '{component.type}': {e}"
)
return pipeline_run_metadata
def get_step_run_metadata(
self, info: "StepRunInfo"
) -> Dict[UUID, Dict[str, MetadataType]]:
"""Get component-specific metadata for a step run.
Args:
info: Info about the step that was executed.
Returns:
A dictionary mapping component IDs to the metadata they created.
"""
step_run_metadata: Dict[UUID, Dict[str, MetadataType]] = {}
for component in self._get_active_components_for_step(
info.config
).values():
try:
component_metadata = component.get_step_run_metadata(info=info)
if component_metadata:
step_run_metadata[component.id] = component_metadata
except Exception as e:
logger.warning(
f"Extracting step run metadata failed for component "
f"'{component.name}' of type '{component.type}': {e}"
)
return step_run_metadata
def cleanup_step_run(self, info: "StepRunInfo", step_failed: bool) -> None:
"""Cleans up resources after the step run is finished.
Args:
info: Info about the step that was executed.
step_failed: Whether the step failed.
"""
for component in self._get_active_components_for_step(
info.config
).values():
component.cleanup_step_run(info=info, step_failed=step_failed)
@property
def is_provisioned(self) -> bool:
"""If the stack provisioned resources to run locally.
Returns:
True if the stack provisioned resources to run locally.
"""
return all(
component.is_provisioned for component in self.components.values()
)
@property
def is_running(self) -> bool:
"""If the stack is running locally.
Returns:
True if the stack is running locally, False otherwise.
"""
return all(
component.is_running for component in self.components.values()
)
def provision(self) -> None:
"""Provisions resources to run the stack locally."""
self.validate(fail_if_secrets_missing=True)
logger.info("Provisioning resources for stack '%s'.", self.name)
for component in self.components.values():
if not component.is_provisioned:
component.provision()
logger.info("Provisioned resources for %s.", component)
def deprovision(self) -> None:
"""Deprovisions all local resources of the stack."""
logger.info("Deprovisioning resources for stack '%s'.", self.name)
for component in self.components.values():
if component.is_provisioned:
try:
component.deprovision()
logger.info("Deprovisioned resources for %s.", component)
except NotImplementedError as e:
logger.warning(e)
def resume(self) -> None:
"""Resumes the provisioned local resources of the stack.
Raises:
ProvisioningError: If any stack component is missing provisioned
resources.
"""
logger.info("Resuming provisioned resources for stack %s.", self.name)
for component in self.components.values():
if component.is_running:
# the component is already running, no need to resume anything
pass
elif component.is_provisioned:
component.resume()
logger.info("Resumed resources for %s.", component)
else:
raise ProvisioningError(
f"Unable to resume resources for {component}: No "
f"resources have been provisioned for this component."
)
def suspend(self) -> None:
"""Suspends the provisioned local resources of the stack."""
logger.info(
"Suspending provisioned resources for stack '%s'.", self.name
)
for component in self.components.values():
if not component.is_suspended:
try:
component.suspend()
logger.info("Suspended resources for %s.", component)
except NotImplementedError:
logger.warning(
"Suspending provisioned resources not implemented "
"for %s. Continuing without suspending resources...",
component,
)
alerter: Optional[BaseAlerter]
property
readonly
The alerter of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseAlerter] |
The alerter of the stack. |
annotator: Optional[BaseAnnotator]
property
readonly
The annotator of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseAnnotator] |
The annotator of the stack. |
apt_packages: List[str]
property
readonly
List of APT package requirements for the stack.
Returns:
Type | Description |
---|---|
List[str] |
A list of APT package requirements for the stack. |
artifact_store: BaseArtifactStore
property
readonly
The artifact store of the stack.
Returns:
Type | Description |
---|---|
BaseArtifactStore |
The artifact store of the stack. |
components: Dict[zenml.enums.StackComponentType, StackComponent]
property
readonly
All components of the stack.
Returns:
Type | Description |
---|---|
Dict[zenml.enums.StackComponentType, StackComponent] |
A dictionary of all components of the stack. |
container_registry: Optional[BaseContainerRegistry]
property
readonly
The container registry of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseContainerRegistry] |
The container registry of the stack or None if the stack does not have a container registry. |
data_validator: Optional[BaseDataValidator]
property
readonly
The data validator of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseDataValidator] |
The data validator of the stack. |
experiment_tracker: Optional[BaseExperimentTracker]
property
readonly
The experiment tracker of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseExperimentTracker] |
The experiment tracker of the stack. |
feature_store: Optional[BaseFeatureStore]
property
readonly
The feature store of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseFeatureStore] |
The feature store of the stack. |
id: UUID
property
readonly
The ID of the stack.
Returns:
Type | Description |
---|---|
UUID |
The ID of the stack. |
image_builder: Optional[BaseImageBuilder]
property
readonly
The image builder of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseImageBuilder] |
The image builder of the stack. |
is_provisioned: bool
property
readonly
If the stack provisioned resources to run locally.
Returns:
Type | Description |
---|---|
bool |
True if the stack provisioned resources to run locally. |
is_running: bool
property
readonly
If the stack is running locally.
Returns:
Type | Description |
---|---|
bool |
True if the stack is running locally, False otherwise. |
model_deployer: Optional[BaseModelDeployer]
property
readonly
The model deployer of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseModelDeployer] |
The model deployer of the stack. |
model_registry: Optional[BaseModelRegistry]
property
readonly
The model registry of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseModelRegistry] |
The model registry of the stack. |
name: str
property
readonly
The name of the stack.
Returns:
Type | Description |
---|---|
str |
The name of the stack. |
orchestrator: BaseOrchestrator
property
readonly
The orchestrator of the stack.
Returns:
Type | Description |
---|---|
BaseOrchestrator |
The orchestrator of the stack. |
required_secrets: Set[secret_utils.SecretReference]
property
readonly
All required secrets for this stack.
Returns:
Type | Description |
---|---|
Set[secret_utils.SecretReference] |
The required secrets of this stack. |
requires_remote_server: bool
property
readonly
If the stack requires a remote ZenServer to run.
This is the case if any code is getting executed remotely. This is the case for both remote orchestrators as well as remote step operators.
Returns:
Type | Description |
---|---|
bool |
If the stack requires a remote ZenServer to run. |
setting_classes: Dict[str, Type[BaseSettings]]
property
readonly
Setting classes of all components of this stack.
Returns:
Type | Description |
---|---|
Dict[str, Type[BaseSettings]] |
All setting classes and their respective keys. |
step_operator: Optional[BaseStepOperator]
property
readonly
The step operator of the stack.
Returns:
Type | Description |
---|---|
Optional[BaseStepOperator] |
The step operator of the stack. |
__init__(self, id, name, *, orchestrator, artifact_store, container_registry=None, step_operator=None, feature_store=None, model_deployer=None, experiment_tracker=None, alerter=None, annotator=None, data_validator=None, image_builder=None, model_registry=None)
special
Initializes and validates a stack instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
id |
UUID |
Unique ID of the stack. |
required |
name |
str |
Name of the stack. |
required |
orchestrator |
BaseOrchestrator |
Orchestrator component of the stack. |
required |
artifact_store |
BaseArtifactStore |
Artifact store component of the stack. |
required |
container_registry |
Optional[BaseContainerRegistry] |
Container registry component of the stack. |
None |
step_operator |
Optional[BaseStepOperator] |
Step operator component of the stack. |
None |
feature_store |
Optional[BaseFeatureStore] |
Feature store component of the stack. |
None |
model_deployer |
Optional[BaseModelDeployer] |
Model deployer component of the stack. |
None |
experiment_tracker |
Optional[BaseExperimentTracker] |
Experiment tracker component of the stack. |
None |
alerter |
Optional[BaseAlerter] |
Alerter component of the stack. |
None |
annotator |
Optional[BaseAnnotator] |
Annotator component of the stack. |
None |
data_validator |
Optional[BaseDataValidator] |
Data validator component of the stack. |
None |
image_builder |
Optional[BaseImageBuilder] |
Image builder component of the stack. |
None |
model_registry |
Optional[BaseModelRegistry] |
Model registry component of the stack. |
None |
Source code in zenml/stack/stack.py
def __init__(
self,
id: UUID,
name: str,
*,
orchestrator: "BaseOrchestrator",
artifact_store: "BaseArtifactStore",
container_registry: Optional["BaseContainerRegistry"] = None,
step_operator: Optional["BaseStepOperator"] = None,
feature_store: Optional["BaseFeatureStore"] = None,
model_deployer: Optional["BaseModelDeployer"] = None,
experiment_tracker: Optional["BaseExperimentTracker"] = None,
alerter: Optional["BaseAlerter"] = None,
annotator: Optional["BaseAnnotator"] = None,
data_validator: Optional["BaseDataValidator"] = None,
image_builder: Optional["BaseImageBuilder"] = None,
model_registry: Optional["BaseModelRegistry"] = None,
):
"""Initializes and validates a stack instance.
Args:
id: Unique ID of the stack.
name: Name of the stack.
orchestrator: Orchestrator component of the stack.
artifact_store: Artifact store component of the stack.
container_registry: Container registry component of the stack.
step_operator: Step operator component of the stack.
feature_store: Feature store component of the stack.
model_deployer: Model deployer component of the stack.
experiment_tracker: Experiment tracker component of the stack.
alerter: Alerter component of the stack.
annotator: Annotator component of the stack.
data_validator: Data validator component of the stack.
image_builder: Image builder component of the stack.
model_registry: Model registry component of the stack.
"""
self._id = id
self._name = name
self._orchestrator = orchestrator
self._artifact_store = artifact_store
self._container_registry = container_registry
self._step_operator = step_operator
self._feature_store = feature_store
self._model_deployer = model_deployer
self._experiment_tracker = experiment_tracker
self._alerter = alerter
self._annotator = annotator
self._data_validator = data_validator
self._model_registry = model_registry
self._image_builder = image_builder
check_local_paths(self)
Checks if the stack has local paths.
Returns:
Type | Description |
---|---|
bool |
True if the stack has local paths, False otherwise. |
Exceptions:
Type | Description |
---|---|
ValueError |
If the stack has local paths that do not conform to the convention that all local path must be relative to the local stores directory. |
Source code in zenml/stack/stack.py
def check_local_paths(self) -> bool:
"""Checks if the stack has local paths.
Returns:
True if the stack has local paths, False otherwise.
Raises:
ValueError: If the stack has local paths that do not conform to
the convention that all local path must be relative to the
local stores directory.
"""
from zenml.config.global_config import GlobalConfiguration
local_stores_path = GlobalConfiguration().local_stores_path
# go through all stack components and identify those that advertise
# a local path where they persist information that they need to be
# available when running pipelines.
has_local_paths = False
for stack_comp in self.components.values():
local_path = stack_comp.local_path
if not local_path:
continue
# double-check this convention, just in case it wasn't respected
# as documented in `StackComponent.local_path`
if not local_path.startswith(local_stores_path):
raise ValueError(
f"Local path {local_path} for component "
f"{stack_comp.name} is not in the local stores "
f"directory ({local_stores_path})."
)
has_local_paths = True
return has_local_paths
cleanup_step_run(self, info, step_failed)
Cleans up resources after the step run is finished.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
info |
StepRunInfo |
Info about the step that was executed. |
required |
step_failed |
bool |
Whether the step failed. |
required |
Source code in zenml/stack/stack.py
def cleanup_step_run(self, info: "StepRunInfo", step_failed: bool) -> None:
"""Cleans up resources after the step run is finished.
Args:
info: Info about the step that was executed.
step_failed: Whether the step failed.
"""
for component in self._get_active_components_for_step(
info.config
).values():
component.cleanup_step_run(info=info, step_failed=step_failed)
deploy_pipeline(self, deployment)
Deploys a pipeline on this stack.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment |
PipelineDeploymentResponse |
The pipeline deployment. |
required |
Returns:
Type | Description |
---|---|
Any |
The return value of the call to |
Source code in zenml/stack/stack.py
def deploy_pipeline(
self,
deployment: "PipelineDeploymentResponse",
) -> Any:
"""Deploys a pipeline on this stack.
Args:
deployment: The pipeline deployment.
Returns:
The return value of the call to `orchestrator.run_pipeline(...)`.
"""
return self.orchestrator.run(deployment=deployment, stack=self)
deprovision(self)
Deprovisions all local resources of the stack.
Source code in zenml/stack/stack.py
def deprovision(self) -> None:
"""Deprovisions all local resources of the stack."""
logger.info("Deprovisioning resources for stack '%s'.", self.name)
for component in self.components.values():
if component.is_provisioned:
try:
component.deprovision()
logger.info("Deprovisioned resources for %s.", component)
except NotImplementedError as e:
logger.warning(e)
dict(self)
Converts the stack into a dictionary.
Returns:
Type | Description |
---|---|
Dict[str, str] |
A dictionary containing the stack components. |
Source code in zenml/stack/stack.py
def dict(self) -> Dict[str, str]:
"""Converts the stack into a dictionary.
Returns:
A dictionary containing the stack components.
"""
component_dict = {
component_type.value: json.dumps(
component.config.model_dump(mode="json"), sort_keys=True
)
for component_type, component in self.components.items()
}
component_dict.update({"name": self.name})
return component_dict
from_components(id, name, components)
classmethod
Creates a stack instance from a dict of stack components.
noqa: DAR402
Parameters:
Name | Type | Description | Default |
---|---|---|---|
id |
UUID |
Unique ID of the stack. |
required |
name |
str |
The name of the stack. |
required |
components |
Dict[zenml.enums.StackComponentType, StackComponent] |
The components of the stack. |
required |
Returns:
Type | Description |
---|---|
Stack |
A stack instance consisting of the given components. |
Exceptions:
Type | Description |
---|---|
TypeError |
If a required component is missing or a component doesn't inherit from the expected base class. |
Source code in zenml/stack/stack.py
@classmethod
def from_components(
cls,
id: UUID,
name: str,
components: Dict[StackComponentType, "StackComponent"],
) -> "Stack":
"""Creates a stack instance from a dict of stack components.
# noqa: DAR402
Args:
id: Unique ID of the stack.
name: The name of the stack.
components: The components of the stack.
Returns:
A stack instance consisting of the given components.
Raises:
TypeError: If a required component is missing or a component
doesn't inherit from the expected base class.
"""
from zenml.alerter import BaseAlerter
from zenml.annotators import BaseAnnotator
from zenml.artifact_stores import BaseArtifactStore
from zenml.container_registries import BaseContainerRegistry
from zenml.data_validators import BaseDataValidator
from zenml.experiment_trackers import BaseExperimentTracker
from zenml.feature_stores import BaseFeatureStore
from zenml.image_builders import BaseImageBuilder
from zenml.model_deployers import BaseModelDeployer
from zenml.model_registries import BaseModelRegistry
from zenml.orchestrators import BaseOrchestrator
from zenml.step_operators import BaseStepOperator
def _raise_type_error(
component: Optional["StackComponent"], expected_class: Type[Any]
) -> NoReturn:
"""Raises a TypeError that the component has an unexpected type.
Args:
component: The component that has an unexpected type.
expected_class: The expected type of the component.
Raises:
TypeError: If the component has an unexpected type.
"""
raise TypeError(
f"Unable to create stack: Wrong stack component type "
f"`{component.__class__.__name__}` (expected: subclass "
f"of `{expected_class.__name__}`)"
)
orchestrator = components.get(StackComponentType.ORCHESTRATOR)
if not isinstance(orchestrator, BaseOrchestrator):
_raise_type_error(orchestrator, BaseOrchestrator)
artifact_store = components.get(StackComponentType.ARTIFACT_STORE)
if not isinstance(artifact_store, BaseArtifactStore):
_raise_type_error(artifact_store, BaseArtifactStore)
container_registry = components.get(
StackComponentType.CONTAINER_REGISTRY
)
if container_registry is not None and not isinstance(
container_registry, BaseContainerRegistry
):
_raise_type_error(container_registry, BaseContainerRegistry)
step_operator = components.get(StackComponentType.STEP_OPERATOR)
if step_operator is not None and not isinstance(
step_operator, BaseStepOperator
):
_raise_type_error(step_operator, BaseStepOperator)
feature_store = components.get(StackComponentType.FEATURE_STORE)
if feature_store is not None and not isinstance(
feature_store, BaseFeatureStore
):
_raise_type_error(feature_store, BaseFeatureStore)
model_deployer = components.get(StackComponentType.MODEL_DEPLOYER)
if model_deployer is not None and not isinstance(
model_deployer, BaseModelDeployer
):
_raise_type_error(model_deployer, BaseModelDeployer)
experiment_tracker = components.get(
StackComponentType.EXPERIMENT_TRACKER
)
if experiment_tracker is not None and not isinstance(
experiment_tracker, BaseExperimentTracker
):
_raise_type_error(experiment_tracker, BaseExperimentTracker)
alerter = components.get(StackComponentType.ALERTER)
if alerter is not None and not isinstance(alerter, BaseAlerter):
_raise_type_error(alerter, BaseAlerter)
annotator = components.get(StackComponentType.ANNOTATOR)
if annotator is not None and not isinstance(annotator, BaseAnnotator):
_raise_type_error(annotator, BaseAnnotator)
data_validator = components.get(StackComponentType.DATA_VALIDATOR)
if data_validator is not None and not isinstance(
data_validator, BaseDataValidator
):
_raise_type_error(data_validator, BaseDataValidator)
image_builder = components.get(StackComponentType.IMAGE_BUILDER)
if image_builder is not None and not isinstance(
image_builder, BaseImageBuilder
):
_raise_type_error(image_builder, BaseImageBuilder)
model_registry = components.get(StackComponentType.MODEL_REGISTRY)
if model_registry is not None and not isinstance(
model_registry, BaseModelRegistry
):
_raise_type_error(model_registry, BaseModelRegistry)
return Stack(
id=id,
name=name,
orchestrator=orchestrator,
artifact_store=artifact_store,
container_registry=container_registry,
step_operator=step_operator,
feature_store=feature_store,
model_deployer=model_deployer,
experiment_tracker=experiment_tracker,
alerter=alerter,
annotator=annotator,
data_validator=data_validator,
image_builder=image_builder,
model_registry=model_registry,
)
from_model(stack_model)
classmethod
Creates a Stack instance from a StackModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stack_model |
StackResponse |
The StackModel to create the Stack from. |
required |
Returns:
Type | Description |
---|---|
Stack |
The created Stack instance. |
Source code in zenml/stack/stack.py
@classmethod
def from_model(cls, stack_model: "StackResponse") -> "Stack":
"""Creates a Stack instance from a StackModel.
Args:
stack_model: The StackModel to create the Stack from.
Returns:
The created Stack instance.
"""
global _STACK_CACHE
key = (stack_model.id, stack_model.updated)
if key in _STACK_CACHE:
return _STACK_CACHE[key]
from zenml.stack import StackComponent
# Run a hydrated list call once to avoid one request per component
component_models = pagination_utils.depaginate(
list_method=functools.partial(
Client().list_stack_components,
stack_id=stack_model.id,
hydrate=True,
)
)
stack_components = {
model.type: StackComponent.from_model(model)
for model in component_models
}
stack = Stack.from_components(
id=stack_model.id,
name=stack_model.name,
components=stack_components,
)
_STACK_CACHE[key] = stack
client = Client()
if stack_model.id == client.active_stack_model.id:
if stack_model.updated > client.active_stack_model.updated:
if client._config:
client._config.set_active_stack(stack_model)
else:
GlobalConfiguration().set_active_stack(stack_model)
return stack
get_docker_builds(self, deployment)
Gets the Docker builds required for the stack.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment |
PipelineDeploymentBase |
The pipeline deployment for which to get the builds. |
required |
Returns:
Type | Description |
---|---|
List[BuildConfiguration] |
The required Docker builds. |
Source code in zenml/stack/stack.py
def get_docker_builds(
self, deployment: "PipelineDeploymentBase"
) -> List["BuildConfiguration"]:
"""Gets the Docker builds required for the stack.
Args:
deployment: The pipeline deployment for which to get the builds.
Returns:
The required Docker builds.
"""
return list(
itertools.chain.from_iterable(
component.get_docker_builds(deployment=deployment)
for component in self.components.values()
)
)
get_pipeline_run_metadata(self, run_id)
Get general component-specific metadata for a pipeline run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id |
UUID |
ID of the pipeline run. |
required |
Returns:
Type | Description |
---|---|
Dict[uuid.UUID, Dict[str, Union[str, int, float, bool, Dict[Any, Any], List[Any], Set[Any], Tuple[Any, ...], zenml.metadata.metadata_types.Uri, zenml.metadata.metadata_types.Path, zenml.metadata.metadata_types.DType, zenml.metadata.metadata_types.StorageSize]]] |
A dictionary mapping component IDs to the metadata they created. |
Source code in zenml/stack/stack.py
def get_pipeline_run_metadata(
self, run_id: UUID
) -> Dict[UUID, Dict[str, MetadataType]]:
"""Get general component-specific metadata for a pipeline run.
Args:
run_id: ID of the pipeline run.
Returns:
A dictionary mapping component IDs to the metadata they created.
"""
pipeline_run_metadata: Dict[UUID, Dict[str, MetadataType]] = {}
for component in self.components.values():
try:
component_metadata = component.get_pipeline_run_metadata(
run_id=run_id
)
if component_metadata:
pipeline_run_metadata[component.id] = component_metadata
except Exception as e:
logger.warning(
f"Extracting pipeline run metadata failed for component "
f"'{component.name}' of type '{component.type}': {e}"
)
return pipeline_run_metadata
get_step_run_metadata(self, info)
Get component-specific metadata for a step run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
info |
StepRunInfo |
Info about the step that was executed. |
required |
Returns:
Type | Description |
---|---|
Dict[uuid.UUID, Dict[str, Union[str, int, float, bool, Dict[Any, Any], List[Any], Set[Any], Tuple[Any, ...], zenml.metadata.metadata_types.Uri, zenml.metadata.metadata_types.Path, zenml.metadata.metadata_types.DType, zenml.metadata.metadata_types.StorageSize]]] |
A dictionary mapping component IDs to the metadata they created. |
Source code in zenml/stack/stack.py
def get_step_run_metadata(
self, info: "StepRunInfo"
) -> Dict[UUID, Dict[str, MetadataType]]:
"""Get component-specific metadata for a step run.
Args:
info: Info about the step that was executed.
Returns:
A dictionary mapping component IDs to the metadata they created.
"""
step_run_metadata: Dict[UUID, Dict[str, MetadataType]] = {}
for component in self._get_active_components_for_step(
info.config
).values():
try:
component_metadata = component.get_step_run_metadata(info=info)
if component_metadata:
step_run_metadata[component.id] = component_metadata
except Exception as e:
logger.warning(
f"Extracting step run metadata failed for component "
f"'{component.name}' of type '{component.type}': {e}"
)
return step_run_metadata
prepare_pipeline_deployment(self, deployment)
Prepares the stack for a pipeline deployment.
This method is called before a pipeline is deployed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment |
PipelineDeploymentResponse |
The pipeline deployment |
required |
Exceptions:
Type | Description |
---|---|
StackValidationError |
If the stack component is not running. |
RuntimeError |
If trying to deploy a pipeline that requires a remote ZenML server with a local one. |
Source code in zenml/stack/stack.py
def prepare_pipeline_deployment(
self, deployment: "PipelineDeploymentResponse"
) -> None:
"""Prepares the stack for a pipeline deployment.
This method is called before a pipeline is deployed.
Args:
deployment: The pipeline deployment
Raises:
StackValidationError: If the stack component is not running.
RuntimeError: If trying to deploy a pipeline that requires a remote
ZenML server with a local one.
"""
self.validate(fail_if_secrets_missing=True)
for component in self.components.values():
if not component.is_running:
raise StackValidationError(
f"The '{component.name}' {component.type} stack component "
f"is not currently running. Please run the following "
f"command to provision and start the component:\n\n"
f" `zenml stack up`\n"
f"It is worth noting that the provision command will "
f" be deprecated in the future. ZenML will no longer "
f"be responsible for provisioning infrastructure, "
f"or port-forwarding directly. Instead of managing "
f"the state of the components, ZenML will be utilizing "
f"the already running stack or stack components directly. "
f"Additionally, we are also providing a variety of "
f" deployment recipes for popular Kubernetes-based "
f"integrations such as Kubeflow, Tekton, and Seldon etc."
f"Check out https://docs.zenml.io/how-to/stack-deployment/deploy-a-stack-using-mlstacks"
f"for more information."
)
if self.requires_remote_server and Client().zen_store.is_local_store():
raise RuntimeError(
"Stacks with remote components such as remote orchestrators "
"and step operators require a remote "
"ZenML server. To run a pipeline with this stack you need to "
"connect to a remote ZenML server first. Check out "
"https://docs.zenml.io/getting-started/deploying-zenml "
"for more information on how to deploy ZenML."
)
for component in self.components.values():
component.prepare_pipeline_deployment(
deployment=deployment, stack=self
)
prepare_step_run(self, info)
Prepares running a step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
info |
StepRunInfo |
Info about the step that will be executed. |
required |
Source code in zenml/stack/stack.py
def prepare_step_run(self, info: "StepRunInfo") -> None:
"""Prepares running a step.
Args:
info: Info about the step that will be executed.
"""
for component in self._get_active_components_for_step(
info.config
).values():
component.prepare_step_run(info=info)
provision(self)
Provisions resources to run the stack locally.
Source code in zenml/stack/stack.py
def provision(self) -> None:
"""Provisions resources to run the stack locally."""
self.validate(fail_if_secrets_missing=True)
logger.info("Provisioning resources for stack '%s'.", self.name)
for component in self.components.values():
if not component.is_provisioned:
component.provision()
logger.info("Provisioned resources for %s.", component)
requirements(self, exclude_components=None)
Set of PyPI requirements for the stack.
This method combines the requirements of all stack components (except
the ones specified in exclude_components
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exclude_components |
Optional[AbstractSet[zenml.enums.StackComponentType]] |
Set of component types for which the requirements should not be included in the output. |
None |
Returns:
Type | Description |
---|---|
Set[str] |
Set of PyPI requirements. |
Source code in zenml/stack/stack.py
def requirements(
self,
exclude_components: Optional[AbstractSet[StackComponentType]] = None,
) -> Set[str]:
"""Set of PyPI requirements for the stack.
This method combines the requirements of all stack components (except
the ones specified in `exclude_components`).
Args:
exclude_components: Set of component types for which the
requirements should not be included in the output.
Returns:
Set of PyPI requirements.
"""
exclude_components = exclude_components or set()
requirements = [
component.requirements
for component in self.components.values()
if component.type not in exclude_components
]
return set.union(*requirements) if requirements else set()
resume(self)
Resumes the provisioned local resources of the stack.
Exceptions:
Type | Description |
---|---|
ProvisioningError |
If any stack component is missing provisioned resources. |
Source code in zenml/stack/stack.py
def resume(self) -> None:
"""Resumes the provisioned local resources of the stack.
Raises:
ProvisioningError: If any stack component is missing provisioned
resources.
"""
logger.info("Resuming provisioned resources for stack %s.", self.name)
for component in self.components.values():
if component.is_running:
# the component is already running, no need to resume anything
pass
elif component.is_provisioned:
component.resume()
logger.info("Resumed resources for %s.", component)
else:
raise ProvisioningError(
f"Unable to resume resources for {component}: No "
f"resources have been provisioned for this component."
)
suspend(self)
Suspends the provisioned local resources of the stack.
Source code in zenml/stack/stack.py
def suspend(self) -> None:
"""Suspends the provisioned local resources of the stack."""
logger.info(
"Suspending provisioned resources for stack '%s'.", self.name
)
for component in self.components.values():
if not component.is_suspended:
try:
component.suspend()
logger.info("Suspended resources for %s.", component)
except NotImplementedError:
logger.warning(
"Suspending provisioned resources not implemented "
"for %s. Continuing without suspending resources...",
component,
)
validate(self, fail_if_secrets_missing=False)
Checks whether the stack configuration is valid.
To check if a stack configuration is valid, the following criteria must
be met:
- the stack must have an image builder if other components require it
- the StackValidator
of each stack component has to validate the
stack to make sure all the components are compatible with each other
- the required secrets of all components need to exist
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fail_if_secrets_missing |
bool |
If this is |
False |
Source code in zenml/stack/stack.py
def validate(
self,
fail_if_secrets_missing: bool = False,
) -> None:
"""Checks whether the stack configuration is valid.
To check if a stack configuration is valid, the following criteria must
be met:
- the stack must have an image builder if other components require it
- the `StackValidator` of each stack component has to validate the
stack to make sure all the components are compatible with each other
- the required secrets of all components need to exist
Args:
fail_if_secrets_missing: If this is `True`, an error will be raised
if a secret for a component is missing. Otherwise, only a
warning will be logged.
"""
self.validate_image_builder()
for component in self.components.values():
if component.validator:
component.validator.validate(stack=self)
self._validate_secrets(raise_exception=fail_if_secrets_missing)
validate_image_builder(self)
Validates that the stack has an image builder if required.
If the stack requires an image builder, but none is specified, a local image builder will be created and assigned to the stack to ensure backwards compatibility.
Source code in zenml/stack/stack.py
def validate_image_builder(self) -> None:
"""Validates that the stack has an image builder if required.
If the stack requires an image builder, but none is specified, a
local image builder will be created and assigned to the stack to
ensure backwards compatibility.
"""
requires_image_builder = (
self.orchestrator.flavor != "local"
or self.step_operator
or (self.model_deployer and self.model_deployer.flavor != "mlflow")
)
skip_default_image_builder = handle_bool_env_var(
ENV_ZENML_SKIP_IMAGE_BUILDER_DEFAULT, default=False
)
if (
requires_image_builder
and not skip_default_image_builder
and not self.image_builder
):
from datetime import datetime
from uuid import uuid4
from zenml.image_builders import (
LocalImageBuilder,
LocalImageBuilderConfig,
LocalImageBuilderFlavor,
)
flavor = LocalImageBuilderFlavor()
image_builder = LocalImageBuilder(
id=uuid4(),
name="temporary_default",
flavor=flavor.name,
type=flavor.type,
config=LocalImageBuilderConfig(),
user=Client().active_user.id,
workspace=Client().active_workspace.id,
created=datetime.utcnow(),
updated=datetime.utcnow(),
)
logger.warning(
"The stack `%s` contains components that require building "
"Docker images. Older versions of ZenML always built these "
"images locally, but since version 0.32.0 this behavior can be "
"configured using the `image_builder` stack component. This "
"stack will temporarily default to a local image builder that "
"mirrors the previous behavior, but this will be removed in "
"future versions of ZenML. Please add an image builder to this "
"stack:\n"
"`zenml image-builder register <NAME> ...\n"
"zenml stack update %s -i <NAME>`",
self.name,
self.id,
)
self._image_builder = image_builder
stack_component
Implementation of the ZenML Stack Component class.
StackComponent
Abstract StackComponent class for all components of a ZenML stack.
Source code in zenml/stack/stack_component.py
class StackComponent:
"""Abstract StackComponent class for all components of a ZenML stack."""
def __init__(
self,
name: str,
id: UUID,
config: StackComponentConfig,
flavor: str,
type: StackComponentType,
user: Optional[UUID],
workspace: UUID,
created: datetime,
updated: datetime,
labels: Optional[Dict[str, Any]] = None,
connector_requirements: Optional[ServiceConnectorRequirements] = None,
connector: Optional[UUID] = None,
connector_resource_id: Optional[str] = None,
*args: Any,
**kwargs: Any,
):
"""Initializes a StackComponent.
Args:
name: The name of the component.
id: The unique ID of the component.
config: The config of the component.
flavor: The flavor of the component.
type: The type of the component.
user: The ID of the user who created the component.
workspace: The ID of the workspace the component belongs to.
created: The creation time of the component.
updated: The last update time of the component.
labels: The labels of the component.
connector_requirements: The requirements for the connector.
connector: The ID of a connector linked to the component.
connector_resource_id: The custom resource ID to access through
the connector.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Raises:
ValueError: If a secret reference is passed as name.
"""
if secret_utils.is_secret_reference(name):
raise ValueError(
"Passing the `name` attribute of a stack component as a "
"secret reference is not allowed."
)
self.id = id
self.name = name
self._config = config
self.flavor = flavor
self.type = type
self.user = user
self.workspace = workspace
self.created = created
self.updated = updated
self.labels = labels
self.connector_requirements = connector_requirements
self.connector = connector
self.connector_resource_id = connector_resource_id
self._connector_instance: Optional[ServiceConnector] = None
@classmethod
def from_model(
cls, component_model: "ComponentResponse"
) -> "StackComponent":
"""Creates a StackComponent from a ComponentModel.
Args:
component_model: The ComponentModel to create the StackComponent
Returns:
The created StackComponent.
Raises:
ImportError: If the flavor can't be imported.
"""
from zenml.client import Client
flavor_model = Client().get_flavor_by_name_and_type(
name=component_model.flavor,
component_type=component_model.type,
)
try:
from zenml.stack import Flavor
flavor = Flavor.from_model(flavor_model)
except (ModuleNotFoundError, ImportError, NotImplementedError) as err:
raise ImportError(
f"Couldn't import flavor {flavor_model.name}: {err}"
)
configuration = flavor.config_class(**component_model.configuration)
if component_model.user is not None:
user_id = component_model.user.id
else:
user_id = None
return flavor.implementation_class(
user=user_id,
workspace=component_model.workspace.id,
name=component_model.name,
id=component_model.id,
config=configuration,
labels=component_model.labels,
flavor=component_model.flavor,
type=component_model.type,
created=component_model.created,
updated=component_model.updated,
connector_requirements=flavor.service_connector_requirements,
connector=component_model.connector.id
if component_model.connector
else None,
connector_resource_id=component_model.connector_resource_id,
)
@property
def config(self) -> StackComponentConfig:
"""Returns the configuration of the stack component.
This should be overwritten by any subclasses that define custom configs
to return the correct config class.
Returns:
The configuration of the stack component.
"""
return self._config
@property
def settings_class(self) -> Optional[Type["BaseSettings"]]:
"""Class specifying available settings for this component.
Returns:
Optional settings class.
"""
return None
def get_settings(
self,
container: Union[
"Step",
"StepRunResponse",
"StepRunInfo",
"PipelineDeploymentBase",
"PipelineDeploymentResponse",
],
) -> "BaseSettings":
"""Gets settings for this stack component.
This will return `None` if the stack component doesn't specify a
settings class or the container doesn't contain runtime
options for this component.
Args:
container: The `Step`, `StepRunInfo` or `PipelineDeployment` from
which to get the settings.
Returns:
Settings for this stack component.
Raises:
RuntimeError: If the stack component does not specify a settings
class.
"""
if not self.settings_class:
raise RuntimeError(
f"Unable to get settings for component {self} because this "
"component does not have an associated settings class. "
"Return a settings class from the `@settings_class` property "
"and try again."
)
key = settings_utils.get_stack_component_setting_key(self)
all_settings = (
container.config.settings
if isinstance(container, (Step, StepRunResponse, StepRunInfo))
else container.pipeline_configuration.settings
)
if key in all_settings:
return self.settings_class.model_validate(dict(all_settings[key]))
else:
return self.settings_class()
def connector_has_expired(self) -> bool:
"""Checks whether the connector linked to this stack component has expired.
Returns:
Whether the connector linked to this stack component has expired, or isn't linked to a connector.
"""
if self.connector is None:
# The stack component isn't linked to a connector
return False
if self._connector_instance is None:
return True
return self._connector_instance.has_expired()
def get_connector(self) -> Optional["ServiceConnector"]:
"""Returns the connector linked to this stack component.
Returns:
The connector linked to this stack component.
Raises:
RuntimeError: If the stack component does not specify connector
requirements or if the connector linked to the component is not
compatible or not found.
"""
from zenml.client import Client
if self.connector is None:
return None
if self._connector_instance is not None:
# If the connector instance is still valid, return it. Otherwise,
# we'll try to get a new one.
if not self._connector_instance.has_expired():
return self._connector_instance
if self.connector_requirements is None:
raise RuntimeError(
f"Unable to get connector for component {self} because this "
"component does not declare any connector requirements in its. "
"flavor specification. Override the "
"`service_connector_requirements` method in its flavor class "
"to return a connector requirements specification and try "
"again."
)
if self.connector_requirements.resource_id_attr is not None:
# Check if an attribute is set in the component configuration
resource_id = getattr(
self.config, self.connector_requirements.resource_id_attr
)
else:
# Otherwise, use the resource ID configured in the component
resource_id = self.connector_resource_id
client = Client()
try:
self._connector_instance = client.get_service_connector_client(
name_id_or_prefix=self.connector,
resource_type=self.connector_requirements.resource_type,
resource_id=resource_id,
)
except KeyError:
raise RuntimeError(
f"The connector with ID {self.connector} linked "
f"to the '{self.name}' {self.type} stack component could not "
f"be found or is not accessible. Please verify that the "
f"connector exists and that you have access to it."
)
except ValueError as e:
raise RuntimeError(
f"The connector with ID {self.connector} linked "
f"to the '{self.name}' {self.type} stack component could not "
f"be correctly configured: {e}."
)
except AuthorizationException as e:
raise RuntimeError(
f"The connector with ID {self.connector} linked "
f"to the '{self.name}' {self.type} stack component could not "
f"be accessed due to an authorization error: {e}. Please "
f"verify that you have access to the connector and try again."
)
return self._connector_instance
@property
def log_file(self) -> Optional[str]:
"""Optional path to a log file for the stack component.
Returns:
Optional path to a log file for the stack component.
"""
# TODO [ENG-136]: Add support for multiple log files for a stack
# component. E.g. let each component return a generator that yields
# logs instead of specifying a single file path.
return None
@property
def requirements(self) -> Set[str]:
"""Set of PyPI requirements for the component.
Returns:
A set of PyPI requirements for the component.
"""
from zenml.integrations.utils import get_requirements_for_module
return set(get_requirements_for_module(self.__module__))
@property
def apt_packages(self) -> List[str]:
"""List of APT package requirements for the component.
Returns:
A list of APT package requirements for the component.
"""
from zenml.integrations.utils import get_integration_for_module
integration = get_integration_for_module(self.__module__)
return integration.APT_PACKAGES if integration else []
@property
def local_path(self) -> Optional[str]:
"""Path to a local directory to store persistent information.
This property should only be implemented by components that need to
store persistent information in a directory on the local machine and
also need that information to be available during pipeline runs.
IMPORTANT: the path returned by this property must always be a path
that is relative to the ZenML local store's directory. The local
orchestrators rely on this convention to correctly mount the
local folders in the containers. This is an example of a valid
path:
```python
from zenml.config.global_config import GlobalConfiguration
...
@property
def local_path(self) -> Optional[str]:
return os.path.join(
GlobalConfiguration().local_stores_path,
str(self.uuid),
)
```
Returns:
A path to a local directory used by the component to store
persistent information.
"""
return None
def get_docker_builds(
self, deployment: "PipelineDeploymentBase"
) -> List["BuildConfiguration"]:
"""Gets the Docker builds required for the component.
Args:
deployment: The pipeline deployment for which to get the builds.
Returns:
The required Docker builds.
"""
return []
def prepare_pipeline_deployment(
self,
deployment: "PipelineDeploymentResponse",
stack: "Stack",
) -> None:
"""Prepares deploying the pipeline.
This method gets called immediately before a pipeline is deployed.
Subclasses should override it if they require runtime configuration
options or if they need to run code before the pipeline deployment.
Args:
deployment: The pipeline deployment configuration.
stack: The stack on which the pipeline will be deployed.
"""
def get_pipeline_run_metadata(
self, run_id: UUID
) -> Dict[str, "MetadataType"]:
"""Get general component-specific metadata for a pipeline run.
Args:
run_id: The ID of the pipeline run.
Returns:
A dictionary of metadata.
"""
return {}
def prepare_step_run(self, info: "StepRunInfo") -> None:
"""Prepares running a step.
Args:
info: Info about the step that will be executed.
"""
def get_step_run_metadata(
self, info: "StepRunInfo"
) -> Dict[str, "MetadataType"]:
"""Get component- and step-specific metadata after a step ran.
Args:
info: Info about the step that was executed.
Returns:
A dictionary of metadata.
"""
return {}
def cleanup_step_run(self, info: "StepRunInfo", step_failed: bool) -> None:
"""Cleans up resources after the step run is finished.
Args:
info: Info about the step that was executed.
step_failed: Whether the step failed.
"""
@property
def post_registration_message(self) -> Optional[str]:
"""Optional message printed after the stack component is registered.
Returns:
An optional message.
"""
return None
@property
def validator(self) -> Optional["StackValidator"]:
"""The optional validator of the stack component.
This validator will be called each time a stack with the stack
component is initialized. Subclasses should override this property
and return a `StackValidator` that makes sure they're not included in
any stack that they're not compatible with.
Returns:
An optional `StackValidator` instance.
"""
return None
@property
def is_provisioned(self) -> bool:
"""If the component provisioned resources to run.
Returns:
True if the component provisioned resources to run.
"""
return True
@property
def is_running(self) -> bool:
"""If the component is running.
Returns:
True if the component is running.
"""
return True
@property
def is_suspended(self) -> bool:
"""If the component is suspended.
Returns:
True if the component is suspended.
"""
return not self.is_running
def provision(self) -> None:
"""Provisions resources to run the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Provisioning resources not implemented for {self}."
)
def deprovision(self) -> None:
"""Deprovisions all resources of the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Deprovisioning resource not implemented for {self}."
)
def resume(self) -> None:
"""Resumes the provisioned resources of the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Resuming provisioned resources not implemented for {self}."
)
def suspend(self) -> None:
"""Suspends the provisioned resources of the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Suspending provisioned resources not implemented for {self}."
)
def cleanup(self) -> None:
"""Cleans up the component after it has been used."""
pass
def __repr__(self) -> str:
"""String representation of the stack component.
Returns:
A string representation of the stack component.
"""
attribute_representation = ", ".join(
f"{key}={value}" for key, value in self.config.model_dump().items()
)
return (
f"{self.__class__.__qualname__}(type={self.type}, "
f"flavor={self.flavor}, {attribute_representation})"
)
def __str__(self) -> str:
"""String representation of the stack component.
Returns:
A string representation of the stack component.
"""
return self.__repr__()
apt_packages: List[str]
property
readonly
List of APT package requirements for the component.
Returns:
Type | Description |
---|---|
List[str] |
A list of APT package requirements for the component. |
config: StackComponentConfig
property
readonly
Returns the configuration of the stack component.
This should be overwritten by any subclasses that define custom configs to return the correct config class.
Returns:
Type | Description |
---|---|
StackComponentConfig |
The configuration of the stack component. |
is_provisioned: bool
property
readonly
If the component provisioned resources to run.
Returns:
Type | Description |
---|---|
bool |
True if the component provisioned resources to run. |
is_running: bool
property
readonly
If the component is running.
Returns:
Type | Description |
---|---|
bool |
True if the component is running. |
is_suspended: bool
property
readonly
If the component is suspended.
Returns:
Type | Description |
---|---|
bool |
True if the component is suspended. |
local_path: Optional[str]
property
readonly
Path to a local directory to store persistent information.
This property should only be implemented by components that need to store persistent information in a directory on the local machine and also need that information to be available during pipeline runs.
IMPORTANT: the path returned by this property must always be a path that is relative to the ZenML local store's directory. The local orchestrators rely on this convention to correctly mount the local folders in the containers. This is an example of a valid path:
from zenml.config.global_config import GlobalConfiguration
...
@property
def local_path(self) -> Optional[str]:
return os.path.join(
GlobalConfiguration().local_stores_path,
str(self.uuid),
)
Returns:
Type | Description |
---|---|
Optional[str] |
A path to a local directory used by the component to store persistent information. |
log_file: Optional[str]
property
readonly
Optional path to a log file for the stack component.
Returns:
Type | Description |
---|---|
Optional[str] |
Optional path to a log file for the stack component. |
post_registration_message: Optional[str]
property
readonly
Optional message printed after the stack component is registered.
Returns:
Type | Description |
---|---|
Optional[str] |
An optional message. |
requirements: Set[str]
property
readonly
Set of PyPI requirements for the component.
Returns:
Type | Description |
---|---|
Set[str] |
A set of PyPI requirements for the component. |
settings_class: Optional[Type[BaseSettings]]
property
readonly
Class specifying available settings for this component.
Returns:
Type | Description |
---|---|
Optional[Type[BaseSettings]] |
Optional settings class. |
validator: Optional[StackValidator]
property
readonly
The optional validator of the stack component.
This validator will be called each time a stack with the stack
component is initialized. Subclasses should override this property
and return a StackValidator
that makes sure they're not included in
any stack that they're not compatible with.
Returns:
Type | Description |
---|---|
Optional[StackValidator] |
An optional |
__init__(self, name, id, config, flavor, type, user, workspace, created, updated, labels=None, connector_requirements=None, connector=None, connector_resource_id=None, *args, **kwargs)
special
Initializes a StackComponent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
The name of the component. |
required |
id |
UUID |
The unique ID of the component. |
required |
config |
StackComponentConfig |
The config of the component. |
required |
flavor |
str |
The flavor of the component. |
required |
type |
StackComponentType |
The type of the component. |
required |
user |
Optional[uuid.UUID] |
The ID of the user who created the component. |
required |
workspace |
UUID |
The ID of the workspace the component belongs to. |
required |
created |
datetime |
The creation time of the component. |
required |
updated |
datetime |
The last update time of the component. |
required |
labels |
Optional[Dict[str, Any]] |
The labels of the component. |
None |
connector_requirements |
Optional[zenml.models.v2.misc.service_connector_type.ServiceConnectorRequirements] |
The requirements for the connector. |
None |
connector |
Optional[uuid.UUID] |
The ID of a connector linked to the component. |
None |
connector_resource_id |
Optional[str] |
The custom resource ID to access through the connector. |
None |
*args |
Any |
Additional positional arguments. |
() |
**kwargs |
Any |
Additional keyword arguments. |
{} |
Exceptions:
Type | Description |
---|---|
ValueError |
If a secret reference is passed as name. |
Source code in zenml/stack/stack_component.py
def __init__(
self,
name: str,
id: UUID,
config: StackComponentConfig,
flavor: str,
type: StackComponentType,
user: Optional[UUID],
workspace: UUID,
created: datetime,
updated: datetime,
labels: Optional[Dict[str, Any]] = None,
connector_requirements: Optional[ServiceConnectorRequirements] = None,
connector: Optional[UUID] = None,
connector_resource_id: Optional[str] = None,
*args: Any,
**kwargs: Any,
):
"""Initializes a StackComponent.
Args:
name: The name of the component.
id: The unique ID of the component.
config: The config of the component.
flavor: The flavor of the component.
type: The type of the component.
user: The ID of the user who created the component.
workspace: The ID of the workspace the component belongs to.
created: The creation time of the component.
updated: The last update time of the component.
labels: The labels of the component.
connector_requirements: The requirements for the connector.
connector: The ID of a connector linked to the component.
connector_resource_id: The custom resource ID to access through
the connector.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Raises:
ValueError: If a secret reference is passed as name.
"""
if secret_utils.is_secret_reference(name):
raise ValueError(
"Passing the `name` attribute of a stack component as a "
"secret reference is not allowed."
)
self.id = id
self.name = name
self._config = config
self.flavor = flavor
self.type = type
self.user = user
self.workspace = workspace
self.created = created
self.updated = updated
self.labels = labels
self.connector_requirements = connector_requirements
self.connector = connector
self.connector_resource_id = connector_resource_id
self._connector_instance: Optional[ServiceConnector] = None
__repr__(self)
special
String representation of the stack component.
Returns:
Type | Description |
---|---|
str |
A string representation of the stack component. |
Source code in zenml/stack/stack_component.py
def __repr__(self) -> str:
"""String representation of the stack component.
Returns:
A string representation of the stack component.
"""
attribute_representation = ", ".join(
f"{key}={value}" for key, value in self.config.model_dump().items()
)
return (
f"{self.__class__.__qualname__}(type={self.type}, "
f"flavor={self.flavor}, {attribute_representation})"
)
__str__(self)
special
String representation of the stack component.
Returns:
Type | Description |
---|---|
str |
A string representation of the stack component. |
Source code in zenml/stack/stack_component.py
def __str__(self) -> str:
"""String representation of the stack component.
Returns:
A string representation of the stack component.
"""
return self.__repr__()
cleanup(self)
Cleans up the component after it has been used.
Source code in zenml/stack/stack_component.py
def cleanup(self) -> None:
"""Cleans up the component after it has been used."""
pass
cleanup_step_run(self, info, step_failed)
Cleans up resources after the step run is finished.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
info |
StepRunInfo |
Info about the step that was executed. |
required |
step_failed |
bool |
Whether the step failed. |
required |
Source code in zenml/stack/stack_component.py
def cleanup_step_run(self, info: "StepRunInfo", step_failed: bool) -> None:
"""Cleans up resources after the step run is finished.
Args:
info: Info about the step that was executed.
step_failed: Whether the step failed.
"""
connector_has_expired(self)
Checks whether the connector linked to this stack component has expired.
Returns:
Type | Description |
---|---|
bool |
Whether the connector linked to this stack component has expired, or isn't linked to a connector. |
Source code in zenml/stack/stack_component.py
def connector_has_expired(self) -> bool:
"""Checks whether the connector linked to this stack component has expired.
Returns:
Whether the connector linked to this stack component has expired, or isn't linked to a connector.
"""
if self.connector is None:
# The stack component isn't linked to a connector
return False
if self._connector_instance is None:
return True
return self._connector_instance.has_expired()
deprovision(self)
Deprovisions all resources of the component.
Exceptions:
Type | Description |
---|---|
NotImplementedError |
If the component does not implement this method. |
Source code in zenml/stack/stack_component.py
def deprovision(self) -> None:
"""Deprovisions all resources of the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Deprovisioning resource not implemented for {self}."
)
from_model(component_model)
classmethod
Creates a StackComponent from a ComponentModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
component_model |
ComponentResponse |
The ComponentModel to create the StackComponent |
required |
Returns:
Type | Description |
---|---|
StackComponent |
The created StackComponent. |
Exceptions:
Type | Description |
---|---|
ImportError |
If the flavor can't be imported. |
Source code in zenml/stack/stack_component.py
@classmethod
def from_model(
cls, component_model: "ComponentResponse"
) -> "StackComponent":
"""Creates a StackComponent from a ComponentModel.
Args:
component_model: The ComponentModel to create the StackComponent
Returns:
The created StackComponent.
Raises:
ImportError: If the flavor can't be imported.
"""
from zenml.client import Client
flavor_model = Client().get_flavor_by_name_and_type(
name=component_model.flavor,
component_type=component_model.type,
)
try:
from zenml.stack import Flavor
flavor = Flavor.from_model(flavor_model)
except (ModuleNotFoundError, ImportError, NotImplementedError) as err:
raise ImportError(
f"Couldn't import flavor {flavor_model.name}: {err}"
)
configuration = flavor.config_class(**component_model.configuration)
if component_model.user is not None:
user_id = component_model.user.id
else:
user_id = None
return flavor.implementation_class(
user=user_id,
workspace=component_model.workspace.id,
name=component_model.name,
id=component_model.id,
config=configuration,
labels=component_model.labels,
flavor=component_model.flavor,
type=component_model.type,
created=component_model.created,
updated=component_model.updated,
connector_requirements=flavor.service_connector_requirements,
connector=component_model.connector.id
if component_model.connector
else None,
connector_resource_id=component_model.connector_resource_id,
)
get_connector(self)
Returns the connector linked to this stack component.
Returns:
Type | Description |
---|---|
Optional[ServiceConnector] |
The connector linked to this stack component. |
Exceptions:
Type | Description |
---|---|
RuntimeError |
If the stack component does not specify connector requirements or if the connector linked to the component is not compatible or not found. |
Source code in zenml/stack/stack_component.py
def get_connector(self) -> Optional["ServiceConnector"]:
"""Returns the connector linked to this stack component.
Returns:
The connector linked to this stack component.
Raises:
RuntimeError: If the stack component does not specify connector
requirements or if the connector linked to the component is not
compatible or not found.
"""
from zenml.client import Client
if self.connector is None:
return None
if self._connector_instance is not None:
# If the connector instance is still valid, return it. Otherwise,
# we'll try to get a new one.
if not self._connector_instance.has_expired():
return self._connector_instance
if self.connector_requirements is None:
raise RuntimeError(
f"Unable to get connector for component {self} because this "
"component does not declare any connector requirements in its. "
"flavor specification. Override the "
"`service_connector_requirements` method in its flavor class "
"to return a connector requirements specification and try "
"again."
)
if self.connector_requirements.resource_id_attr is not None:
# Check if an attribute is set in the component configuration
resource_id = getattr(
self.config, self.connector_requirements.resource_id_attr
)
else:
# Otherwise, use the resource ID configured in the component
resource_id = self.connector_resource_id
client = Client()
try:
self._connector_instance = client.get_service_connector_client(
name_id_or_prefix=self.connector,
resource_type=self.connector_requirements.resource_type,
resource_id=resource_id,
)
except KeyError:
raise RuntimeError(
f"The connector with ID {self.connector} linked "
f"to the '{self.name}' {self.type} stack component could not "
f"be found or is not accessible. Please verify that the "
f"connector exists and that you have access to it."
)
except ValueError as e:
raise RuntimeError(
f"The connector with ID {self.connector} linked "
f"to the '{self.name}' {self.type} stack component could not "
f"be correctly configured: {e}."
)
except AuthorizationException as e:
raise RuntimeError(
f"The connector with ID {self.connector} linked "
f"to the '{self.name}' {self.type} stack component could not "
f"be accessed due to an authorization error: {e}. Please "
f"verify that you have access to the connector and try again."
)
return self._connector_instance
get_docker_builds(self, deployment)
Gets the Docker builds required for the component.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment |
PipelineDeploymentBase |
The pipeline deployment for which to get the builds. |
required |
Returns:
Type | Description |
---|---|
List[BuildConfiguration] |
The required Docker builds. |
Source code in zenml/stack/stack_component.py
def get_docker_builds(
self, deployment: "PipelineDeploymentBase"
) -> List["BuildConfiguration"]:
"""Gets the Docker builds required for the component.
Args:
deployment: The pipeline deployment for which to get the builds.
Returns:
The required Docker builds.
"""
return []
get_pipeline_run_metadata(self, run_id)
Get general component-specific metadata for a pipeline run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
run_id |
UUID |
The ID of the pipeline run. |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType] |
A dictionary of metadata. |
Source code in zenml/stack/stack_component.py
def get_pipeline_run_metadata(
self, run_id: UUID
) -> Dict[str, "MetadataType"]:
"""Get general component-specific metadata for a pipeline run.
Args:
run_id: The ID of the pipeline run.
Returns:
A dictionary of metadata.
"""
return {}
get_settings(self, container)
Gets settings for this stack component.
This will return None
if the stack component doesn't specify a
settings class or the container doesn't contain runtime
options for this component.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
container |
Union[Step, StepRunResponse, StepRunInfo, PipelineDeploymentBase, PipelineDeploymentResponse] |
The |
required |
Returns:
Type | Description |
---|---|
BaseSettings |
Settings for this stack component. |
Exceptions:
Type | Description |
---|---|
RuntimeError |
If the stack component does not specify a settings class. |
Source code in zenml/stack/stack_component.py
def get_settings(
self,
container: Union[
"Step",
"StepRunResponse",
"StepRunInfo",
"PipelineDeploymentBase",
"PipelineDeploymentResponse",
],
) -> "BaseSettings":
"""Gets settings for this stack component.
This will return `None` if the stack component doesn't specify a
settings class or the container doesn't contain runtime
options for this component.
Args:
container: The `Step`, `StepRunInfo` or `PipelineDeployment` from
which to get the settings.
Returns:
Settings for this stack component.
Raises:
RuntimeError: If the stack component does not specify a settings
class.
"""
if not self.settings_class:
raise RuntimeError(
f"Unable to get settings for component {self} because this "
"component does not have an associated settings class. "
"Return a settings class from the `@settings_class` property "
"and try again."
)
key = settings_utils.get_stack_component_setting_key(self)
all_settings = (
container.config.settings
if isinstance(container, (Step, StepRunResponse, StepRunInfo))
else container.pipeline_configuration.settings
)
if key in all_settings:
return self.settings_class.model_validate(dict(all_settings[key]))
else:
return self.settings_class()
get_step_run_metadata(self, info)
Get component- and step-specific metadata after a step ran.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
info |
StepRunInfo |
Info about the step that was executed. |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType] |
A dictionary of metadata. |
Source code in zenml/stack/stack_component.py
def get_step_run_metadata(
self, info: "StepRunInfo"
) -> Dict[str, "MetadataType"]:
"""Get component- and step-specific metadata after a step ran.
Args:
info: Info about the step that was executed.
Returns:
A dictionary of metadata.
"""
return {}
prepare_pipeline_deployment(self, deployment, stack)
Prepares deploying the pipeline.
This method gets called immediately before a pipeline is deployed. Subclasses should override it if they require runtime configuration options or if they need to run code before the pipeline deployment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment |
PipelineDeploymentResponse |
The pipeline deployment configuration. |
required |
stack |
Stack |
The stack on which the pipeline will be deployed. |
required |
Source code in zenml/stack/stack_component.py
def prepare_pipeline_deployment(
self,
deployment: "PipelineDeploymentResponse",
stack: "Stack",
) -> None:
"""Prepares deploying the pipeline.
This method gets called immediately before a pipeline is deployed.
Subclasses should override it if they require runtime configuration
options or if they need to run code before the pipeline deployment.
Args:
deployment: The pipeline deployment configuration.
stack: The stack on which the pipeline will be deployed.
"""
prepare_step_run(self, info)
Prepares running a step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
info |
StepRunInfo |
Info about the step that will be executed. |
required |
Source code in zenml/stack/stack_component.py
def prepare_step_run(self, info: "StepRunInfo") -> None:
"""Prepares running a step.
Args:
info: Info about the step that will be executed.
"""
provision(self)
Provisions resources to run the component.
Exceptions:
Type | Description |
---|---|
NotImplementedError |
If the component does not implement this method. |
Source code in zenml/stack/stack_component.py
def provision(self) -> None:
"""Provisions resources to run the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Provisioning resources not implemented for {self}."
)
resume(self)
Resumes the provisioned resources of the component.
Exceptions:
Type | Description |
---|---|
NotImplementedError |
If the component does not implement this method. |
Source code in zenml/stack/stack_component.py
def resume(self) -> None:
"""Resumes the provisioned resources of the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Resuming provisioned resources not implemented for {self}."
)
suspend(self)
Suspends the provisioned resources of the component.
Exceptions:
Type | Description |
---|---|
NotImplementedError |
If the component does not implement this method. |
Source code in zenml/stack/stack_component.py
def suspend(self) -> None:
"""Suspends the provisioned resources of the component.
Raises:
NotImplementedError: If the component does not implement this
method.
"""
raise NotImplementedError(
f"Suspending provisioned resources not implemented for {self}."
)
StackComponentConfig (BaseModel, ABC)
Base class for all ZenML stack component configs.
Source code in zenml/stack/stack_component.py
class StackComponentConfig(BaseModel, ABC):
"""Base class for all ZenML stack component configs."""
def __init__(
self, warn_about_plain_text_secrets: bool = False, **kwargs: Any
) -> None:
"""Ensures that secret references don't clash with pydantic validation.
StackComponents allow the specification of all their string attributes
using secret references of the form `{{secret_name.key}}`. This however
is only possible when the stack component does not perform any explicit
validation of this attribute using pydantic validators. If this were
the case, the validation would run on the secret reference and would
fail or in the worst case, modify the secret reference and lead to
unexpected behavior. This method ensures that no attributes that require
custom pydantic validation are set as secret references.
Args:
warn_about_plain_text_secrets: If true, then warns about using
plain-text secrets.
**kwargs: Arguments to initialize this stack component.
Raises:
ValueError: If an attribute that requires custom pydantic validation
is passed as a secret reference, or if the `name` attribute
was passed as a secret reference.
"""
for key, value in kwargs.items():
try:
field = self.__class__.model_fields[key]
except KeyError:
# Value for a private attribute or non-existing field, this
# will fail during the upcoming pydantic validation
continue
if value is None:
continue
if not secret_utils.is_secret_reference(value):
if (
secret_utils.is_secret_field(field)
and warn_about_plain_text_secrets
):
logger.warning(
"You specified a plain-text value for the sensitive "
f"attribute `{key}` for a `{self.__class__.__name__}` "
"stack component. This is currently only a warning, "
"but future versions of ZenML will require you to pass "
"in sensitive information as secrets. Check out the "
"documentation on how to configure your stack "
"components with secrets here: "
"https://docs.zenml.io/getting-started/deploying-zenml/manage-the-deployed-services/secret-management"
)
continue
if pydantic_utils.has_validators(
pydantic_class=self.__class__, field_name=key
):
raise ValueError(
f"Passing the stack component attribute `{key}` as a "
"secret reference is not allowed as additional validation "
"is required for this attribute."
)
super().__init__(**kwargs)
@property
def required_secrets(self) -> Set[secret_utils.SecretReference]:
"""All required secrets for this stack component.
Returns:
The required secrets of this stack component.
"""
return {
secret_utils.parse_secret_reference(v)
for v in self.model_dump().values()
if secret_utils.is_secret_reference(v)
}
@property
def is_remote(self) -> bool:
"""Checks if this stack component is running remotely.
Concrete stack component configuration classes should override this
method to return True if the stack component is running in a remote
location, and it needs to access the ZenML database.
This designation is used to determine if the stack component can be
used with a local ZenML database or if it requires a remote ZenML
server.
Examples:
* Orchestrators that are running pipelines in the cloud or in a
location other than the local host
* Step Operators that are running steps in the cloud or in a location
other than the local host
Returns:
True if this config is for a remote component, False otherwise.
"""
return False
@property
def is_valid(self) -> bool:
"""Checks if the stack component configurations are valid.
Concrete stack component configuration classes should override this
method to return False if the stack component configurations are invalid.
Returns:
True if the stack component config is valid, False otherwise.
"""
return True
@property
def is_local(self) -> bool:
"""Checks if this stack component is running locally.
Concrete stack component configuration classes should override this
method to return True if the stack component is relying on local
resources or capabilities (e.g. local filesystem, local database or
other services).
Examples:
* Artifact Stores that store artifacts in the local filesystem
* Orchestrators that are connected to local orchestration runtime
services (e.g. local Kubernetes clusters, Docker containers etc).
Returns:
True if this config is for a local component, False otherwise.
"""
return False
def __custom_getattribute__(self, key: str) -> Any:
"""Returns the (potentially resolved) attribute value for the given key.
An attribute value may be either specified directly, or as a secret
reference. In case of a secret reference, this method resolves the
reference and returns the secret value instead.
Args:
key: The key for which to get the attribute value.
Raises:
KeyError: If the secret or secret key don't exist.
Returns:
The (potentially resolved) attribute value.
"""
from zenml.client import Client
value = super().__getattribute__(key)
if not secret_utils.is_secret_reference(value):
return value
secret_ref = secret_utils.parse_secret_reference(value)
# Try to resolve the secret using the secret store
try:
secret = Client().get_secret_by_name_and_scope(
name=secret_ref.name,
)
except (KeyError, NotImplementedError):
raise KeyError(
f"Failed to resolve secret reference for attribute {key} "
f"of stack component `{self}`: The secret "
f"{secret_ref.name} does not exist."
)
if secret_ref.key not in secret.values:
raise KeyError(
f"Failed to resolve secret reference for attribute {key} "
f"of stack component `{self}`. "
f"The secret {secret_ref.name} does not contain a value "
f"for key {secret_ref.key}. Available keys: "
f"{set(secret.values.keys())}."
)
return secret.secret_values[secret_ref.key]
def _is_part_of_active_stack(self) -> bool:
"""Checks if this config belongs to a component in the active stack.
Returns:
True if this config belongs to a component in the active stack,
False otherwise.
"""
from zenml.client import Client
for component in Client().active_stack.components.values():
if component.config == self:
return True
return False
if not TYPE_CHECKING:
# When defining __getattribute__, mypy allows accessing non-existent
# attributes without failing
# (see https://github.com/python/mypy/issues/13319).
__getattribute__ = __custom_getattribute__
@model_validator(mode="before")
@classmethod
@pydantic_utils.before_validator_handler
def _convert_json_strings(cls, data: Dict[str, Any]) -> Dict[str, Any]:
"""Converts potential JSON strings.
Args:
data: The model data.
Returns:
The potentially converted data.
Raises:
ValueError: If any of the values is an invalid JSON string.
"""
for key, field in cls.model_fields.items():
if not field.annotation:
continue
value = data.get(key, None)
if isinstance(value, str):
if typing_utils.is_optional(field.annotation):
args = list(typing_utils.get_args(field.annotation))
if str in args:
# Don't do any type coercion in case str is in the
# possible types of the field
continue
# Remove `NoneType` from the arguments
NoneType = type(None)
if NoneType in args:
args.remove(NoneType)
# We just choose the first arg and match against this
annotation = args[0]
else:
annotation = field.annotation
if typing_utils.get_origin(annotation) in {
dict,
list,
Mapping,
Sequence,
}:
try:
data[key] = json.loads(value)
except json.JSONDecodeError as e:
raise ValueError(
f"Invalid json string '{value}'"
) from e
elif isclass(annotation) and issubclass(annotation, BaseModel):
data[key] = annotation.model_validate_json(
value
).model_dump()
return data
model_config = ConfigDict(
# public attributes are immutable
frozen=True,
# prevent extra attributes during model initialization
extra="forbid",
)
is_local: bool
property
readonly
Checks if this stack component is running locally.
Concrete stack component configuration classes should override this method to return True if the stack component is relying on local resources or capabilities (e.g. local filesystem, local database or other services).
Examples:
- Artifact Stores that store artifacts in the local filesystem
- Orchestrators that are connected to local orchestration runtime services (e.g. local Kubernetes clusters, Docker containers etc).
Returns:
Type | Description |
---|---|
bool |
True if this config is for a local component, False otherwise. |
is_remote: bool
property
readonly
Checks if this stack component is running remotely.
Concrete stack component configuration classes should override this method to return True if the stack component is running in a remote location, and it needs to access the ZenML database.
This designation is used to determine if the stack component can be used with a local ZenML database or if it requires a remote ZenML server.
Examples:
- Orchestrators that are running pipelines in the cloud or in a location other than the local host
- Step Operators that are running steps in the cloud or in a location other than the local host
Returns:
Type | Description |
---|---|
bool |
True if this config is for a remote component, False otherwise. |
is_valid: bool
property
readonly
Checks if the stack component configurations are valid.
Concrete stack component configuration classes should override this method to return False if the stack component configurations are invalid.
Returns:
Type | Description |
---|---|
bool |
True if the stack component config is valid, False otherwise. |
required_secrets: Set[zenml.utils.secret_utils.SecretReference]
property
readonly
All required secrets for this stack component.
Returns:
Type | Description |
---|---|
Set[zenml.utils.secret_utils.SecretReference] |
The required secrets of this stack component. |
__custom_getattribute__(self, key)
special
Returns the (potentially resolved) attribute value for the given key.
An attribute value may be either specified directly, or as a secret reference. In case of a secret reference, this method resolves the reference and returns the secret value instead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str |
The key for which to get the attribute value. |
required |
Exceptions:
Type | Description |
---|---|
KeyError |
If the secret or secret key don't exist. |
Returns:
Type | Description |
---|---|
Any |
The (potentially resolved) attribute value. |
Source code in zenml/stack/stack_component.py
def __custom_getattribute__(self, key: str) -> Any:
"""Returns the (potentially resolved) attribute value for the given key.
An attribute value may be either specified directly, or as a secret
reference. In case of a secret reference, this method resolves the
reference and returns the secret value instead.
Args:
key: The key for which to get the attribute value.
Raises:
KeyError: If the secret or secret key don't exist.
Returns:
The (potentially resolved) attribute value.
"""
from zenml.client import Client
value = super().__getattribute__(key)
if not secret_utils.is_secret_reference(value):
return value
secret_ref = secret_utils.parse_secret_reference(value)
# Try to resolve the secret using the secret store
try:
secret = Client().get_secret_by_name_and_scope(
name=secret_ref.name,
)
except (KeyError, NotImplementedError):
raise KeyError(
f"Failed to resolve secret reference for attribute {key} "
f"of stack component `{self}`: The secret "
f"{secret_ref.name} does not exist."
)
if secret_ref.key not in secret.values:
raise KeyError(
f"Failed to resolve secret reference for attribute {key} "
f"of stack component `{self}`. "
f"The secret {secret_ref.name} does not contain a value "
f"for key {secret_ref.key}. Available keys: "
f"{set(secret.values.keys())}."
)
return secret.secret_values[secret_ref.key]
__getattribute__(self, key)
special
Returns the (potentially resolved) attribute value for the given key.
An attribute value may be either specified directly, or as a secret reference. In case of a secret reference, this method resolves the reference and returns the secret value instead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str |
The key for which to get the attribute value. |
required |
Exceptions:
Type | Description |
---|---|
KeyError |
If the secret or secret key don't exist. |
Returns:
Type | Description |
---|---|
Any |
The (potentially resolved) attribute value. |
Source code in zenml/stack/stack_component.py
def __custom_getattribute__(self, key: str) -> Any:
"""Returns the (potentially resolved) attribute value for the given key.
An attribute value may be either specified directly, or as a secret
reference. In case of a secret reference, this method resolves the
reference and returns the secret value instead.
Args:
key: The key for which to get the attribute value.
Raises:
KeyError: If the secret or secret key don't exist.
Returns:
The (potentially resolved) attribute value.
"""
from zenml.client import Client
value = super().__getattribute__(key)
if not secret_utils.is_secret_reference(value):
return value
secret_ref = secret_utils.parse_secret_reference(value)
# Try to resolve the secret using the secret store
try:
secret = Client().get_secret_by_name_and_scope(
name=secret_ref.name,
)
except (KeyError, NotImplementedError):
raise KeyError(
f"Failed to resolve secret reference for attribute {key} "
f"of stack component `{self}`: The secret "
f"{secret_ref.name} does not exist."
)
if secret_ref.key not in secret.values:
raise KeyError(
f"Failed to resolve secret reference for attribute {key} "
f"of stack component `{self}`. "
f"The secret {secret_ref.name} does not contain a value "
f"for key {secret_ref.key}. Available keys: "
f"{set(secret.values.keys())}."
)
return secret.secret_values[secret_ref.key]
__init__(self, warn_about_plain_text_secrets=False, **kwargs)
special
Ensures that secret references don't clash with pydantic validation.
StackComponents allow the specification of all their string attributes
using secret references of the form {{secret_name.key}}
. This however
is only possible when the stack component does not perform any explicit
validation of this attribute using pydantic validators. If this were
the case, the validation would run on the secret reference and would
fail or in the worst case, modify the secret reference and lead to
unexpected behavior. This method ensures that no attributes that require
custom pydantic validation are set as secret references.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
warn_about_plain_text_secrets |
bool |
If true, then warns about using plain-text secrets. |
False |
**kwargs |
Any |
Arguments to initialize this stack component. |
{} |
Exceptions:
Type | Description |
---|---|
ValueError |
If an attribute that requires custom pydantic validation
is passed as a secret reference, or if the |
Source code in zenml/stack/stack_component.py
def __init__(
self, warn_about_plain_text_secrets: bool = False, **kwargs: Any
) -> None:
"""Ensures that secret references don't clash with pydantic validation.
StackComponents allow the specification of all their string attributes
using secret references of the form `{{secret_name.key}}`. This however
is only possible when the stack component does not perform any explicit
validation of this attribute using pydantic validators. If this were
the case, the validation would run on the secret reference and would
fail or in the worst case, modify the secret reference and lead to
unexpected behavior. This method ensures that no attributes that require
custom pydantic validation are set as secret references.
Args:
warn_about_plain_text_secrets: If true, then warns about using
plain-text secrets.
**kwargs: Arguments to initialize this stack component.
Raises:
ValueError: If an attribute that requires custom pydantic validation
is passed as a secret reference, or if the `name` attribute
was passed as a secret reference.
"""
for key, value in kwargs.items():
try:
field = self.__class__.model_fields[key]
except KeyError:
# Value for a private attribute or non-existing field, this
# will fail during the upcoming pydantic validation
continue
if value is None:
continue
if not secret_utils.is_secret_reference(value):
if (
secret_utils.is_secret_field(field)
and warn_about_plain_text_secrets
):
logger.warning(
"You specified a plain-text value for the sensitive "
f"attribute `{key}` for a `{self.__class__.__name__}` "
"stack component. This is currently only a warning, "
"but future versions of ZenML will require you to pass "
"in sensitive information as secrets. Check out the "
"documentation on how to configure your stack "
"components with secrets here: "
"https://docs.zenml.io/getting-started/deploying-zenml/manage-the-deployed-services/secret-management"
)
continue
if pydantic_utils.has_validators(
pydantic_class=self.__class__, field_name=key
):
raise ValueError(
f"Passing the stack component attribute `{key}` as a "
"secret reference is not allowed as additional validation "
"is required for this attribute."
)
super().__init__(**kwargs)
stack_validator
Implementation of the ZenML Stack Validator.
StackValidator
A StackValidator
is used to validate a stack configuration.
Each StackComponent
can provide a StackValidator
to make sure it is
compatible with all components of the stack. The KubeflowOrchestrator
for example will always require the stack to have a container registry
in order to push the docker images that are required to run a pipeline
in Kubeflow Pipelines.
Source code in zenml/stack/stack_validator.py
class StackValidator:
"""A `StackValidator` is used to validate a stack configuration.
Each `StackComponent` can provide a `StackValidator` to make sure it is
compatible with all components of the stack. The `KubeflowOrchestrator`
for example will always require the stack to have a container registry
in order to push the docker images that are required to run a pipeline
in Kubeflow Pipelines.
"""
def __init__(
self,
required_components: Optional[AbstractSet[StackComponentType]] = None,
custom_validation_function: Optional[
Callable[["Stack"], Tuple[bool, str]]
] = None,
):
"""Initializes a `StackValidator` instance.
Args:
required_components: Optional set of stack components that must
exist in the stack.
custom_validation_function: Optional function that returns whether
a stack is valid and an error message to show if not valid.
"""
self._required_components = required_components or set()
self._custom_validation_function = custom_validation_function
def validate(self, stack: "Stack") -> None:
"""Validates the given stack.
Checks if the stack contains all the required components and passes
the custom validation function of the validator.
Args:
stack: The stack to validate.
Raises:
StackValidationError: If the stack does not meet all the
validation criteria.
"""
missing_components = self._required_components - set(stack.components)
if missing_components:
raise StackValidationError(
f"Missing stack components {missing_components} for "
f"stack: {stack.name}"
)
if self._custom_validation_function:
valid, err_msg = self._custom_validation_function(stack)
if not valid:
raise StackValidationError(
f"Custom validation function failed to validate "
f"stack '{stack.name}': {err_msg}"
)
__init__(self, required_components=None, custom_validation_function=None)
special
Initializes a StackValidator
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
required_components |
Optional[AbstractSet[zenml.enums.StackComponentType]] |
Optional set of stack components that must exist in the stack. |
None |
custom_validation_function |
Optional[Callable[[Stack], Tuple[bool, str]]] |
Optional function that returns whether a stack is valid and an error message to show if not valid. |
None |
Source code in zenml/stack/stack_validator.py
def __init__(
self,
required_components: Optional[AbstractSet[StackComponentType]] = None,
custom_validation_function: Optional[
Callable[["Stack"], Tuple[bool, str]]
] = None,
):
"""Initializes a `StackValidator` instance.
Args:
required_components: Optional set of stack components that must
exist in the stack.
custom_validation_function: Optional function that returns whether
a stack is valid and an error message to show if not valid.
"""
self._required_components = required_components or set()
self._custom_validation_function = custom_validation_function
validate(self, stack)
Validates the given stack.
Checks if the stack contains all the required components and passes the custom validation function of the validator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stack |
Stack |
The stack to validate. |
required |
Exceptions:
Type | Description |
---|---|
StackValidationError |
If the stack does not meet all the validation criteria. |
Source code in zenml/stack/stack_validator.py
def validate(self, stack: "Stack") -> None:
"""Validates the given stack.
Checks if the stack contains all the required components and passes
the custom validation function of the validator.
Args:
stack: The stack to validate.
Raises:
StackValidationError: If the stack does not meet all the
validation criteria.
"""
missing_components = self._required_components - set(stack.components)
if missing_components:
raise StackValidationError(
f"Missing stack components {missing_components} for "
f"stack: {stack.name}"
)
if self._custom_validation_function:
valid, err_msg = self._custom_validation_function(stack)
if not valid:
raise StackValidationError(
f"Custom validation function failed to validate "
f"stack '{stack.name}': {err_msg}"
)
utils
Util functions for handling stacks, components, and flavors.
get_flavor_by_name_and_type_from_zen_store(zen_store, flavor_name, component_type)
Get a stack component flavor by name and type from a ZenStore.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
zen_store |
BaseZenStore |
The ZenStore to query. |
required |
flavor_name |
str |
The name of a stack component flavor. |
required |
component_type |
StackComponentType |
The type of the stack component. |
required |
Returns:
Type | Description |
---|---|
FlavorResponse |
The flavor model. |
Exceptions:
Type | Description |
---|---|
KeyError |
If no flavor with the given name and type exists. |
Source code in zenml/stack/utils.py
def get_flavor_by_name_and_type_from_zen_store(
zen_store: BaseZenStore,
flavor_name: str,
component_type: StackComponentType,
) -> FlavorResponse:
"""Get a stack component flavor by name and type from a ZenStore.
Args:
zen_store: The ZenStore to query.
flavor_name: The name of a stack component flavor.
component_type: The type of the stack component.
Returns:
The flavor model.
Raises:
KeyError: If no flavor with the given name and type exists.
"""
flavors = zen_store.list_flavors(
FlavorFilter(name=flavor_name, type=component_type)
)
if not flavors:
raise KeyError(
f"No flavor with name '{flavor_name}' and type "
f"'{component_type}' exists."
)
return flavors[0]
validate_stack_component_config(configuration_dict, flavor_name, component_type, zen_store=None, validate_custom_flavors=True)
Validate the configuration of a stack component.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
configuration_dict |
Dict[str, Any] |
The stack component configuration to validate. |
required |
flavor_name |
str |
The name of the flavor of the stack component. |
required |
component_type |
StackComponentType |
The type of the stack component. |
required |
zen_store |
Optional[zenml.zen_stores.base_zen_store.BaseZenStore] |
An optional ZenStore in which to look for the flavor. If not provided, the flavor will be fetched via the regular ZenML Client. This is mainly useful for checks running inside the ZenML server. |
None |
validate_custom_flavors |
bool |
When loading custom flavors from the local environment, this flag decides whether the import failures are raised or an empty value is returned. |
True |
Returns:
Type | Description |
---|---|
Optional[zenml.stack.stack_component.StackComponentConfig] |
The validated stack component configuration or None, if the
flavor is a custom flavor that could not be imported from the local
environment and the |
Exceptions:
Type | Description |
---|---|
ValueError |
If the configuration is invalid. |
ImportError |
If the flavor class could not be imported. |
ModuleNotFoundError |
If the flavor class could not be imported. |
Source code in zenml/stack/utils.py
def validate_stack_component_config(
configuration_dict: Dict[str, Any],
flavor_name: str,
component_type: StackComponentType,
zen_store: Optional[BaseZenStore] = None,
validate_custom_flavors: bool = True,
) -> Optional[StackComponentConfig]:
"""Validate the configuration of a stack component.
Args:
configuration_dict: The stack component configuration to validate.
flavor_name: The name of the flavor of the stack component.
component_type: The type of the stack component.
zen_store: An optional ZenStore in which to look for the flavor. If not
provided, the flavor will be fetched via the regular ZenML Client.
This is mainly useful for checks running inside the ZenML server.
validate_custom_flavors: When loading custom flavors from the local
environment, this flag decides whether the import failures are
raised or an empty value is returned.
Returns:
The validated stack component configuration or None, if the
flavor is a custom flavor that could not be imported from the local
environment and the `validate_custom_flavors` flag is set to False.
Raises:
ValueError: If the configuration is invalid.
ImportError: If the flavor class could not be imported.
ModuleNotFoundError: If the flavor class could not be imported.
"""
if zen_store:
flavor_model = get_flavor_by_name_and_type_from_zen_store(
zen_store=zen_store,
flavor_name=flavor_name,
component_type=component_type,
)
else:
flavor_model = Client().get_flavor_by_name_and_type(
name=flavor_name,
component_type=component_type,
)
try:
flavor_class = Flavor.from_model(flavor_model)
except (ImportError, ModuleNotFoundError):
# The flavor class couldn't be loaded.
if flavor_model.is_custom and not validate_custom_flavors:
return None
raise
configuration = flavor_class.config_class(**configuration_dict)
if not configuration.is_valid:
raise ValueError(
f"Invalid stack component configuration. Please verify "
f"the configurations set for {component_type}."
)
return configuration
warn_if_config_server_mismatch(configuration)
Warn if a component configuration is mismatched with the ZenML server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
configuration |
StackComponentConfig |
The component configuration to check. |
required |
Source code in zenml/stack/utils.py
def warn_if_config_server_mismatch(
configuration: StackComponentConfig,
) -> None:
"""Warn if a component configuration is mismatched with the ZenML server.
Args:
configuration: The component configuration to check.
"""
zen_store = Client().zen_store
if configuration.is_remote and zen_store.is_local_store():
if zen_store.type != StoreType.REST:
logger.warning(
"You are configuring a stack component that is running "
"remotely while using a local ZenML server. The component "
"may not be able to reach the local ZenML server and will "
"therefore not be functional. Please consider deploying "
"and/or using a remote ZenML server instead."
)
elif configuration.is_local and not zen_store.is_local_store():
logger.warning(
"You are configuring a stack component that is using "
"local resources while connected to a remote ZenML server. The "
"stack component may not be usable from other hosts or by "
"other users. You should consider using a non-local stack "
"component alternative instead."
)