Scipy
zenml.integrations.scipy
special
Initialization of the Scipy integration.
ScipyIntegration (Integration)
Definition of scipy integration for ZenML.
Source code in zenml/integrations/scipy/__init__.py
class ScipyIntegration(Integration):
"""Definition of scipy integration for ZenML."""
NAME = SCIPY
REQUIREMENTS = ["scipy"]
@classmethod
def activate(cls) -> None:
"""Activates the integration."""
from zenml.integrations.scipy import materializers # noqa
activate()
classmethod
Activates the integration.
Source code in zenml/integrations/scipy/__init__.py
@classmethod
def activate(cls) -> None:
"""Activates the integration."""
from zenml.integrations.scipy import materializers # noqa
materializers
special
Initialization of the Scipy materializers.
sparse_materializer
Implementation of the Scipy Sparse Materializer.
SparseMaterializer (BaseMaterializer)
Materializer to read and write scipy sparse matrices.
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
class SparseMaterializer(BaseMaterializer):
"""Materializer to read and write scipy sparse matrices."""
ASSOCIATED_TYPES = (spmatrix,)
ASSOCIATED_ARTIFACT_TYPE = ArtifactType.DATA
def load(self, data_type: Type[Any]) -> spmatrix:
"""Reads spmatrix from npz file.
Args:
data_type: The type of the spmatrix to load.
Returns:
A spmatrix object.
"""
super().load(data_type)
with fileio.open(os.path.join(self.uri, DATA_FILENAME), "rb") as f:
mat = load_npz(f)
return mat
def save(self, mat: spmatrix) -> None:
"""Writes a spmatrix to the artifact store as a npz file.
Args:
mat: The spmatrix to write.
"""
super().save(mat)
with fileio.open(os.path.join(self.uri, DATA_FILENAME), "wb") as f:
save_npz(f, mat)
def extract_metadata(self, mat: spmatrix) -> Dict[str, "MetadataType"]:
"""Extract metadata from the given `spmatrix` object.
Args:
mat: The `spmatrix` object to extract metadata from.
Returns:
The extracted metadata as a dictionary.
"""
super().extract_metadata(mat)
return {
"shape": mat.shape,
"dtype": DType(mat.dtype),
"nnz": mat.nnz,
}
extract_metadata(self, mat)
Extract metadata from the given spmatrix
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mat |
spmatrix |
The |
required |
Returns:
Type | Description |
---|---|
Dict[str, MetadataType] |
The extracted metadata as a dictionary. |
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
def extract_metadata(self, mat: spmatrix) -> Dict[str, "MetadataType"]:
"""Extract metadata from the given `spmatrix` object.
Args:
mat: The `spmatrix` object to extract metadata from.
Returns:
The extracted metadata as a dictionary.
"""
super().extract_metadata(mat)
return {
"shape": mat.shape,
"dtype": DType(mat.dtype),
"nnz": mat.nnz,
}
load(self, data_type)
Reads spmatrix from npz file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type |
Type[Any] |
The type of the spmatrix to load. |
required |
Returns:
Type | Description |
---|---|
spmatrix |
A spmatrix object. |
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
def load(self, data_type: Type[Any]) -> spmatrix:
"""Reads spmatrix from npz file.
Args:
data_type: The type of the spmatrix to load.
Returns:
A spmatrix object.
"""
super().load(data_type)
with fileio.open(os.path.join(self.uri, DATA_FILENAME), "rb") as f:
mat = load_npz(f)
return mat
save(self, mat)
Writes a spmatrix to the artifact store as a npz file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mat |
spmatrix |
The spmatrix to write. |
required |
Source code in zenml/integrations/scipy/materializers/sparse_materializer.py
def save(self, mat: spmatrix) -> None:
"""Writes a spmatrix to the artifact store as a npz file.
Args:
mat: The spmatrix to write.
"""
super().save(mat)
with fileio.open(os.path.join(self.uri, DATA_FILENAME), "wb") as f:
save_npz(f, mat)