Skip to content

Artifacts

zenml.artifacts special

artifact_config

Artifact Config classes to support Model Control Plane feature.

ArtifactConfig (BaseModel) pydantic-model

Artifact configuration class.

Can be used in step definitions to define various artifact properties.

Examples:

@step
def my_step() -> Annotated[
    int, ArtifactConfig(
        name="my_artifact",  # override the default artifact name
        version=42,  # set a custom version
        tags=["tag1", "tag2"],  # set custom tags
        model_name="my_model",  # link the artifact to a model
    )
]:
    return ...

Attributes:

Name Type Description
name Optional[str]

The name of the artifact.

version Union[int, str]

The version of the artifact.

tags Optional[List[str]]

The tags of the artifact.

model_name Optional[str]

The name of the model to link artifact to.

model_version Union[zenml.enums.ModelStages, str, int]

The identifier of the model version to link the artifact to. It can be an exact version ("my_version"), exact version number (42), stage (ModelStages.PRODUCTION or "production"), or (ModelStages.LATEST or None) for the latest version (default).

is_model_artifact bool

Whether the artifact is a model artifact.

is_deployment_artifact bool

Whether the artifact is a deployment artifact.

Source code in zenml/artifacts/artifact_config.py
class ArtifactConfig(BaseModel):
    """Artifact configuration class.

    Can be used in step definitions to define various artifact properties.

    Example:
    ```python
    @step
    def my_step() -> Annotated[
        int, ArtifactConfig(
            name="my_artifact",  # override the default artifact name
            version=42,  # set a custom version
            tags=["tag1", "tag2"],  # set custom tags
            model_name="my_model",  # link the artifact to a model
        )
    ]:
        return ...
    ```

    Attributes:
        name: The name of the artifact.
        version: The version of the artifact.
        tags: The tags of the artifact.
        model_name: The name of the model to link artifact to.
        model_version: The identifier of the model version to link the artifact
            to. It can be an exact version ("my_version"), exact version number
            (42), stage (ModelStages.PRODUCTION or "production"), or
            (ModelStages.LATEST or None) for the latest version (default).
        is_model_artifact: Whether the artifact is a model artifact.
        is_deployment_artifact: Whether the artifact is a deployment artifact.
    """

    name: Optional[str] = None
    version: Optional[Union[str, int]] = None
    tags: Optional[List[str]] = None

    model_name: Optional[str] = None
    model_version: Optional[Union[ModelStages, str, int]] = None
    is_model_artifact: bool = False
    is_deployment_artifact: bool = False

    @root_validator
    def _root_validator(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        model_name = values.get("model_name", None)
        if model_name and values.get("model_version", None) is None:
            raise ValueError(
                f"Creation of new model version from `{cls}` is not allowed. "
                "Please either keep `model_name` and `model_version` both "
                "`None` to get the model version from the step context or "
                "specify both at the same time. You can use `ModelStages.LATEST` "
                "as `model_version` when latest model version is desired."
            )
        return values

    class Config:
        """Config class for ArtifactConfig."""

        smart_union = True

    @property
    def _model_version(self) -> Optional["ModelVersion"]:
        """The model version linked to this artifact.

        Returns:
            The model version or None if the model version cannot be determined.
        """
        try:
            model_version = get_step_context().model_version
        except (StepContextError, RuntimeError):
            model_version = None
        # Check if another model name was specified
        if (self.model_name is not None) and (
            model_version is None or model_version.name != self.model_name
        ):
            # Create a new ModelConfig instance with the provided model name and version
            from zenml.model.model_version import ModelVersion

            on_the_fly_config = ModelVersion(
                name=self.model_name, version=self.model_version
            )
            return on_the_fly_config

        return model_version
Config

Config class for ArtifactConfig.

Source code in zenml/artifacts/artifact_config.py
class Config:
    """Config class for ArtifactConfig."""

    smart_union = True

external_artifact

External artifact definition.

ExternalArtifact (ExternalArtifactConfiguration) pydantic-model

External artifacts can be used to provide values as input to ZenML steps.

ZenML steps accept either artifacts (=outputs of other steps), parameters (raw, JSON serializable values) or external artifacts. External artifacts can be used to provide any value as input to a step without needing to write an additional step that returns this value.

The external artifact needs to have either a value associated with it that will be uploaded to the artifact store, or reference an artifact that is already registered in ZenML.

There are several ways to reference an existing artifact: - By providing an artifact ID. - By providing an artifact name and version. If no version is provided, the latest version of that artifact will be used.

Parameters:

Name Type Description Default
value

The artifact value.

required
id

The ID of an artifact that should be referenced by this external artifact.

required
name

Name of an artifact to search. If none of version, pipeline_run_name, or pipeline_name are set, the latest version of the artifact will be used.

required
version

Version of the artifact to search. Only used when name is provided. Cannot be used together with model_version.

required
model_version

The model version to search in. Only used when name is provided. Cannot be used together with version.

required
materializer

The materializer to use for saving the artifact value to the artifact store. Only used when value is provided.

required
store_artifact_metadata

Whether metadata for the artifact should be stored. Only used when value is provided.

required
store_artifact_visualizations

Whether visualizations for the artifact should be stored. Only used when value is provided.

required

Examples:

from zenml import step, pipeline
from zenml.artifacts.external_artifact import ExternalArtifact
import numpy as np

@step
def my_step(value: np.ndarray) -> None:
  print(value)

my_array = np.array([1, 2, 3])

@pipeline
def my_pipeline():
  my_step(value=ExternalArtifact(my_array))
Source code in zenml/artifacts/external_artifact.py
class ExternalArtifact(ExternalArtifactConfiguration):
    """External artifacts can be used to provide values as input to ZenML steps.

    ZenML steps accept either artifacts (=outputs of other steps), parameters
    (raw, JSON serializable values) or external artifacts. External artifacts
    can be used to provide any value as input to a step without needing to
    write an additional step that returns this value.

    The external artifact needs to have either a value associated with it
    that will be uploaded to the artifact store, or reference an artifact
    that is already registered in ZenML.

    There are several ways to reference an existing artifact:
    - By providing an artifact ID.
    - By providing an artifact name and version. If no version is provided,
        the latest version of that artifact will be used.

    Args:
        value: The artifact value.
        id: The ID of an artifact that should be referenced by this external
            artifact.
        name: Name of an artifact to search. If none of
            `version`, `pipeline_run_name`, or `pipeline_name` are set, the
            latest version of the artifact will be used.
        version: Version of the artifact to search. Only used when `name` is
            provided. Cannot be used together with `model_version`.
        model_version: The model version to search in. Only used when `name`
            is provided. Cannot be used together with `version`.
        materializer: The materializer to use for saving the artifact value
            to the artifact store. Only used when `value` is provided.
        store_artifact_metadata: Whether metadata for the artifact should
            be stored. Only used when `value` is provided.
        store_artifact_visualizations: Whether visualizations for the
            artifact should be stored. Only used when `value` is provided.

    Example:
    ```
    from zenml import step, pipeline
    from zenml.artifacts.external_artifact import ExternalArtifact
    import numpy as np

    @step
    def my_step(value: np.ndarray) -> None:
      print(value)

    my_array = np.array([1, 2, 3])

    @pipeline
    def my_pipeline():
      my_step(value=ExternalArtifact(my_array))
    ```
    """

    value: Optional[Any] = None
    materializer: Optional[MaterializerClassOrSource] = None
    store_artifact_metadata: bool = True
    store_artifact_visualizations: bool = True

    @root_validator
    def _validate_all(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        options = [
            values.get(field, None) is not None
            for field in ["value", "id", "name"]
        ]
        if sum(options) > 1:
            raise ValueError(
                "Only one of `value`, `id`, or `name` can be provided when "
                "creating an external artifact."
            )
        elif sum(options) == 0:
            raise ValueError(
                "Either `value`, `id`, or `name` must be provided when "
                "creating an external artifact."
            )
        return values

    def upload_by_value(self) -> UUID:
        """Uploads the artifact by value.

        Returns:
            The uploaded artifact ID.
        """
        from zenml.artifacts.utils import save_artifact

        artifact_name = f"external_{uuid4()}"
        uri = os.path.join("external_artifacts", artifact_name)
        logger.info("Uploading external artifact to '%s'.", uri)

        artifact = save_artifact(
            name=artifact_name,
            data=self.value,
            extract_metadata=self.store_artifact_metadata,
            include_visualizations=self.store_artifact_visualizations,
            materializer=self.materializer,
            uri=uri,
            has_custom_name=False,
            manual_save=False,
        )

        # To avoid duplicate uploads, switch to referencing the uploaded
        # artifact by ID
        self.id = artifact.id
        self.value = None

        logger.info("Finished uploading external artifact %s.", self.id)
        return self.id

    @property
    def config(self) -> ExternalArtifactConfiguration:
        """Returns the lightweight config without hard for JSON properties.

        Returns:
            The config object to be evaluated in runtime by step interface.
        """
        return ExternalArtifactConfiguration(
            id=self.id,
            name=self.name,
            version=self.version,
            model_version=self.model_version,
        )
config: ExternalArtifactConfiguration property readonly

Returns the lightweight config without hard for JSON properties.

Returns:

Type Description
ExternalArtifactConfiguration

The config object to be evaluated in runtime by step interface.

upload_by_value(self)

Uploads the artifact by value.

Returns:

Type Description
UUID

The uploaded artifact ID.

Source code in zenml/artifacts/external_artifact.py
def upload_by_value(self) -> UUID:
    """Uploads the artifact by value.

    Returns:
        The uploaded artifact ID.
    """
    from zenml.artifacts.utils import save_artifact

    artifact_name = f"external_{uuid4()}"
    uri = os.path.join("external_artifacts", artifact_name)
    logger.info("Uploading external artifact to '%s'.", uri)

    artifact = save_artifact(
        name=artifact_name,
        data=self.value,
        extract_metadata=self.store_artifact_metadata,
        include_visualizations=self.store_artifact_visualizations,
        materializer=self.materializer,
        uri=uri,
        has_custom_name=False,
        manual_save=False,
    )

    # To avoid duplicate uploads, switch to referencing the uploaded
    # artifact by ID
    self.id = artifact.id
    self.value = None

    logger.info("Finished uploading external artifact %s.", self.id)
    return self.id

external_artifact_config

External artifact definition.

ExternalArtifactConfiguration (BaseModel) pydantic-model

External artifact configuration.

Lightweight class to pass in the steps for runtime inference.

Source code in zenml/artifacts/external_artifact_config.py
class ExternalArtifactConfiguration(BaseModel):
    """External artifact configuration.

    Lightweight class to pass in the steps for runtime inference.
    """

    id: Optional[UUID] = None
    name: Optional[str] = None
    version: Optional[str] = None
    model_version: Optional[ModelVersion] = None

    @root_validator
    def _validate_all_eac(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        if values.get("version", None) and values.get("model_version", None):
            raise ValueError(
                "Cannot provide both `version` and `model_version` when "
                "creating an external artifact."
            )
        return values

    def get_artifact_version_id(self) -> UUID:
        """Get the artifact.

        Returns:
            The artifact ID.

        Raises:
            RuntimeError: If the artifact store of the referenced artifact
                is not the same as the one in the active stack.
            RuntimeError: If neither the ID nor the name of the artifact was
                provided.
        """
        from zenml.client import Client

        client = Client()

        if self.id:
            response = client.get_artifact_version(self.id)
        elif self.name:
            if self.version:
                response = client.get_artifact_version(
                    self.name, version=self.version
                )
            elif self.model_version:
                response_ = self.model_version.get_artifact(self.name)
                if not isinstance(response_, ArtifactVersionResponse):
                    raise RuntimeError(
                        f"Failed to pull artifact `{self.name}` from the Model "
                        f"Version (name=`{self.model_version.name}`, version="
                        f"`{self.model_version.version}`). Please validate the "
                        "input and try again."
                    )
                response = response_
            else:
                response = client.get_artifact_version(self.name)
        else:
            raise RuntimeError(
                "Either the ID or name of the artifact must be provided. "
                "If you created this ExternalArtifact from a value, please "
                "ensure that `upload_by_value` was called before trying to "
                "fetch the artifact ID."
            )

        artifact_store_id = client.active_stack.artifact_store.id
        if response.artifact_store_id != artifact_store_id:
            raise RuntimeError(
                f"The artifact {response.name} (ID: {response.id}) "
                "referenced by an external artifact is not stored in the "
                "artifact store of the active stack. This will lead to "
                "issues loading the artifact. Please make sure to only "
                "reference artifact versions stored in your active artifact "
                "store."
            )

        self.id = response.id

        return self.id
get_artifact_version_id(self)

Get the artifact.

Returns:

Type Description
UUID

The artifact ID.

Exceptions:

Type Description
RuntimeError

If the artifact store of the referenced artifact is not the same as the one in the active stack.

RuntimeError

If neither the ID nor the name of the artifact was provided.

Source code in zenml/artifacts/external_artifact_config.py
def get_artifact_version_id(self) -> UUID:
    """Get the artifact.

    Returns:
        The artifact ID.

    Raises:
        RuntimeError: If the artifact store of the referenced artifact
            is not the same as the one in the active stack.
        RuntimeError: If neither the ID nor the name of the artifact was
            provided.
    """
    from zenml.client import Client

    client = Client()

    if self.id:
        response = client.get_artifact_version(self.id)
    elif self.name:
        if self.version:
            response = client.get_artifact_version(
                self.name, version=self.version
            )
        elif self.model_version:
            response_ = self.model_version.get_artifact(self.name)
            if not isinstance(response_, ArtifactVersionResponse):
                raise RuntimeError(
                    f"Failed to pull artifact `{self.name}` from the Model "
                    f"Version (name=`{self.model_version.name}`, version="
                    f"`{self.model_version.version}`). Please validate the "
                    "input and try again."
                )
            response = response_
        else:
            response = client.get_artifact_version(self.name)
    else:
        raise RuntimeError(
            "Either the ID or name of the artifact must be provided. "
            "If you created this ExternalArtifact from a value, please "
            "ensure that `upload_by_value` was called before trying to "
            "fetch the artifact ID."
        )

    artifact_store_id = client.active_stack.artifact_store.id
    if response.artifact_store_id != artifact_store_id:
        raise RuntimeError(
            f"The artifact {response.name} (ID: {response.id}) "
            "referenced by an external artifact is not stored in the "
            "artifact store of the active stack. This will lead to "
            "issues loading the artifact. Please make sure to only "
            "reference artifact versions stored in your active artifact "
            "store."
        )

    self.id = response.id

    return self.id

unmaterialized_artifact

Unmaterialized artifact class.

UnmaterializedArtifact (ArtifactVersionResponse) pydantic-model

Unmaterialized artifact class.

Typing a step input to have this type will cause ZenML to not materialize the artifact. This is useful for steps that need to access the artifact metadata instead of the actual artifact data.

Usage example:

from zenml import step
from zenml.artifacts.unmaterialized_artifact import UnmaterializedArtifact

@step
def my_step(input_artifact: UnmaterializedArtifact):
    print(input_artifact.uri)
Source code in zenml/artifacts/unmaterialized_artifact.py
class UnmaterializedArtifact(ArtifactVersionResponse):
    """Unmaterialized artifact class.

    Typing a step input to have this type will cause ZenML to not materialize
    the artifact. This is useful for steps that need to access the artifact
    metadata instead of the actual artifact data.

    Usage example:

    ```python
    from zenml import step
    from zenml.artifacts.unmaterialized_artifact import UnmaterializedArtifact

    @step
    def my_step(input_artifact: UnmaterializedArtifact):
        print(input_artifact.uri)
    ```
    """
__json_encoder__(obj) special staticmethod

partial(func, args, *keywords) - new function with partial application of the given arguments and keywords.

utils

Utility functions for handling artifacts.

get_artifacts_versions_of_pipeline_run(pipeline_run, only_produced=False)

Get all artifact versions produced during a pipeline run.

Parameters:

Name Type Description Default
pipeline_run PipelineRunResponse

The pipeline run.

required
only_produced bool

If only artifact versions produced by the pipeline run should be returned or also cached artifact versions.

False

Returns:

Type Description
List[ArtifactVersionResponse]

A list of all artifact versions produced during the pipeline run.

Source code in zenml/artifacts/utils.py
def get_artifacts_versions_of_pipeline_run(
    pipeline_run: "PipelineRunResponse", only_produced: bool = False
) -> List["ArtifactVersionResponse"]:
    """Get all artifact versions produced during a pipeline run.

    Args:
        pipeline_run: The pipeline run.
        only_produced: If only artifact versions produced by the pipeline run
            should be returned or also cached artifact versions.

    Returns:
        A list of all artifact versions produced during the pipeline run.
    """
    artifact_versions: List["ArtifactVersionResponse"] = []
    for step in pipeline_run.steps.values():
        if not only_produced or step.status == ExecutionStatus.COMPLETED:
            artifact_versions.extend(step.outputs.values())
    return artifact_versions

get_producer_step_of_artifact(artifact)

Get the step run that produced a given artifact.

Parameters:

Name Type Description Default
artifact ArtifactVersionResponse

The artifact.

required

Returns:

Type Description
StepRunResponse

The step run that produced the artifact.

Exceptions:

Type Description
RuntimeError

If the run that created the artifact no longer exists.

Source code in zenml/artifacts/utils.py
def get_producer_step_of_artifact(
    artifact: "ArtifactVersionResponse",
) -> "StepRunResponse":
    """Get the step run that produced a given artifact.

    Args:
        artifact: The artifact.

    Returns:
        The step run that produced the artifact.

    Raises:
        RuntimeError: If the run that created the artifact no longer exists.
    """
    if not artifact.producer_step_run_id:
        raise RuntimeError(
            f"The run that produced the artifact with id '{artifact.id}' no "
            "longer exists. This can happen if the run was deleted."
        )
    return Client().get_run_step(artifact.producer_step_run_id)

load_artifact(name_or_id, version=None)

Load an artifact.

Parameters:

Name Type Description Default
name_or_id Union[str, uuid.UUID]

The name or ID of the artifact to load.

required
version Optional[str]

The version of the artifact to load, if name_or_id is a name. If not provided, the latest version will be loaded.

None

Returns:

Type Description
Any

The loaded artifact.

Source code in zenml/artifacts/utils.py
def load_artifact(
    name_or_id: Union[str, UUID],
    version: Optional[str] = None,
) -> Any:
    """Load an artifact.

    Args:
        name_or_id: The name or ID of the artifact to load.
        version: The version of the artifact to load, if `name_or_id` is a
            name. If not provided, the latest version will be loaded.

    Returns:
        The loaded artifact.
    """
    artifact = Client().get_artifact_version(name_or_id, version)
    try:
        step_run = get_step_context().step_run
        client = Client()
        client.zen_store.update_run_step(
            step_run_id=step_run.id,
            step_run_update=StepRunUpdate(
                loaded_artifact_versions={artifact.name: artifact.id}
            ),
        )
    except RuntimeError:
        pass  # Cannot link to step run if called outside of a step
    return load_artifact_from_response(artifact)

load_artifact_from_response(artifact)

Load the given artifact into memory.

Parameters:

Name Type Description Default
artifact ArtifactVersionResponse

The artifact to load.

required

Returns:

Type Description
Any

The artifact loaded into memory.

Source code in zenml/artifacts/utils.py
def load_artifact_from_response(artifact: "ArtifactVersionResponse") -> Any:
    """Load the given artifact into memory.

    Args:
        artifact: The artifact to load.

    Returns:
        The artifact loaded into memory.
    """
    artifact_store_loaded = False
    if artifact.artifact_store_id:
        try:
            artifact_store_model = Client().get_stack_component(
                component_type=StackComponentType.ARTIFACT_STORE,
                name_id_or_prefix=artifact.artifact_store_id,
            )
            _ = StackComponent.from_model(artifact_store_model)
            artifact_store_loaded = True
        except (KeyError, ImportError):
            pass

    if not artifact_store_loaded:
        logger.warning(
            "Unable to restore artifact store while trying to load artifact "
            "`%s`. If this artifact is stored in a remote artifact store, "
            "this might lead to issues when trying to load the artifact.",
            artifact.id,
        )

    return _load_artifact_from_uri(
        materializer=artifact.materializer,
        data_type=artifact.data_type,
        uri=artifact.uri,
    )

load_artifact_visualization(artifact, index=0, zen_store=None, encode_image=False)

Load a visualization of the given artifact.

Parameters:

Name Type Description Default
artifact ArtifactVersionResponse

The artifact to visualize.

required
index int

The index of the visualization to load.

0
zen_store Optional[BaseZenStore]

The ZenStore to use for finding the artifact store. If not provided, the client's ZenStore will be used.

None
encode_image bool

Whether to base64 encode image visualizations.

False

Returns:

Type Description
LoadedVisualization

The loaded visualization.

Exceptions:

Type Description
DoesNotExistException

If the artifact does not have the requested visualization or if the visualization was not found in the artifact store.

Source code in zenml/artifacts/utils.py
def load_artifact_visualization(
    artifact: "ArtifactVersionResponse",
    index: int = 0,
    zen_store: Optional["BaseZenStore"] = None,
    encode_image: bool = False,
) -> LoadedVisualization:
    """Load a visualization of the given artifact.

    Args:
        artifact: The artifact to visualize.
        index: The index of the visualization to load.
        zen_store: The ZenStore to use for finding the artifact store. If not
            provided, the client's ZenStore will be used.
        encode_image: Whether to base64 encode image visualizations.

    Returns:
        The loaded visualization.

    Raises:
        DoesNotExistException: If the artifact does not have the requested
            visualization or if the visualization was not found in the artifact
            store.
    """
    # Get the visualization to load
    if not artifact.visualizations:
        raise DoesNotExistException(
            f"Artifact '{artifact.id}' has no visualizations."
        )
    if index < 0 or index >= len(artifact.visualizations):
        raise DoesNotExistException(
            f"Artifact '{artifact.id}' only has {len(artifact.visualizations)} "
            f"visualizations, but index {index} was requested."
        )
    visualization = artifact.visualizations[index]

    # Load the visualization from the artifact's artifact store
    if not artifact.artifact_store_id:
        raise DoesNotExistException(
            f"Artifact '{artifact.id}' cannot be visualized because the "
            "underlying artifact store was deleted."
        )
    artifact_store = _load_artifact_store(
        artifact_store_id=artifact.artifact_store_id, zen_store=zen_store
    )
    mode = "rb" if visualization.type == VisualizationType.IMAGE else "r"
    value = _load_file_from_artifact_store(
        uri=visualization.uri,
        artifact_store=artifact_store,
        mode=mode,
    )

    # Encode image visualizations if requested
    if visualization.type == VisualizationType.IMAGE and encode_image:
        value = base64.b64encode(bytes(value))

    return LoadedVisualization(type=visualization.type, value=value)

load_model_from_metadata(model_uri)

Load a zenml model artifact from a json file.

This function is used to load information from a Yaml file that was created by the save_model_metadata function. The information in the Yaml file is used to load the model into memory in the inference environment.

Parameters:

Name Type Description Default
model_uri str

the artifact to extract the metadata from.

required

Returns:

Type Description
Any

The ML model object loaded into memory.

Source code in zenml/artifacts/utils.py
def load_model_from_metadata(model_uri: str) -> Any:
    """Load a zenml model artifact from a json file.

    This function is used to load information from a Yaml file that was created
    by the save_model_metadata function. The information in the Yaml file is
    used to load the model into memory in the inference environment.

    Args:
        model_uri: the artifact to extract the metadata from.

    Returns:
        The ML model object loaded into memory.
    """
    # Load the model from its metadata
    with fileio.open(
        os.path.join(model_uri, MODEL_METADATA_YAML_FILE_NAME), "r"
    ) as f:
        metadata = read_yaml(f.name)
    data_type = metadata["datatype"]
    materializer = metadata["materializer"]
    model = _load_artifact_from_uri(
        materializer=materializer, data_type=data_type, uri=model_uri
    )

    # Switch to eval mode if the model is a torch model
    try:
        import torch.nn as nn

        if isinstance(model, nn.Module):
            model.eval()
    except ImportError:
        pass

    return model

log_artifact_metadata(metadata, artifact_name=None, artifact_version=None)

Log artifact metadata.

This function can be used to log metadata for either existing artifact versions or artifact versions that are newly created in the same step.

Parameters:

Name Type Description Default
metadata Dict[str, MetadataType]

The metadata to log.

required
artifact_name Optional[str]

The name of the artifact to log metadata for. Can be omitted when being called inside a step with only one output.

None
artifact_version Optional[str]

The version of the artifact to log metadata for. If not provided, when being called inside a step that produces an artifact named artifact_name, the metadata will be associated to the corresponding newly created artifact. Or, if not provided when being called outside of a step, or in a step that does not produce any artifact named artifact_name, the metadata will be associated to the latest version of that artifact.

None

Exceptions:

Type Description
ValueError

If no artifact name is provided and the function is not called inside a step with a single output, or, if neither an artifact nor an output with the given name exists.

Source code in zenml/artifacts/utils.py
def log_artifact_metadata(
    metadata: Dict[str, "MetadataType"],
    artifact_name: Optional[str] = None,
    artifact_version: Optional[str] = None,
) -> None:
    """Log artifact metadata.

    This function can be used to log metadata for either existing artifact
    versions or artifact versions that are newly created in the same step.

    Args:
        metadata: The metadata to log.
        artifact_name: The name of the artifact to log metadata for. Can
            be omitted when being called inside a step with only one output.
        artifact_version: The version of the artifact to log metadata for. If
            not provided, when being called inside a step that produces an
            artifact named `artifact_name`, the metadata will be associated to
            the corresponding newly created artifact. Or, if not provided when
            being called outside of a step, or in a step that does not produce
            any artifact named `artifact_name`, the metadata will be associated
            to the latest version of that artifact.

    Raises:
        ValueError: If no artifact name is provided and the function is not
            called inside a step with a single output, or, if neither an
            artifact nor an output with the given name exists.
    """
    try:
        step_context = get_step_context()
        in_step_outputs = (artifact_name in step_context._outputs) or (
            not artifact_name and len(step_context._outputs) == 1
        )
    except RuntimeError:
        step_context = None
        in_step_outputs = False

    if not step_context or not in_step_outputs or artifact_version:
        if not artifact_name:
            raise ValueError(
                "Artifact name must be provided unless the function is called "
                "inside a step with a single output."
            )
        client = Client()
        response = client.get_artifact_version(artifact_name, artifact_version)
        client.create_run_metadata(
            metadata=metadata,
            resource_id=response.id,
            resource_type=MetadataResourceTypes.ARTIFACT_VERSION,
        )

    else:
        try:
            step_context.add_output_metadata(
                metadata=metadata, output_name=artifact_name
            )
        except StepContextError as e:
            raise ValueError(e)

save_artifact(data, name, version=None, tags=None, extract_metadata=True, include_visualizations=True, has_custom_name=True, user_metadata=None, materializer=None, uri=None, manual_save=True)

Upload and publish an artifact.

Parameters:

Name Type Description Default
name str

The name of the artifact.

required
data Any

The artifact data.

required
version Union[int, str]

The version of the artifact. If not provided, a new auto-incremented version will be used.

None
tags Optional[List[str]]

Tags to associate with the artifact.

None
extract_metadata bool

If artifact metadata should be extracted and returned.

True
include_visualizations bool

If artifact visualizations should be generated.

True
has_custom_name bool

If the artifact name is custom and should be listed in the dashboard "Artifacts" tab.

True
user_metadata Optional[Dict[str, MetadataType]]

User-provided metadata to store with the artifact.

None
materializer Optional[MaterializerClassOrSource]

The materializer to use for saving the artifact to the artifact store.

None
uri Optional[str]

The URI within the artifact store to upload the artifact to. If not provided, the artifact will be uploaded to custom_artifacts/{name}/{version}.

None
manual_save bool

If this function is called manually and should therefore link the artifact to the current step run.

True

Returns:

Type Description
ArtifactVersionResponse

The saved artifact response.

Exceptions:

Type Description
RuntimeError

If artifact URI already exists.

Source code in zenml/artifacts/utils.py
def save_artifact(
    data: Any,
    name: str,
    version: Optional[Union[int, str]] = None,
    tags: Optional[List[str]] = None,
    extract_metadata: bool = True,
    include_visualizations: bool = True,
    has_custom_name: bool = True,
    user_metadata: Optional[Dict[str, "MetadataType"]] = None,
    materializer: Optional["MaterializerClassOrSource"] = None,
    uri: Optional[str] = None,
    manual_save: bool = True,
) -> "ArtifactVersionResponse":
    """Upload and publish an artifact.

    Args:
        name: The name of the artifact.
        data: The artifact data.
        version: The version of the artifact. If not provided, a new
            auto-incremented version will be used.
        tags: Tags to associate with the artifact.
        extract_metadata: If artifact metadata should be extracted and returned.
        include_visualizations: If artifact visualizations should be generated.
        has_custom_name: If the artifact name is custom and should be listed in
            the dashboard "Artifacts" tab.
        user_metadata: User-provided metadata to store with the artifact.
        materializer: The materializer to use for saving the artifact to the
            artifact store.
        uri: The URI within the artifact store to upload the artifact
            to. If not provided, the artifact will be uploaded to
            `custom_artifacts/{name}/{version}`.
        manual_save: If this function is called manually and should therefore
            link the artifact to the current step run.

    Returns:
        The saved artifact response.

    Raises:
        RuntimeError: If artifact URI already exists.
    """
    from zenml.materializers.materializer_registry import (
        materializer_registry,
    )
    from zenml.utils import source_utils

    # TODO: Can we handle this server side? If we leave it empty in the request,
    # it's an auto-increase?
    # TODO: This can probably lead to issues when multiple steps request a new
    # artifact version at the same time?
    # Get new artifact version if not specified
    version = version or _get_new_artifact_version(name)

    # Get the current artifact store
    client = Client()
    artifact_store = client.active_stack.artifact_store

    # Build and check the artifact URI
    if not uri:
        uri = os.path.join("custom_artifacts", name, str(version))
    if not uri.startswith(artifact_store.path):
        uri = os.path.join(artifact_store.path, uri)
    if manual_save and fileio.exists(uri):
        # This check is only necessary for manual saves as we already check
        # it when creating the directory for step output artifacts
        other_artifacts = client.list_artifact_versions(uri=uri, size=1)
        if other_artifacts and (other_artifact := other_artifacts[0]):
            raise RuntimeError(
                f"Cannot save artifact {name} (version {version}) to URI "
                f"{uri} because the URI is already used by artifact "
                f"{other_artifact.name} (version {other_artifact.version})."
            )
    fileio.makedirs(uri)

    # Find and initialize the right materializer class
    if isinstance(materializer, type):
        materializer_class = materializer
    elif materializer:
        materializer_class = source_utils.load_and_validate_class(
            materializer, expected_class=BaseMaterializer
        )
    else:
        materializer_class = materializer_registry[type(data)]
    materializer_object = materializer_class(uri)

    # Save the artifact to the artifact store
    data_type = type(data)
    materializer_object.validate_type_compatibility(data_type)
    materializer_object.save(data)

    # Save visualizations of the artifact
    visualizations: List[ArtifactVisualizationRequest] = []
    if include_visualizations:
        try:
            vis_data = materializer_object.save_visualizations(data)
            for vis_uri, vis_type in vis_data.items():
                vis_model = ArtifactVisualizationRequest(
                    type=vis_type,
                    uri=vis_uri,
                )
                visualizations.append(vis_model)
        except Exception as e:
            logger.warning(
                f"Failed to save visualization for output artifact '{name}': "
                f"{e}"
            )

    # Save metadata of the artifact
    artifact_metadata: Dict[str, "MetadataType"] = {}
    if extract_metadata:
        try:
            artifact_metadata = materializer_object.extract_full_metadata(data)
            artifact_metadata.update(user_metadata or {})
        except Exception as e:
            logger.warning(
                f"Failed to extract metadata for output artifact '{name}': {e}"
            )

    # Get or create the artifact
    try:
        artifact = client.list_artifacts(name=name)[0]
    except IndexError:
        artifact = client.zen_store.create_artifact(
            ArtifactRequest(
                name=name,
                has_custom_name=has_custom_name,
            )
        )

    # Create the artifact version
    artifact_version = ArtifactVersionRequest(
        artifact_id=artifact.id,
        version=version,
        tags=tags,
        type=materializer_object.ASSOCIATED_ARTIFACT_TYPE,
        uri=materializer_object.uri,
        materializer=source_utils.resolve(materializer_object.__class__),
        data_type=source_utils.resolve(data_type),
        user=Client().active_user.id,
        workspace=Client().active_workspace.id,
        artifact_store_id=artifact_store.id,
        visualizations=visualizations,
        has_custom_name=has_custom_name,
    )
    response = Client().zen_store.create_artifact_version(
        artifact_version=artifact_version
    )
    if artifact_metadata:
        Client().create_run_metadata(
            metadata=artifact_metadata,
            resource_id=response.id,
            resource_type=MetadataResourceTypes.ARTIFACT_VERSION,
        )

    if manual_save:
        try:
            step_run = get_step_context().step_run
            client.zen_store.update_run_step(
                step_run_id=step_run.id,
                step_run_update=StepRunUpdate(
                    saved_artifact_versions={name: response.id}
                ),
            )
        except RuntimeError:
            logger.debug("Unable to link saved artifact to step run.")

    return response

save_model_metadata(model_artifact)

Save a zenml model artifact metadata to a YAML file.

This function is used to extract and save information from a zenml model artifact such as the model type and materializer. The extracted information will be the key to loading the model into memory in the inference environment.

datatype: the model type. This is the path to the model class. materializer: The path to the materializer class.

Parameters:

Name Type Description Default
model_artifact ArtifactVersionResponse

the artifact to extract the metadata from.

required

Returns:

Type Description
str

The path to the temporary file where the model metadata is saved

Source code in zenml/artifacts/utils.py
def save_model_metadata(model_artifact: "ArtifactVersionResponse") -> str:
    """Save a zenml model artifact metadata to a YAML file.

    This function is used to extract and save information from a zenml model
    artifact such as the model type and materializer. The extracted information
    will be the key to loading the model into memory in the inference
    environment.

    datatype: the model type. This is the path to the model class.
    materializer: The path to the materializer class.

    Args:
        model_artifact: the artifact to extract the metadata from.

    Returns:
        The path to the temporary file where the model metadata is saved
    """
    metadata = dict()
    metadata["datatype"] = model_artifact.data_type
    metadata["materializer"] = model_artifact.materializer

    with tempfile.NamedTemporaryFile(
        mode="w", suffix=".yaml", delete=False
    ) as f:
        write_yaml(f.name, metadata)
    return f.name