Config
zenml.config
special
The config
module contains classes and functions that manage user-specific
configuration. ZenML's configuration is stored in a file called
.zenglobal.json
, located on the user's directory for configuration files.
(The exact location differs from operating system to operating system.)
The GlobalConfig
class is the main class in this module. It provides a
Pydantic configuration object that is used to store and retrieve configuration.
This GlobalConfig
object handles the serialization and deserialization of
the configuration options that are stored in the file in order to persist the
configuration across sessions.
config_keys
ConfigKeys
Class to validate dictionary configurations.
Source code in zenml/config/config_keys.py
class ConfigKeys:
"""Class to validate dictionary configurations."""
@classmethod
def get_keys(cls) -> Tuple[List[str], List[str]]:
"""Gets all the required and optional config keys for this class.
Returns:
A tuple (required, optional) which are lists of the
required/optional keys for this class.
"""
keys = {
key: value
for key, value in cls.__dict__.items()
if not isinstance(value, classmethod)
and not isinstance(value, staticmethod)
and not callable(value)
and not key.startswith("__")
}
required = [v for k, v in keys.items() if not k.endswith("_")]
optional = [v for k, v in keys.items() if k.endswith("_")]
return required, optional
@classmethod
def key_check(cls, config: Dict[str, Any]) -> None:
"""Checks whether a configuration dict contains all required keys
and no unknown keys.
Args:
config: The configuration dict to verify.
Raises:
AssertionError: If the dictionary contains unknown keys or
is missing any required key.
"""
assert isinstance(config, dict), "Please specify a dict for {}".format(
cls.__name__
)
# Required and optional keys for the config dict
required, optional = cls.get_keys()
# Check for missing keys
missing_keys = [k for k in required if k not in config.keys()]
assert len(missing_keys) == 0, "Missing key(s) {} in {}".format(
missing_keys, cls.__name__
)
# Check for unknown keys
unknown_keys = [
k for k in config.keys() if k not in required and k not in optional
]
assert (
len(unknown_keys) == 0
), "Unknown key(s) {} in {}. Required keys : {} " "Optional Keys: {}".format(
unknown_keys,
cls.__name__,
required,
optional,
)
get_keys()
classmethod
Gets all the required and optional config keys for this class.
Returns:
Type | Description |
---|---|
Tuple[List[str], List[str]] |
A tuple (required, optional) which are lists of the required/optional keys for this class. |
Source code in zenml/config/config_keys.py
@classmethod
def get_keys(cls) -> Tuple[List[str], List[str]]:
"""Gets all the required and optional config keys for this class.
Returns:
A tuple (required, optional) which are lists of the
required/optional keys for this class.
"""
keys = {
key: value
for key, value in cls.__dict__.items()
if not isinstance(value, classmethod)
and not isinstance(value, staticmethod)
and not callable(value)
and not key.startswith("__")
}
required = [v for k, v in keys.items() if not k.endswith("_")]
optional = [v for k, v in keys.items() if k.endswith("_")]
return required, optional
key_check(config)
classmethod
Checks whether a configuration dict contains all required keys and no unknown keys.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
Dict[str, Any] |
The configuration dict to verify. |
required |
Exceptions:
Type | Description |
---|---|
AssertionError |
If the dictionary contains unknown keys or is missing any required key. |
Source code in zenml/config/config_keys.py
@classmethod
def key_check(cls, config: Dict[str, Any]) -> None:
"""Checks whether a configuration dict contains all required keys
and no unknown keys.
Args:
config: The configuration dict to verify.
Raises:
AssertionError: If the dictionary contains unknown keys or
is missing any required key.
"""
assert isinstance(config, dict), "Please specify a dict for {}".format(
cls.__name__
)
# Required and optional keys for the config dict
required, optional = cls.get_keys()
# Check for missing keys
missing_keys = [k for k in required if k not in config.keys()]
assert len(missing_keys) == 0, "Missing key(s) {} in {}".format(
missing_keys, cls.__name__
)
# Check for unknown keys
unknown_keys = [
k for k in config.keys() if k not in required and k not in optional
]
assert (
len(unknown_keys) == 0
), "Unknown key(s) {} in {}. Required keys : {} " "Optional Keys: {}".format(
unknown_keys,
cls.__name__,
required,
optional,
)
PipelineConfigurationKeys (ConfigKeys)
Keys for a pipeline configuration dict.
Source code in zenml/config/config_keys.py
class PipelineConfigurationKeys(ConfigKeys):
"""Keys for a pipeline configuration dict."""
NAME = "name"
STEPS = "steps"
StepConfigurationKeys (ConfigKeys)
Keys for a step configuration dict.
Source code in zenml/config/config_keys.py
class StepConfigurationKeys(ConfigKeys):
"""Keys for a step configuration dict."""
SOURCE_ = "source"
PARAMETERS_ = "parameters"
MATERIALIZERS_ = "materializers"
global_config
GlobalConfig (BaseModel)
pydantic-model
Stores global configuration options.
Configuration options are read from a config file, but can be overwritten
by environment variables. See GlobalConfig.__getattribute__
for more
details.
Attributes:
Name | Type | Description |
---|---|---|
user_id |
UUID |
Unique user id. |
analytics_opt_in |
bool |
If a user agreed to sending analytics or not. |
Source code in zenml/config/global_config.py
class GlobalConfig(BaseModel):
"""Stores global configuration options.
Configuration options are read from a config file, but can be overwritten
by environment variables. See `GlobalConfig.__getattribute__` for more
details.
Attributes:
user_id: Unique user id.
analytics_opt_in: If a user agreed to sending analytics or not.
"""
user_id: uuid.UUID = Field(default_factory=uuid.uuid4, allow_mutation=False)
analytics_opt_in: bool = True
def __init__(self) -> None:
"""Initializes a GlobalConfig object using values from the config file.
If the config file doesn't exist yet, we try to read values from the
legacy (ZenML version < 0.6) config file.
"""
config_values = self._read_config()
super().__init__(**config_values)
if not fileio.file_exists(self.config_file()):
# the config file hasn't been written to disk, make sure to persist
# the unique user id
fileio.create_dir_recursive_if_not_exists(self.config_directory())
self._write_config()
def __setattr__(self, key: str, value: Any) -> None:
"""Sets an attribute on the global config and persists the new value."""
super().__setattr__(key, value)
self._write_config()
def __getattribute__(self, key: str) -> Any:
"""Gets an attribute value for a specific key.
If a value for this attribute was specified using an environment
variable called `ZENML_$(ATTRIBUTE_NAME)` and its value can be parsed
to the attribute type, the value from this environment variable is
returned instead.
"""
value = super().__getattribute__(key)
environment_variable_name = f"ZENML_{key.upper()}"
try:
environment_variable_value = os.environ[environment_variable_name]
# set the environment variable value to leverage pydantics type
# conversion and validation
super().__setattr__(key, environment_variable_value)
return_value = super().__getattribute__(key)
# set back the old value as we don't want to permanently store
# the environment variable value here
super().__setattr__(key, value)
return return_value
except (ValidationError, KeyError, TypeError):
return value
def _read_config(self) -> Dict[str, Any]:
"""Reads configuration options from disk.
If the config file doesn't exist yet, this method falls back to reading
options from a legacy config file or returns an empty dictionary.
"""
legacy_config_file = os.path.join(
GlobalConfig.config_directory(), LEGACY_CONFIG_FILE_NAME
)
config_values = {}
if fileio.file_exists(self.config_file()):
config_values = cast(
Dict[str, Any], yaml_utils.read_yaml(self.config_file())
)
elif fileio.file_exists(legacy_config_file):
config_values = cast(
Dict[str, Any], yaml_utils.read_json(legacy_config_file)
)
return config_values
def _write_config(self) -> None:
"""Writes the global configuration options to disk."""
yaml_dict = json.loads(self.json())
yaml_utils.write_yaml(self.config_file(), yaml_dict)
@staticmethod
def config_directory() -> str:
"""Path to the global configuration directory."""
return get_global_config_directory()
@staticmethod
def config_file() -> str:
"""Path to the file where global configuration options are stored."""
return os.path.join(GlobalConfig.config_directory(), "config.yaml")
class Config:
"""Pydantic configuration class."""
# Validate attributes when assigning them. We need to set this in order
# to have a mix of mutable and immutable attributes
validate_assignment = True
# Ignore extra attributes from configs of previous ZenML versions
extra = "ignore"
Config
Pydantic configuration class.
Source code in zenml/config/global_config.py
class Config:
"""Pydantic configuration class."""
# Validate attributes when assigning them. We need to set this in order
# to have a mix of mutable and immutable attributes
validate_assignment = True
# Ignore extra attributes from configs of previous ZenML versions
extra = "ignore"
__getattribute__(self, key)
special
Gets an attribute value for a specific key.
If a value for this attribute was specified using an environment
variable called ZENML_$(ATTRIBUTE_NAME)
and its value can be parsed
to the attribute type, the value from this environment variable is
returned instead.
Source code in zenml/config/global_config.py
def __getattribute__(self, key: str) -> Any:
"""Gets an attribute value for a specific key.
If a value for this attribute was specified using an environment
variable called `ZENML_$(ATTRIBUTE_NAME)` and its value can be parsed
to the attribute type, the value from this environment variable is
returned instead.
"""
value = super().__getattribute__(key)
environment_variable_name = f"ZENML_{key.upper()}"
try:
environment_variable_value = os.environ[environment_variable_name]
# set the environment variable value to leverage pydantics type
# conversion and validation
super().__setattr__(key, environment_variable_value)
return_value = super().__getattribute__(key)
# set back the old value as we don't want to permanently store
# the environment variable value here
super().__setattr__(key, value)
return return_value
except (ValidationError, KeyError, TypeError):
return value
__init__(self)
special
Initializes a GlobalConfig object using values from the config file.
If the config file doesn't exist yet, we try to read values from the legacy (ZenML version < 0.6) config file.
Source code in zenml/config/global_config.py
def __init__(self) -> None:
"""Initializes a GlobalConfig object using values from the config file.
If the config file doesn't exist yet, we try to read values from the
legacy (ZenML version < 0.6) config file.
"""
config_values = self._read_config()
super().__init__(**config_values)
if not fileio.file_exists(self.config_file()):
# the config file hasn't been written to disk, make sure to persist
# the unique user id
fileio.create_dir_recursive_if_not_exists(self.config_directory())
self._write_config()
__setattr__(self, key, value)
special
Sets an attribute on the global config and persists the new value.
Source code in zenml/config/global_config.py
def __setattr__(self, key: str, value: Any) -> None:
"""Sets an attribute on the global config and persists the new value."""
super().__setattr__(key, value)
self._write_config()
config_directory()
staticmethod
Path to the global configuration directory.
Source code in zenml/config/global_config.py
@staticmethod
def config_directory() -> str:
"""Path to the global configuration directory."""
return get_global_config_directory()
config_file()
staticmethod
Path to the file where global configuration options are stored.
Source code in zenml/config/global_config.py
@staticmethod
def config_file() -> str:
"""Path to the file where global configuration options are stored."""
return os.path.join(GlobalConfig.config_directory(), "config.yaml")