Pycaret
zenml.integrations.pycaret
special
Initialization of the PyCaret integration.
PyCaretIntegration (Integration)
Definition of PyCaret integration for ZenML.
Source code in zenml/integrations/pycaret/__init__.py
class PyCaretIntegration(Integration):
"""Definition of PyCaret integration for ZenML."""
NAME = PYCARET
REQUIREMENTS = [
"pycaret>=3.0.0",
"scikit-learn",
"xgboost",
"catboost",
"lightgbm",
]
@classmethod
def activate(cls) -> None:
"""Activates the integration."""
from zenml.integrations.pycaret import materializers # noqa
activate()
classmethod
Activates the integration.
Source code in zenml/integrations/pycaret/__init__.py
@classmethod
def activate(cls) -> None:
"""Activates the integration."""
from zenml.integrations.pycaret import materializers # noqa
materializers
special
Initialization for the PyCaret materializers.
model_materializer
PyCaret materializer.
PyCaretMaterializer (BaseMaterializer)
Materializer to read/write PyCaret models.
Source code in zenml/integrations/pycaret/materializers/model_materializer.py
class PyCaretMaterializer(BaseMaterializer):
"""Materializer to read/write PyCaret models."""
ASSOCIATED_TYPES = (
# Classification
LogisticRegression,
KNeighborsClassifier,
GaussianNB,
DecisionTreeClassifier,
SGDClassifier,
SVC,
GaussianProcessClassifier,
MLPClassifier,
RidgeClassifier,
RandomForestClassifier,
QuadraticDiscriminantAnalysis,
AdaBoostClassifier,
GradientBoostingClassifier,
LinearDiscriminantAnalysis,
ExtraTreesClassifier,
XGBClassifier,
CatBoostClassifier,
LGBMClassifier,
# Regression
LinearRegression,
Lasso,
Ridge,
ElasticNet,
Lars,
LassoLars,
OrthogonalMatchingPursuit,
BayesianRidge,
ARDRegression,
PassiveAggressiveRegressor,
RANSACRegressor,
TheilSenRegressor,
HuberRegressor,
KernelRidge,
SVR,
KNeighborsRegressor,
DecisionTreeRegressor,
RandomForestRegressor,
ExtraTreesRegressor,
AdaBoostRegressor,
GradientBoostingRegressor,
MLPRegressor,
XGBRegressor,
CatBoostRegressor,
BaggingRegressor,
AdaBoostRegressor,
LGBMRegressor,
)
ASSOCIATED_ARTIFACT_TYPE = ArtifactType.MODEL
def load(self, data_type: Type[Any]) -> Any:
"""Reads and returns a PyCaret model after copying it to temporary path.
Args:
data_type: The type of the data to read.
Returns:
A PyCaret model.
"""
# Create a temporary directory to store the model
temp_dir = tempfile.TemporaryDirectory()
# Copy from artifact store to temporary directory
io_utils.copy_dir(self.uri, temp_dir.name)
# Load the model from the temporary directory
model = load_model(temp_dir.name)
# Cleanup and return
fileio.rmtree(temp_dir.name)
return model
def save(self, model: Any) -> None:
"""Writes a PyCaret model to the artifact store.
Args:
model: Any of the supported models.
"""
# Create a temporary directory to store the model
temp_dir = tempfile.TemporaryDirectory()
save_model(model, temp_dir.name)
io_utils.copy_dir(temp_dir.name, self.uri)
# Remove the temporary directory
fileio.rmtree(temp_dir.name)
load(self, data_type)
Reads and returns a PyCaret model after copying it to temporary path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type |
Type[Any] |
The type of the data to read. |
required |
Returns:
Type | Description |
---|---|
Any |
A PyCaret model. |
Source code in zenml/integrations/pycaret/materializers/model_materializer.py
def load(self, data_type: Type[Any]) -> Any:
"""Reads and returns a PyCaret model after copying it to temporary path.
Args:
data_type: The type of the data to read.
Returns:
A PyCaret model.
"""
# Create a temporary directory to store the model
temp_dir = tempfile.TemporaryDirectory()
# Copy from artifact store to temporary directory
io_utils.copy_dir(self.uri, temp_dir.name)
# Load the model from the temporary directory
model = load_model(temp_dir.name)
# Cleanup and return
fileio.rmtree(temp_dir.name)
return model
save(self, model)
Writes a PyCaret model to the artifact store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Any |
Any of the supported models. |
required |
Source code in zenml/integrations/pycaret/materializers/model_materializer.py
def save(self, model: Any) -> None:
"""Writes a PyCaret model to the artifact store.
Args:
model: Any of the supported models.
"""
# Create a temporary directory to store the model
temp_dir = tempfile.TemporaryDirectory()
save_model(model, temp_dir.name)
io_utils.copy_dir(temp_dir.name, self.uri)
# Remove the temporary directory
fileio.rmtree(temp_dir.name)