Skip to content

Kubeflow

zenml.integrations.kubeflow special

Initialization of the Kubeflow integration for ZenML.

The Kubeflow integration sub-module powers an alternative to the local orchestrator. You can enable it by registering the Kubeflow orchestrator with the CLI tool.

KubeflowIntegration (Integration)

Definition of Kubeflow Integration for ZenML.

Source code in zenml/integrations/kubeflow/__init__.py
class KubeflowIntegration(Integration):
    """Definition of Kubeflow Integration for ZenML."""

    NAME = KUBEFLOW
    REQUIREMENTS = ["kfp==1.8.16"]

    @classmethod
    def flavors(cls) -> List[Type[Flavor]]:
        """Declare the stack component flavors for the Kubeflow integration.

        Returns:
            List of stack component flavors for this integration.
        """
        from zenml.integrations.kubeflow.flavors import (
            KubeflowOrchestratorFlavor,
        )

        return [KubeflowOrchestratorFlavor]

flavors() classmethod

Declare the stack component flavors for the Kubeflow integration.

Returns:

Type Description
List[Type[zenml.stack.flavor.Flavor]]

List of stack component flavors for this integration.

Source code in zenml/integrations/kubeflow/__init__.py
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Declare the stack component flavors for the Kubeflow integration.

    Returns:
        List of stack component flavors for this integration.
    """
    from zenml.integrations.kubeflow.flavors import (
        KubeflowOrchestratorFlavor,
    )

    return [KubeflowOrchestratorFlavor]

flavors special

Kubeflow integration flavors.

kubeflow_orchestrator_flavor

Kubeflow orchestrator flavor.

KubeflowOrchestratorConfig (BaseOrchestratorConfig, KubeflowOrchestratorSettings) pydantic-model

Configuration for the Kubeflow orchestrator.

Attributes:

Name Type Description
kubeflow_hostname Optional[str]

The hostname to use to talk to the Kubeflow Pipelines API. If not set, the hostname will be derived from the Kubernetes API proxy.

kubeflow_namespace str

The Kubernetes namespace in which Kubeflow Pipelines is deployed. Defaults to kubeflow.

kubernetes_context str

Optional name of a kubernetes context to run pipelines in. If not set, will try to spin up a local K3d cluster.

local bool

If True, the orchestrator will assume it is connected to a local kubernetes cluster and will perform additional validations and operations to allow using the orchestrator in combination with other local stack components that store data in the local filesystem (i.e. it will mount the local stores directory into the pipeline containers).

skip_local_validations bool

If True, the local validations will be skipped.

Source code in zenml/integrations/kubeflow/flavors/kubeflow_orchestrator_flavor.py
class KubeflowOrchestratorConfig(  # type: ignore[misc] # https://github.com/pydantic/pydantic/issues/4173
    BaseOrchestratorConfig, KubeflowOrchestratorSettings
):
    """Configuration for the Kubeflow orchestrator.

    Attributes:
        kubeflow_hostname: The hostname to use to talk to the Kubeflow Pipelines
            API. If not set, the hostname will be derived from the Kubernetes
            API proxy.
        kubeflow_namespace: The Kubernetes namespace in which Kubeflow
            Pipelines is deployed. Defaults to `kubeflow`.
        kubernetes_context: Optional name of a kubernetes context to run
            pipelines in. If not set, will try to spin up a local K3d cluster.
        local: If `True`, the orchestrator will assume it is connected to a
            local kubernetes cluster and will perform additional validations and
            operations to allow using the orchestrator in combination with other
            local stack components that store data in the local filesystem
            (i.e. it will mount the local stores directory into the pipeline
            containers).
        skip_local_validations: If `True`, the local validations will be
            skipped.
    """

    kubeflow_hostname: Optional[str] = None
    kubeflow_namespace: str = "kubeflow"
    kubernetes_context: str  # TODO: Potential setting
    local: bool = False
    skip_local_validations: bool = False

    @root_validator(pre=True)
    def _validate_deprecated_attrs(
        cls, values: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Pydantic root_validator for deprecated attributes.

        This root validator is used for backwards compatibility purposes. E.g.
        it handles attributes that are no longer available or that have become
        mandatory in the meantime.

        Args:
            values: Values passed to the object constructor

        Returns:
            Values passed to the object constructor

        Raises:
            ValueError: If the attributes or their values are not valid.
        """
        provisioning_attrs = [
            "skip_cluster_provisioning",
            "skip_ui_daemon_provisioning",
            "kubeflow_pipelines_ui_port",
        ]

        provisioning_attrs_used = [
            attr for attr in provisioning_attrs if attr in values
        ]

        msg_header = (
            "The ability to automatically provision and manage a Kubeflow "
            "instance with  `zenml stack up` on top of a local K3D cluster "
            "is no longer available in the current version of ZenML "
            "client. Please use the `k3d-modular` ZenML stack recipe to "
            "achieve the same results (and more). Automatically exposing the "
            "Kubeflow UI TCP port locally as part of the stack provisioning "
            "has also been removed in favor of methods better suited for this "
            "purpose, such as using an Ingress controller in the remote "
            "cluster. \n"
            "As a result, the `kubernetes_context` attribute is no longer "
            "optional and the following Kubeflow orchestrator configuration "
            "attributes have been deprecated: "
            f"{provisioning_attrs}.\n"
        )

        if provisioning_attrs_used:
            logger.warning(
                msg_header
                + "To get rid of this warning, you should remove the deprecated "
                "attributes from your orchestrator configuration (e.g. by "
                "using the `zenml orchestrator remove-attribute <attr-name>` "
                "CLI command)."
            )
            # remove deprecated attributes from values dict
            for attr in provisioning_attrs_used:
                del values[attr]

        context = values.get("kubernetes_context")
        if not context:
            raise ValueError(
                msg_header
                + "Please set the `kubernetes_context` attribute to the name "
                "of the Kubernetes config context pointing to the cluster "
                "where Kubeflow is installed (e.g. the K3D cluster provisioned "
                "by the `k3d-modular` ZenML stack recipe) and also set the "
                "`local` configuration flag."
            )

        # TODO: remove this in a future release. kept here for backwards
        # compatibility with old stack configs
        elif (
            isinstance(context, str)
            and context.startswith("k3d-zenml-kubeflow-")
            and "local" not in values
        ):
            values["local"] = True

        return values

    @property
    def is_remote(self) -> bool:
        """Checks if this stack component is running remotely.

        This designation is used to determine if the stack component can be
        used with a local ZenML database or if it requires a remote ZenML
        server.

        Returns:
            True if this config is for a remote component, False otherwise.
        """
        return not self.local

    @property
    def is_local(self) -> bool:
        """Checks if this stack component is running locally.

        This designation is used to determine if the stack component can be
        shared with other users or if it is only usable on the local host.

        Returns:
            True if this config is for a local component, False otherwise.
        """
        return self.local
is_local: bool property readonly

Checks if this stack component is running locally.

This designation is used to determine if the stack component can be shared with other users or if it is only usable on the local host.

Returns:

Type Description
bool

True if this config is for a local component, False otherwise.

is_remote: bool property readonly

Checks if this stack component is running remotely.

This designation is used to determine if the stack component can be used with a local ZenML database or if it requires a remote ZenML server.

Returns:

Type Description
bool

True if this config is for a remote component, False otherwise.

KubeflowOrchestratorFlavor (BaseOrchestratorFlavor)

Kubeflow orchestrator flavor.

Source code in zenml/integrations/kubeflow/flavors/kubeflow_orchestrator_flavor.py
class KubeflowOrchestratorFlavor(BaseOrchestratorFlavor):
    """Kubeflow orchestrator flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return KUBEFLOW_ORCHESTRATOR_FLAVOR

    @property
    def docs_url(self) -> Optional[str]:
        """A url to point at docs explaining this flavor.

        Returns:
            A flavor docs url.
        """
        return self.generate_default_docs_url()

    @property
    def sdk_docs_url(self) -> Optional[str]:
        """A url to point at SDK docs explaining this flavor.

        Returns:
            A flavor SDK docs url.
        """
        return self.generate_default_sdk_docs_url()

    @property
    def logo_url(self) -> str:
        """A url to represent the flavor in the dashboard.

        Returns:
            The flavor logo.
        """
        return "https://public-flavor-logos.s3.eu-central-1.amazonaws.com/orchestrator/kubeflow.png"

    @property
    def config_class(self) -> Type[KubeflowOrchestratorConfig]:
        """Returns `KubeflowOrchestratorConfig` config class.

        Returns:
                The config class.
        """
        return KubeflowOrchestratorConfig

    @property
    def implementation_class(self) -> Type["KubeflowOrchestrator"]:
        """Implementation class for this flavor.

        Returns:
            The implementation class.
        """
        from zenml.integrations.kubeflow.orchestrators import (
            KubeflowOrchestrator,
        )

        return KubeflowOrchestrator
config_class: Type[zenml.integrations.kubeflow.flavors.kubeflow_orchestrator_flavor.KubeflowOrchestratorConfig] property readonly

Returns KubeflowOrchestratorConfig config class.

Returns:

Type Description
Type[zenml.integrations.kubeflow.flavors.kubeflow_orchestrator_flavor.KubeflowOrchestratorConfig]

The config class.

docs_url: Optional[str] property readonly

A url to point at docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor docs url.

implementation_class: Type[KubeflowOrchestrator] property readonly

Implementation class for this flavor.

Returns:

Type Description
Type[KubeflowOrchestrator]

The implementation class.

logo_url: str property readonly

A url to represent the flavor in the dashboard.

Returns:

Type Description
str

The flavor logo.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

sdk_docs_url: Optional[str] property readonly

A url to point at SDK docs explaining this flavor.

Returns:

Type Description
Optional[str]

A flavor SDK docs url.

KubeflowOrchestratorSettings (BaseSettings) pydantic-model

Settings for the Kubeflow orchestrator.

Attributes:

Name Type Description
synchronous bool

If True, running a pipeline using this orchestrator will block until all steps finished running on KFP. This setting only has an effect when specified on the pipeline and will be ignored if specified on steps.

timeout int

How many seconds to wait for synchronous runs.

client_args Dict[str, Any]

Arguments to pass when initializing the KFP client.

client_username Optional[str]

Username to generate a session cookie for the kubeflow client. Both client_username

client_password Optional[str]

Password to generate a session cookie for the kubeflow client. Both client_username

user_namespace Optional[str]

The user namespace to use when creating experiments and runs.

node_selectors Dict[str, str]

Deprecated: Node selectors to apply to KFP pods.

node_affinity Dict[str, List[str]]

Deprecated: Node affinities to apply to KFP pods.

pod_settings Optional[zenml.integrations.kubernetes.pod_settings.KubernetesPodSettings]

Pod settings to apply.

Source code in zenml/integrations/kubeflow/flavors/kubeflow_orchestrator_flavor.py
class KubeflowOrchestratorSettings(BaseSettings):
    """Settings for the Kubeflow orchestrator.

    Attributes:
        synchronous: If `True`, running a pipeline using this orchestrator will
            block until all steps finished running on KFP. This setting only
            has an effect when specified on the pipeline and will be ignored if
            specified on steps.
        timeout: How many seconds to wait for synchronous runs.
        client_args: Arguments to pass when initializing the KFP client.
        client_username: Username to generate a session cookie for the kubeflow client. Both `client_username`
        and `client_password` need to be set together.
        client_password: Password to generate a session cookie for the kubeflow client. Both `client_username`
        and `client_password` need to be set together.
        user_namespace: The user namespace to use when creating experiments
            and runs.
        node_selectors: Deprecated: Node selectors to apply to KFP pods.
        node_affinity: Deprecated: Node affinities to apply to KFP pods.
        pod_settings: Pod settings to apply.
    """

    synchronous: bool = False
    timeout: int = 1200

    client_args: Dict[str, Any] = {}
    client_username: Optional[str] = SecretField()
    client_password: Optional[str] = SecretField()
    user_namespace: Optional[str] = None
    node_selectors: Dict[str, str] = {}
    node_affinity: Dict[str, List[str]] = {}
    pod_settings: Optional[KubernetesPodSettings] = None

    @root_validator
    def _validate_and_migrate_pod_settings(
        cls, values: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Validates settings and migrates pod settings from older version.

        Args:
            values: Dict representing user-specified runtime settings.

        Returns:
            Validated settings.

        Raises:
            AssertionError: If old and new settings are used together.
            ValueError: If username and password are not specified together.
        """
        has_pod_settings = bool(values.get("pod_settings"))

        node_selectors = cast(
            Dict[str, str], values.get("node_selectors") or {}
        )
        node_affinity = cast(
            Dict[str, List[str]], values.get("node_affinity") or {}
        )

        has_old_settings = any([node_selectors, node_affinity])

        if has_old_settings:
            logger.warning(
                "The attributes `node_selectors` and `node_affinity` of the "
                "Kubeflow settings will be deprecated soon. Use the "
                "attribute `pod_settings` instead.",
            )

        if has_pod_settings and has_old_settings:
            raise AssertionError(
                "Got Kubeflow pod settings using both the deprecated "
                "attributes `node_selectors` and `node_affinity` as well as "
                "the new attribute `pod_settings`. Please specify Kubeflow "
                "pod settings only using the new `pod_settings` attribute."
            )
        elif has_old_settings:
            from kubernetes import client as k8s_client

            affinity = {}
            if node_affinity:
                match_expressions = [
                    k8s_client.V1NodeSelectorRequirement(
                        key=key,
                        operator="In",
                        values=values,
                    )
                    for key, values in node_affinity.items()
                ]

                affinity = k8s_client.V1Affinity(
                    node_affinity=k8s_client.V1NodeAffinity(
                        required_during_scheduling_ignored_during_execution=k8s_client.V1NodeSelector(
                            node_selector_terms=[
                                k8s_client.V1NodeSelectorTerm(
                                    match_expressions=match_expressions
                                )
                            ]
                        )
                    )
                )
            pod_settings = KubernetesPodSettings(
                node_selectors=node_selectors, affinity=affinity
            )
            values["pod_settings"] = pod_settings
            values["node_affinity"] = {}
            values["node_selectors"] = {}

        # Validate username and password for auth cookie logic
        username = values.get("client_username")
        password = values.get("client_password")
        client_creds_error = "`client_username` and `client_password` both need to be set together."
        if username and password is None:
            raise ValueError(client_creds_error)
        if password and username is None:
            raise ValueError(client_creds_error)

        return values

orchestrators special

Initialization of the Kubeflow ZenML orchestrator.

kubeflow_orchestrator

Implementation of the Kubeflow orchestrator.

KubeflowOrchestrator (ContainerizedOrchestrator)

Orchestrator responsible for running pipelines using Kubeflow.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
class KubeflowOrchestrator(ContainerizedOrchestrator):
    """Orchestrator responsible for running pipelines using Kubeflow."""

    @property
    def config(self) -> KubeflowOrchestratorConfig:
        """Returns the `KubeflowOrchestratorConfig` config.

        Returns:
            The configuration.
        """
        return cast(KubeflowOrchestratorConfig, self._config)

    @property
    def kubernetes_context(self) -> str:
        """Gets the kubernetes context associated with the orchestrator.

        Returns:
            The kubernetes context associated with the orchestrator.
        """
        return self.config.kubernetes_context

    def get_kubernetes_contexts(self) -> Tuple[List[str], Optional[str]]:
        """Get the list of configured Kubernetes contexts and the active context.

        Returns:
            A tuple containing the list of configured Kubernetes contexts and
            the active context.
        """
        try:
            contexts, active_context = k8s_config.list_kube_config_contexts()
        except k8s_config.config_exception.ConfigException:
            return [], None

        context_names = [c["name"] for c in contexts]
        active_context_name = active_context["name"]
        return context_names, active_context_name

    @property
    def settings_class(self) -> Type[KubeflowOrchestratorSettings]:
        """Settings class for the Kubeflow orchestrator.

        Returns:
            The settings class.
        """
        return KubeflowOrchestratorSettings

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates that the stack contains a container registry.

        Also check that requirements are met for local components.

        Returns:
            A `StackValidator` instance.
        """

        def _validate_local_requirements(stack: "Stack") -> Tuple[bool, str]:

            container_registry = stack.container_registry

            # should not happen, because the stack validation takes care of
            # this, but just in case
            assert container_registry is not None

            contexts, active_context = self.get_kubernetes_contexts()

            if self.kubernetes_context not in contexts:
                if not self.config.is_local:
                    return False, (
                        f"Could not find a Kubernetes context named "
                        f"'{self.kubernetes_context}' in the local Kubernetes "
                        f"configuration. Please make sure that the Kubernetes "
                        f"cluster is running and that the kubeconfig file is "
                        f"configured correctly. To list all configured "
                        f"contexts, run:\n\n"
                        f"  `kubectl config get-contexts`\n"
                    )
            elif active_context and self.kubernetes_context != active_context:
                logger.warning(
                    f"The Kubernetes context '{self.kubernetes_context}' "
                    f"configured for the Kubeflow orchestrator is not the "
                    f"same as the active context in the local Kubernetes "
                    f"configuration. If this is not deliberate, you should "
                    f"update the orchestrator's `kubernetes_context` field by "
                    f"running:\n\n"
                    f"  `zenml orchestrator update {self.name} "
                    f"--kubernetes_context={active_context}`\n"
                    f"To list all configured contexts, run:\n\n"
                    f"  `kubectl config get-contexts`\n"
                    f"To set the active context to be the same as the one "
                    f"configured in the Kubeflow orchestrator and silence "
                    f"this warning, run:\n\n"
                    f"  `kubectl config use-context "
                    f"{self.kubernetes_context}`\n"
                )

            silence_local_validations_msg = (
                f"To silence this warning, set the "
                f"`skip_local_validations` attribute to True in the "
                f"orchestrator configuration by running:\n\n"
                f"  'zenml orchestrator update {self.name} "
                f"--skip_local_validations=True'\n"
            )

            if (
                not self.config.skip_local_validations
                and not self.config.is_local
            ):

                # if the orchestrator is not running in a local k3d cluster,
                # we cannot have any other local components in our stack,
                # because we cannot mount the local path into the container.
                # This may result in problems when running the pipeline,
                # because the local components will not be available inside the
                # Kubeflow containers.

                # go through all stack components and identify those that
                # advertise a local path where they persist information that
                # they need to be available when running pipelines.
                for stack_comp in stack.components.values():
                    local_path = stack_comp.local_path
                    if not local_path:
                        continue
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a remote Kubernetes cluster designated "
                        f"by the '{self.kubernetes_context}' configuration "
                        f"context, but the '{stack_comp.name}' "
                        f"{stack_comp.type.value} is a local stack component "
                        f"and will not be available in the Kubeflow pipeline "
                        f"step.\nPlease ensure that you always use non-local "
                        f"stack components with a remote Kubeflow "
                        f"orchestrator, otherwise you may run into pipeline "
                        f"execution problems. You should use a flavor of "
                        f"{stack_comp.type.value} other than "
                        f"'{stack_comp.flavor}'.\n"
                        + silence_local_validations_msg
                    )

                # if the orchestrator is remote, the container registry must
                # also be remote.
                if container_registry.config.is_local:
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a remote Kubernetes cluster designated "
                        f"by the '{self.kubernetes_context}' configuration "
                        f"context, but the '{container_registry.name}' "
                        f"container registry URI "
                        f"'{container_registry.config.uri}' "
                        f"points to a local container registry. Please ensure "
                        f"that you always use non-local stack components with "
                        f"a remote Kubeflow orchestrator, otherwise you will "
                        f"run into problems. You should use a flavor of "
                        f"container registry other than "
                        f"'{container_registry.flavor}'.\n"
                        + silence_local_validations_msg
                    )

            return True, ""

        return StackValidator(
            required_components={
                StackComponentType.CONTAINER_REGISTRY,
                StackComponentType.IMAGE_BUILDER,
            },
            custom_validation_function=_validate_local_requirements,
        )

    @property
    def root_directory(self) -> str:
        """Path to the root directory for all files concerning this orchestrator.

        Returns:
            Path to the root directory.
        """
        return os.path.join(
            io_utils.get_global_config_directory(),
            "kubeflow",
            str(self.id),
        )

    @property
    def pipeline_directory(self) -> str:
        """Returns path to a directory in which the kubeflow pipeline files are stored.

        Returns:
            Path to the pipeline directory.
        """
        return os.path.join(self.root_directory, "pipelines")

    def _configure_container_op(
        self,
        container_op: dsl.ContainerOp,
        settings: KubeflowOrchestratorSettings,
    ) -> None:
        """Makes changes in place to the configuration of the container op.

        Configures persistent mounted volumes for each stack component that
        writes to a local path. Adds some labels to the container_op and applies
        some functions to ir.

        Args:
            container_op: The kubeflow container operation to configure.
            settings: Orchestrator settings for this step.
        """
        volumes: Dict[str, k8s_client.V1Volume] = {}

        stack = Client().active_stack

        if self.config.is_local:
            stack.check_local_paths()

            local_stores_path = GlobalConfiguration().local_stores_path

            host_path = k8s_client.V1HostPathVolumeSource(
                path=local_stores_path, type="Directory"
            )

            volumes[local_stores_path] = k8s_client.V1Volume(
                name="local-stores",
                host_path=host_path,
            )
            logger.debug(
                "Adding host path volume for the local ZenML stores (path: %s) "
                "in kubeflow pipelines container.",
                local_stores_path,
            )

            if sys.platform == "win32":
                # File permissions are not checked on Windows. This if clause
                # prevents mypy from complaining about unused 'type: ignore'
                # statements
                pass
            else:
                # Run KFP containers in the context of the local UID/GID
                # to ensure that the artifact and metadata stores can be shared
                # with the local pipeline runs.
                container_op.container.security_context = (
                    k8s_client.V1SecurityContext(
                        run_as_user=os.getuid(),
                        run_as_group=os.getgid(),
                    )
                )
                logger.debug(
                    "Setting security context UID and GID to local user/group "
                    "in kubeflow pipelines container."
                )

            container_op.container.add_env_variable(
                k8s_client.V1EnvVar(
                    name=ENV_ZENML_LOCAL_STORES_PATH,
                    value=local_stores_path,
                )
            )

        container_op.add_pvolumes(volumes)

        # Add some pod labels to the container_op
        for k, v in KFP_POD_LABELS.items():
            container_op.add_pod_label(k, v)

        if settings.pod_settings:
            apply_pod_settings(
                container_op=container_op, settings=settings.pod_settings
            )

        # Disable caching in KFP v1 only works like this, replace by the second
        # line in the future
        container_op.execution_options.caching_strategy.max_cache_staleness = (
            "P0D"
        )
        # container_op.set_caching_options(enable_caching=False)

    @staticmethod
    def _configure_container_resources(
        container_op: dsl.ContainerOp,
        resource_settings: "ResourceSettings",
    ) -> None:
        """Adds resource requirements to the container.

        Args:
            container_op: The kubeflow container operation to configure.
            resource_settings: The resource settings to use for this
                container.
        """
        if resource_settings.cpu_count is not None:
            container_op = container_op.set_cpu_limit(
                str(resource_settings.cpu_count)
            )

        if resource_settings.gpu_count is not None:
            container_op = container_op.set_gpu_limit(
                resource_settings.gpu_count
            )

        if resource_settings.memory is not None:
            memory_limit = resource_settings.memory[:-1]
            container_op = container_op.set_memory_limit(memory_limit)

    def prepare_or_run_pipeline(
        self,
        deployment: "PipelineDeploymentResponseModel",
        stack: "Stack",
    ) -> Any:
        """Creates a kfp yaml file.

        This functions as an intermediary representation of the pipeline which
        is then deployed to the kubeflow pipelines instance.

        How it works:
        -------------
        Before this method is called the `prepare_pipeline_deployment()`
        method builds a docker image that contains the code for the
        pipeline, all steps the context around these files.

        Based on this docker image a callable is created which builds
        container_ops for each step (`_construct_kfp_pipeline`).
        To do this the entrypoint of the docker image is configured to
        run the correct step within the docker image. The dependencies
        between these container_ops are then also configured onto each
        container_op by pointing at the downstream steps.

        This callable is then compiled into a kfp yaml file that is used as
        the intermediary representation of the kubeflow pipeline.

        This file, together with some metadata, runtime configurations is
        then uploaded into the kubeflow pipelines cluster for execution.

        Args:
            deployment: The pipeline deployment to prepare or run.
            stack: The stack the pipeline will run on.

        Raises:
            RuntimeError: If trying to run a pipeline in a notebook
                environment.
        """
        # First check whether the code running in a notebook
        if Environment.in_notebook():
            raise RuntimeError(
                "The Kubeflow orchestrator cannot run pipelines in a notebook "
                "environment. The reason is that it is non-trivial to create "
                "a Docker image of a notebook. Please consider refactoring "
                "your notebook cells into separate scripts in a Python module "
                "and run the code outside of a notebook when using this "
                "orchestrator."
            )

        assert stack.container_registry

        # Create a callable for future compilation into a dsl.Pipeline.
        def _construct_kfp_pipeline() -> None:
            """Create a container_op for each step.

            This should contain the name of the docker image and configures the
            entrypoint of the docker image to run the step.

            Additionally, this gives each container_op information about its
            direct downstream steps.

            If this callable is passed to the `_create_and_write_workflow()`
            method of a KFPCompiler all dsl.ContainerOp instances will be
            automatically added to a singular dsl.Pipeline instance.
            """
            # Dictionary of container_ops index by the associated step name
            step_name_to_container_op: Dict[str, dsl.ContainerOp] = {}

            for step_name, step in deployment.step_configurations.items():
                image = self.get_image(
                    deployment=deployment, step_name=step_name
                )

                # The command will be needed to eventually call the python step
                # within the docker container
                command = StepEntrypointConfiguration.get_entrypoint_command()

                # The arguments are passed to configure the entrypoint of the
                # docker container when the step is called.
                arguments = (
                    StepEntrypointConfiguration.get_entrypoint_arguments(
                        step_name=step_name, deployment_id=deployment.id
                    )
                )

                # Create a container_op - the kubeflow equivalent of a step. It
                # contains the name of the step, the name of the docker image,
                # the command to use to run the step entrypoint
                # (e.g. `python -m zenml.entrypoints.step_entrypoint`)
                # and the arguments to be passed along with the command. Find
                # out more about how these arguments are parsed and used
                # in the base entrypoint `run()` method.
                container_op = dsl.ContainerOp(
                    name=step.config.name,
                    image=image,
                    command=command,
                    arguments=arguments,
                )

                settings = cast(
                    KubeflowOrchestratorSettings, self.get_settings(step)
                )
                self._configure_container_op(
                    container_op=container_op,
                    settings=settings,
                )

                if self.requires_resources_in_orchestration_environment(step):
                    self._configure_container_resources(
                        container_op=container_op,
                        resource_settings=step.config.resource_settings,
                    )

                # Find the upstream container ops of the current step and
                # configure the current container op to run after them
                for upstream_step_name in step.spec.upstream_steps:
                    upstream_container_op = step_name_to_container_op[
                        upstream_step_name
                    ]
                    container_op.after(upstream_container_op)

                # Update dictionary of container ops with the current one
                step_name_to_container_op[step.config.name] = container_op

        orchestrator_run_name = get_orchestrator_run_name(
            pipeline_name=deployment.pipeline_configuration.name
        )

        # Get a filepath to use to save the finished yaml to
        fileio.makedirs(self.pipeline_directory)
        pipeline_file_path = os.path.join(
            self.pipeline_directory, f"{orchestrator_run_name}.yaml"
        )

        # write the argo pipeline yaml
        KFPCompiler()._create_and_write_workflow(
            pipeline_func=_construct_kfp_pipeline,
            pipeline_name=deployment.pipeline_configuration.name,
            package_path=pipeline_file_path,
        )
        logger.info(
            "Writing Kubeflow workflow definition to `%s`.", pipeline_file_path
        )

        # using the kfp client uploads the pipeline to kubeflow pipelines and
        # runs it there
        self._upload_and_run_pipeline(
            deployment=deployment,
            pipeline_file_path=pipeline_file_path,
            run_name=orchestrator_run_name,
        )

    def _upload_and_run_pipeline(
        self,
        deployment: "PipelineDeploymentResponseModel",
        pipeline_file_path: str,
        run_name: str,
    ) -> None:
        """Tries to upload and run a KFP pipeline.

        Args:
            deployment: The pipeline deployment.
            pipeline_file_path: Path to the pipeline definition file.
            run_name: The Kubeflow run name.

        Raises:
            RuntimeError: If Kubeflow API returns an error.
        """
        pipeline_name = deployment.pipeline_configuration.name
        settings = cast(
            KubeflowOrchestratorSettings, self.get_settings(deployment)
        )
        user_namespace = settings.user_namespace

        try:
            logger.info(
                "Running in kubernetes context '%s'.",
                self.kubernetes_context,
            )

            # upload the pipeline to Kubeflow and start it

            client = self._get_kfp_client(settings=settings)
            if deployment.schedule:
                try:
                    experiment = client.get_experiment(
                        pipeline_name, namespace=user_namespace
                    )
                    logger.info(
                        "A recurring run has already been created with this "
                        "pipeline. Creating new recurring run now.."
                    )
                except (ValueError, ApiException):
                    experiment = client.create_experiment(
                        pipeline_name, namespace=user_namespace
                    )
                    logger.info(
                        "Creating a new recurring run for pipeline '%s'.. ",
                        pipeline_name,
                    )
                logger.info(
                    "You can see all recurring runs under the '%s' experiment.",
                    pipeline_name,
                )

                interval_seconds = (
                    deployment.schedule.interval_second.seconds
                    if deployment.schedule.interval_second
                    else None
                )
                result = client.create_recurring_run(
                    experiment_id=experiment.id,
                    job_name=run_name,
                    pipeline_package_path=pipeline_file_path,
                    enable_caching=False,
                    cron_expression=deployment.schedule.cron_expression,
                    start_time=deployment.schedule.utc_start_time,
                    end_time=deployment.schedule.utc_end_time,
                    interval_second=interval_seconds,
                    no_catchup=not deployment.schedule.catchup,
                )

                logger.info("Started recurring run with ID '%s'.", result.id)
            else:
                logger.info(
                    "No schedule detected. Creating a one-off pipeline run.."
                )
                try:
                    result = client.create_run_from_pipeline_package(
                        pipeline_file_path,
                        arguments={},
                        run_name=run_name,
                        enable_caching=False,
                        namespace=user_namespace,
                    )
                except ApiException:
                    raise RuntimeError(
                        f"Failed to create {run_name} on kubeflow! "
                        "Please check stack component settings and configuration!"
                    )

                logger.info(
                    "Started one-off pipeline run with ID '%s'.", result.run_id
                )

                if settings.synchronous:
                    client.wait_for_run_completion(
                        run_id=result.run_id, timeout=settings.timeout
                    )
        except urllib3.exceptions.HTTPError as error:
            logger.warning(
                f"Failed to upload Kubeflow pipeline: %s. "
                f"Please make sure your kubernetes config is present and the "
                f"{self.kubernetes_context} kubernetes context is configured "
                f"correctly.",
                error,
            )

    def get_orchestrator_run_id(self) -> str:
        """Returns the active orchestrator run id.

        Raises:
            RuntimeError: If the environment variable specifying the run id
                is not set.

        Returns:
            The orchestrator run id.
        """
        try:
            return os.environ[ENV_KFP_RUN_ID]
        except KeyError:
            raise RuntimeError(
                "Unable to read run id from environment variable "
                f"{ENV_KFP_RUN_ID}."
            )

    def _get_kfp_client(
        self,
        settings: KubeflowOrchestratorSettings,
    ) -> kfp.Client:
        """Creates a KFP client instance.

        Args:
            settings: Settings which can be used to
                configure the client instance.

        Returns:
            A KFP client instance.
        """
        client_args = {
            "kube_context": self.config.kubernetes_context,
        }

        client_args.update(settings.client_args)

        # The host and namespace are stack component configurations that refer
        # to the Kubeflow deployment. We don't want these overwritten on a
        # run by run basis by user settings
        if self.config.kubeflow_hostname:
            client_args["host"] = self.config.kubeflow_hostname
        client_args["namespace"] = self.config.kubeflow_namespace

        # Handle username and password, ignore the case if one is passed and not the other
        # Also do not attempt to get cookie if cookie is already passed in client_args
        if settings.client_username and settings.client_password:
            # If cookie is already set, then ignore
            if "cookie" in client_args:
                logger.warning(
                    "Cookie already set in `client_args`, ignoring `client_username` and `client_password`..."
                )
            else:
                session_cookie = self._get_session_cookie(
                    username=settings.client_username,
                    password=settings.client_password,
                )

                client_args["cookies"] = session_cookie

        return kfp.Client(**client_args)

    def _get_session_cookie(self, username: str, password: str) -> str:
        """Gets session cookie from username and password.

        Args:
            username: Username for kubeflow host.
            password: Password for kubeflow host.

        Raises:
            RuntimeError: If the cookie fetching failed.

        Returns:
            Cookie with the prefix `authsession=`.
        """
        if self.config.kubeflow_hostname is None:
            raise RuntimeError(
                "You must configure the Kubeflow orchestrator "
                "with the `kubeflow_hostname` parameter which usually ends "
                "with `/pipeline` (e.g. `https://mykubeflow.com/pipeline`). "
                "Please update the current kubeflow orchestrator with: "
                f"`zenml orchestrator update {self.name} "
                "--kubeflow_hostname=<MY_KUBEFLOW_HOST>`"
            )

        # Get cookie
        logger.info(
            f"Attempting to fetch session cookie from {self.config.kubeflow_hostname} "
            "with supplied username and password..."
        )
        session = requests.Session()
        try:
            response = session.get(self.config.kubeflow_hostname)
            response.raise_for_status()
        except (
            requests.exceptions.HTTPError,
            requests.exceptions.ConnectionError,
            requests.exceptions.Timeout,
            requests.exceptions.RequestException,
        ) as e:
            raise RuntimeError(
                f"Error while trying to fetch kubeflow cookie: {e}"
            )

        headers = {
            "Content-Type": "application/x-www-form-urlencoded",
        }
        data = {"login": username, "password": password}
        try:
            response = session.post(response.url, headers=headers, data=data)
            response.raise_for_status()
        except requests.exceptions.HTTPError as errh:
            raise RuntimeError(
                f"Error while trying to fetch kubeflow cookie: {errh}"
            )
        cookie_dict = session.cookies.get_dict()  # type: ignore[no-untyped-call]

        if "authservice_session" not in cookie_dict:
            raise RuntimeError("Invalid username and/or password!")

        logger.info("Session cookie fetched successfully!")

        return "authservice_session=" + str(cookie_dict["authservice_session"])

    def get_pipeline_run_metadata(
        self, run_id: UUID
    ) -> Dict[str, "MetadataType"]:
        """Get general component-specific metadata for a pipeline run.

        Args:
            run_id: The ID of the pipeline run.

        Returns:
            A dictionary of metadata.
        """
        hostname = self.config.kubeflow_hostname
        if not hostname:
            return {}

        hostname = hostname.rstrip("/")
        pipeline_suffix = "/pipeline"
        if hostname.endswith(pipeline_suffix):
            hostname = hostname[: -len(pipeline_suffix)]

        run = Client().get_pipeline_run(run_id)

        settings_key = settings_utils.get_stack_component_setting_key(self)
        run_settings = self.settings_class.parse_obj(
            run.pipeline_configuration.get(settings_key, self.config)
        )
        user_namespace = run_settings.user_namespace

        if user_namespace:
            run_url = (
                f"{hostname}/_/pipeline/?ns={user_namespace}#"
                f"/runs/details/{self.get_orchestrator_run_id()}"
            )
            return {
                METADATA_ORCHESTRATOR_URL: Uri(run_url),
            }
        else:
            return {
                METADATA_ORCHESTRATOR_URL: Uri(f"{hostname}"),
            }
config: KubeflowOrchestratorConfig property readonly

Returns the KubeflowOrchestratorConfig config.

Returns:

Type Description
KubeflowOrchestratorConfig

The configuration.

kubernetes_context: str property readonly

Gets the kubernetes context associated with the orchestrator.

Returns:

Type Description
str

The kubernetes context associated with the orchestrator.

pipeline_directory: str property readonly

Returns path to a directory in which the kubeflow pipeline files are stored.

Returns:

Type Description
str

Path to the pipeline directory.

root_directory: str property readonly

Path to the root directory for all files concerning this orchestrator.

Returns:

Type Description
str

Path to the root directory.

settings_class: Type[zenml.integrations.kubeflow.flavors.kubeflow_orchestrator_flavor.KubeflowOrchestratorSettings] property readonly

Settings class for the Kubeflow orchestrator.

Returns:

Type Description
Type[zenml.integrations.kubeflow.flavors.kubeflow_orchestrator_flavor.KubeflowOrchestratorSettings]

The settings class.

validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates that the stack contains a container registry.

Also check that requirements are met for local components.

Returns:

Type Description
Optional[zenml.stack.stack_validator.StackValidator]

A StackValidator instance.

get_kubernetes_contexts(self)

Get the list of configured Kubernetes contexts and the active context.

Returns:

Type Description
Tuple[List[str], Optional[str]]

A tuple containing the list of configured Kubernetes contexts and the active context.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def get_kubernetes_contexts(self) -> Tuple[List[str], Optional[str]]:
    """Get the list of configured Kubernetes contexts and the active context.

    Returns:
        A tuple containing the list of configured Kubernetes contexts and
        the active context.
    """
    try:
        contexts, active_context = k8s_config.list_kube_config_contexts()
    except k8s_config.config_exception.ConfigException:
        return [], None

    context_names = [c["name"] for c in contexts]
    active_context_name = active_context["name"]
    return context_names, active_context_name
get_orchestrator_run_id(self)

Returns the active orchestrator run id.

Exceptions:

Type Description
RuntimeError

If the environment variable specifying the run id is not set.

Returns:

Type Description
str

The orchestrator run id.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def get_orchestrator_run_id(self) -> str:
    """Returns the active orchestrator run id.

    Raises:
        RuntimeError: If the environment variable specifying the run id
            is not set.

    Returns:
        The orchestrator run id.
    """
    try:
        return os.environ[ENV_KFP_RUN_ID]
    except KeyError:
        raise RuntimeError(
            "Unable to read run id from environment variable "
            f"{ENV_KFP_RUN_ID}."
        )
get_pipeline_run_metadata(self, run_id)

Get general component-specific metadata for a pipeline run.

Parameters:

Name Type Description Default
run_id UUID

The ID of the pipeline run.

required

Returns:

Type Description
Dict[str, MetadataType]

A dictionary of metadata.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def get_pipeline_run_metadata(
    self, run_id: UUID
) -> Dict[str, "MetadataType"]:
    """Get general component-specific metadata for a pipeline run.

    Args:
        run_id: The ID of the pipeline run.

    Returns:
        A dictionary of metadata.
    """
    hostname = self.config.kubeflow_hostname
    if not hostname:
        return {}

    hostname = hostname.rstrip("/")
    pipeline_suffix = "/pipeline"
    if hostname.endswith(pipeline_suffix):
        hostname = hostname[: -len(pipeline_suffix)]

    run = Client().get_pipeline_run(run_id)

    settings_key = settings_utils.get_stack_component_setting_key(self)
    run_settings = self.settings_class.parse_obj(
        run.pipeline_configuration.get(settings_key, self.config)
    )
    user_namespace = run_settings.user_namespace

    if user_namespace:
        run_url = (
            f"{hostname}/_/pipeline/?ns={user_namespace}#"
            f"/runs/details/{self.get_orchestrator_run_id()}"
        )
        return {
            METADATA_ORCHESTRATOR_URL: Uri(run_url),
        }
    else:
        return {
            METADATA_ORCHESTRATOR_URL: Uri(f"{hostname}"),
        }
prepare_or_run_pipeline(self, deployment, stack)

Creates a kfp yaml file.

This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.

How it works:

Before this method is called the prepare_pipeline_deployment() method builds a docker image that contains the code for the pipeline, all steps the context around these files.

Based on this docker image a callable is created which builds container_ops for each step (_construct_kfp_pipeline). To do this the entrypoint of the docker image is configured to run the correct step within the docker image. The dependencies between these container_ops are then also configured onto each container_op by pointing at the downstream steps.

This callable is then compiled into a kfp yaml file that is used as the intermediary representation of the kubeflow pipeline.

This file, together with some metadata, runtime configurations is then uploaded into the kubeflow pipelines cluster for execution.

Parameters:

Name Type Description Default
deployment PipelineDeploymentResponseModel

The pipeline deployment to prepare or run.

required
stack Stack

The stack the pipeline will run on.

required

Exceptions:

Type Description
RuntimeError

If trying to run a pipeline in a notebook environment.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def prepare_or_run_pipeline(
    self,
    deployment: "PipelineDeploymentResponseModel",
    stack: "Stack",
) -> Any:
    """Creates a kfp yaml file.

    This functions as an intermediary representation of the pipeline which
    is then deployed to the kubeflow pipelines instance.

    How it works:
    -------------
    Before this method is called the `prepare_pipeline_deployment()`
    method builds a docker image that contains the code for the
    pipeline, all steps the context around these files.

    Based on this docker image a callable is created which builds
    container_ops for each step (`_construct_kfp_pipeline`).
    To do this the entrypoint of the docker image is configured to
    run the correct step within the docker image. The dependencies
    between these container_ops are then also configured onto each
    container_op by pointing at the downstream steps.

    This callable is then compiled into a kfp yaml file that is used as
    the intermediary representation of the kubeflow pipeline.

    This file, together with some metadata, runtime configurations is
    then uploaded into the kubeflow pipelines cluster for execution.

    Args:
        deployment: The pipeline deployment to prepare or run.
        stack: The stack the pipeline will run on.

    Raises:
        RuntimeError: If trying to run a pipeline in a notebook
            environment.
    """
    # First check whether the code running in a notebook
    if Environment.in_notebook():
        raise RuntimeError(
            "The Kubeflow orchestrator cannot run pipelines in a notebook "
            "environment. The reason is that it is non-trivial to create "
            "a Docker image of a notebook. Please consider refactoring "
            "your notebook cells into separate scripts in a Python module "
            "and run the code outside of a notebook when using this "
            "orchestrator."
        )

    assert stack.container_registry

    # Create a callable for future compilation into a dsl.Pipeline.
    def _construct_kfp_pipeline() -> None:
        """Create a container_op for each step.

        This should contain the name of the docker image and configures the
        entrypoint of the docker image to run the step.

        Additionally, this gives each container_op information about its
        direct downstream steps.

        If this callable is passed to the `_create_and_write_workflow()`
        method of a KFPCompiler all dsl.ContainerOp instances will be
        automatically added to a singular dsl.Pipeline instance.
        """
        # Dictionary of container_ops index by the associated step name
        step_name_to_container_op: Dict[str, dsl.ContainerOp] = {}

        for step_name, step in deployment.step_configurations.items():
            image = self.get_image(
                deployment=deployment, step_name=step_name
            )

            # The command will be needed to eventually call the python step
            # within the docker container
            command = StepEntrypointConfiguration.get_entrypoint_command()

            # The arguments are passed to configure the entrypoint of the
            # docker container when the step is called.
            arguments = (
                StepEntrypointConfiguration.get_entrypoint_arguments(
                    step_name=step_name, deployment_id=deployment.id
                )
            )

            # Create a container_op - the kubeflow equivalent of a step. It
            # contains the name of the step, the name of the docker image,
            # the command to use to run the step entrypoint
            # (e.g. `python -m zenml.entrypoints.step_entrypoint`)
            # and the arguments to be passed along with the command. Find
            # out more about how these arguments are parsed and used
            # in the base entrypoint `run()` method.
            container_op = dsl.ContainerOp(
                name=step.config.name,
                image=image,
                command=command,
                arguments=arguments,
            )

            settings = cast(
                KubeflowOrchestratorSettings, self.get_settings(step)
            )
            self._configure_container_op(
                container_op=container_op,
                settings=settings,
            )

            if self.requires_resources_in_orchestration_environment(step):
                self._configure_container_resources(
                    container_op=container_op,
                    resource_settings=step.config.resource_settings,
                )

            # Find the upstream container ops of the current step and
            # configure the current container op to run after them
            for upstream_step_name in step.spec.upstream_steps:
                upstream_container_op = step_name_to_container_op[
                    upstream_step_name
                ]
                container_op.after(upstream_container_op)

            # Update dictionary of container ops with the current one
            step_name_to_container_op[step.config.name] = container_op

    orchestrator_run_name = get_orchestrator_run_name(
        pipeline_name=deployment.pipeline_configuration.name
    )

    # Get a filepath to use to save the finished yaml to
    fileio.makedirs(self.pipeline_directory)
    pipeline_file_path = os.path.join(
        self.pipeline_directory, f"{orchestrator_run_name}.yaml"
    )

    # write the argo pipeline yaml
    KFPCompiler()._create_and_write_workflow(
        pipeline_func=_construct_kfp_pipeline,
        pipeline_name=deployment.pipeline_configuration.name,
        package_path=pipeline_file_path,
    )
    logger.info(
        "Writing Kubeflow workflow definition to `%s`.", pipeline_file_path
    )

    # using the kfp client uploads the pipeline to kubeflow pipelines and
    # runs it there
    self._upload_and_run_pipeline(
        deployment=deployment,
        pipeline_file_path=pipeline_file_path,
        run_name=orchestrator_run_name,
    )

local_deployment_utils

Utils for the local Kubeflow deployment behaviors.

add_hostpath_to_kubeflow_pipelines(kubernetes_context, local_path)

Patches the Kubeflow Pipelines deployment to mount a local folder.

This folder serves as a hostpath for visualization purposes.

This function reconfigures the Kubeflow pipelines deployment to use a shared local folder to support loading the TensorBoard viewer and other pipeline visualization results from a local artifact store, as described here:

https://github.com/kubeflow/pipelines/blob/master/docs/config/volume-support.md

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context on which Kubeflow Pipelines should be patched.

required
local_path str

The path to the local folder to mount as a hostpath.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def add_hostpath_to_kubeflow_pipelines(
    kubernetes_context: str, local_path: str
) -> None:
    """Patches the Kubeflow Pipelines deployment to mount a local folder.

    This folder serves as a hostpath for visualization purposes.

    This function reconfigures the Kubeflow pipelines deployment to use a
    shared local folder to support loading the TensorBoard viewer and other
    pipeline visualization results from a local artifact store, as described
    here:

    https://github.com/kubeflow/pipelines/blob/master/docs/config/volume-support.md

    Args:
        kubernetes_context: The kubernetes context on which Kubeflow Pipelines
            should be patched.
        local_path: The path to the local folder to mount as a hostpath.
    """
    logger.info("Patching Kubeflow Pipelines to mount a local folder.")

    pod_template = {
        "spec": {
            "serviceAccountName": "kubeflow-pipelines-viewer",
            "containers": [
                {
                    "volumeMounts": [
                        {
                            "mountPath": local_path,
                            "name": "local-artifact-store",
                        }
                    ]
                }
            ],
            "volumes": [
                {
                    "hostPath": {
                        "path": local_path,
                        "type": "Directory",
                    },
                    "name": "local-artifact-store",
                }
            ],
        }
    }
    pod_template_json = json.dumps(pod_template, indent=2)
    config_map_data = {"data": {"viewer-pod-template.json": pod_template_json}}
    config_map_data_json = json.dumps(config_map_data, indent=2)

    logger.debug(
        "Adding host path volume for local path `%s` to kubeflow pipeline"
        "viewer pod template configuration.",
        local_path,
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "-n",
            "kubeflow",
            "patch",
            "configmap/ml-pipeline-ui-configmap",
            "--type",
            "merge",
            "-p",
            config_map_data_json,
        ]
    )

    deployment_patch = {
        "spec": {
            "template": {
                "spec": {
                    "containers": [
                        {
                            "name": "ml-pipeline-ui",
                            "volumeMounts": [
                                {
                                    "mountPath": local_path,
                                    "name": "local-artifact-store",
                                }
                            ],
                        }
                    ],
                    "volumes": [
                        {
                            "hostPath": {
                                "path": local_path,
                                "type": "Directory",
                            },
                            "name": "local-artifact-store",
                        }
                    ],
                }
            }
        }
    }
    deployment_patch_json = json.dumps(deployment_patch, indent=2)

    logger.debug(
        "Adding host path volume for local path `%s` to the kubeflow UI",
        local_path,
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "-n",
            "kubeflow",
            "patch",
            "deployment/ml-pipeline-ui",
            "--type",
            "strategic",
            "-p",
            deployment_patch_json,
        ]
    )
    wait_until_kubeflow_pipelines_ready(kubernetes_context=kubernetes_context)

    logger.info("Finished patching Kubeflow Pipelines setup.")
check_prerequisites(skip_k3d=False, skip_kubectl=False)

Checks prerequisites for a local kubeflow pipelines deployment.

It makes sure they are installed.

Parameters:

Name Type Description Default
skip_k3d bool

Whether to skip the check for the k3d command.

False
skip_kubectl bool

Whether to skip the check for the kubectl command.

False

Returns:

Type Description
bool

Whether all prerequisites are installed.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def check_prerequisites(
    skip_k3d: bool = False, skip_kubectl: bool = False
) -> bool:
    """Checks prerequisites for a local kubeflow pipelines deployment.

    It makes sure they are installed.

    Args:
        skip_k3d: Whether to skip the check for the k3d command.
        skip_kubectl: Whether to skip the check for the kubectl command.

    Returns:
        Whether all prerequisites are installed.
    """
    k3d_installed = skip_k3d or shutil.which("k3d") is not None
    kubectl_installed = skip_kubectl or shutil.which("kubectl") is not None
    logger.debug(
        "Local kubeflow deployment prerequisites: K3D - %s, Kubectl - %s",
        k3d_installed,
        kubectl_installed,
    )
    return k3d_installed and kubectl_installed
create_k3d_cluster(cluster_name, registry_name, registry_config_path)

Creates a K3D cluster.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to create.

required
registry_name str

Name of the registry to create for this cluster.

required
registry_config_path str

Path to the registry config file.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def create_k3d_cluster(
    cluster_name: str, registry_name: str, registry_config_path: str
) -> None:
    """Creates a K3D cluster.

    Args:
        cluster_name: Name of the cluster to create.
        registry_name: Name of the registry to create for this cluster.
        registry_config_path: Path to the registry config file.
    """
    logger.info("Creating local K3D cluster '%s'.", cluster_name)
    local_stores_path = GlobalConfiguration().local_stores_path
    subprocess.check_call(
        [
            "k3d",
            "cluster",
            "create",
            cluster_name,
            "--image",
            K3S_IMAGE_NAME,
            "--registry-create",
            registry_name,
            "--registry-config",
            registry_config_path,
            "--volume",
            f"{local_stores_path}:{local_stores_path}",
        ]
    )
    logger.info("Finished K3D cluster creation.")
delete_k3d_cluster(cluster_name)

Deletes a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to delete.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def delete_k3d_cluster(cluster_name: str) -> None:
    """Deletes a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to delete.
    """
    subprocess.check_call(["k3d", "cluster", "delete", cluster_name])
    logger.info("Deleted local k3d cluster '%s'.", cluster_name)
deploy_kubeflow_pipelines(kubernetes_context)

Deploys Kubeflow Pipelines.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context on which Kubeflow Pipelines should be deployed.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def deploy_kubeflow_pipelines(kubernetes_context: str) -> None:
    """Deploys Kubeflow Pipelines.

    Args:
        kubernetes_context: The kubernetes context on which Kubeflow Pipelines
            should be deployed.
    """
    logger.info("Deploying Kubeflow Pipelines.")
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "apply",
            "-k",
            f"github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref={KFP_VERSION}&timeout=5m",
        ]
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "wait",
            "--timeout=60s",
            "--for",
            "condition=established",
            "crd/applications.app.k8s.io",
        ]
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "apply",
            "-k",
            f"github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref={KFP_VERSION}&timeout=5m",
        ]
    )

    wait_until_kubeflow_pipelines_ready(kubernetes_context=kubernetes_context)
    logger.info("Finished Kubeflow Pipelines setup.")
k3d_cluster_exists(cluster_name)

Checks whether there exists a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to check.

required

Returns:

Type Description
bool

Whether the cluster exists.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def k3d_cluster_exists(cluster_name: str) -> bool:
    """Checks whether there exists a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to check.

    Returns:
        Whether the cluster exists.
    """
    output = subprocess.check_output(
        ["k3d", "cluster", "list", "--output", "json"]
    )
    clusters = json.loads(output)
    for cluster in clusters:
        if cluster["name"] == cluster_name:
            return True
    return False
k3d_cluster_running(cluster_name)

Checks whether the K3D cluster with the given name is running.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to check.

required

Returns:

Type Description
bool

Whether the cluster is running.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def k3d_cluster_running(cluster_name: str) -> bool:
    """Checks whether the K3D cluster with the given name is running.

    Args:
        cluster_name: Name of the cluster to check.

    Returns:
        Whether the cluster is running.
    """
    output = subprocess.check_output(
        ["k3d", "cluster", "list", "--output", "json"]
    )
    clusters = json.loads(output)
    for cluster in clusters:
        if cluster["name"] == cluster_name:
            server_count: int = cluster["serversCount"]
            servers_running: int = cluster["serversRunning"]
            return servers_running == server_count
    return False
kubeflow_pipelines_ready(kubernetes_context)

Returns whether all Kubeflow Pipelines pods are ready.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context in which the pods should be checked.

required

Returns:

Type Description
bool

Whether all Kubeflow Pipelines pods are ready.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def kubeflow_pipelines_ready(kubernetes_context: str) -> bool:
    """Returns whether all Kubeflow Pipelines pods are ready.

    Args:
        kubernetes_context: The kubernetes context in which the pods
            should be checked.

    Returns:
        Whether all Kubeflow Pipelines pods are ready.
    """
    try:
        subprocess.check_call(
            [
                "kubectl",
                "--context",
                kubernetes_context,
                "--namespace",
                "kubeflow",
                "wait",
                "--for",
                "condition=ready",
                "--timeout=0s",
                "pods",
                "-l",
                "application-crd-id=kubeflow-pipelines",
            ],
            stdout=subprocess.DEVNULL,
            stderr=subprocess.DEVNULL,
        )
        return True
    except subprocess.CalledProcessError:
        return False
start_k3d_cluster(cluster_name)

Starts a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to start.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def start_k3d_cluster(cluster_name: str) -> None:
    """Starts a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to start.
    """
    subprocess.check_call(["k3d", "cluster", "start", cluster_name])
    logger.info("Started local k3d cluster '%s'.", cluster_name)
start_kfp_ui_daemon(pid_file_path, log_file_path, port, kubernetes_context)

Starts a daemon process that forwards ports.

This is so the Kubeflow Pipelines UI is accessible in the browser.

Parameters:

Name Type Description Default
pid_file_path str

Path where the file with the daemons process ID should be written.

required
log_file_path str

Path to a file where the daemon logs should be written.

required
port int

Port on which the UI should be accessible.

required
kubernetes_context str

The kubernetes context for the cluster where Kubeflow Pipelines is running.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def start_kfp_ui_daemon(
    pid_file_path: str,
    log_file_path: str,
    port: int,
    kubernetes_context: str,
) -> None:
    """Starts a daemon process that forwards ports.

    This is so the Kubeflow Pipelines UI is accessible in the browser.

    Args:
        pid_file_path: Path where the file with the daemons process ID should
            be written.
        log_file_path: Path to a file where the daemon logs should be written.
        port: Port on which the UI should be accessible.
        kubernetes_context: The kubernetes context for the cluster where
            Kubeflow Pipelines is running.
    """
    command = [
        "kubectl",
        "--context",
        kubernetes_context,
        "--namespace",
        "kubeflow",
        "port-forward",
        "svc/ml-pipeline-ui",
        f"{port}:80",
    ]

    if not networking_utils.port_available(port):
        modified_command = command.copy()
        modified_command[-1] = "PORT:80"
        logger.warning(
            "Unable to port-forward Kubeflow Pipelines UI to local port %d "
            "because the port is occupied. In order to access the Kubeflow "
            "Pipelines UI at http://localhost:PORT/, please run '%s' in a "
            "separate command line shell (replace PORT with a free port of "
            "your choice).",
            port,
            " ".join(modified_command),
        )
    elif sys.platform == "win32":
        logger.warning(
            "Daemon functionality not supported on Windows. "
            "In order to access the Kubeflow Pipelines UI at "
            "http://localhost:%d/, please run '%s' in a separate command "
            "line shell.",
            port,
            " ".join(command),
        )
    else:
        from zenml.utils import daemon

        def _daemon_function() -> None:
            """Port-forwards the Kubeflow Pipelines UI pod."""
            subprocess.check_call(command)

        daemon.run_as_daemon(
            _daemon_function, pid_file=pid_file_path, log_file=log_file_path
        )
        logger.info(
            "Started Kubeflow Pipelines UI daemon (check the daemon logs at %s "
            "in case you're not able to view the UI). The Kubeflow Pipelines "
            "UI should now be accessible at http://localhost:%d/.",
            log_file_path,
            port,
        )
stop_k3d_cluster(cluster_name)

Stops a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to stop.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def stop_k3d_cluster(cluster_name: str) -> None:
    """Stops a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to stop.
    """
    subprocess.check_call(["k3d", "cluster", "stop", cluster_name])
    logger.info("Stopped local k3d cluster '%s'.", cluster_name)
stop_kfp_ui_daemon(pid_file_path)

Stops the KFP UI daemon process if it is running.

Parameters:

Name Type Description Default
pid_file_path str

Path to the file with the daemons process ID.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def stop_kfp_ui_daemon(pid_file_path: str) -> None:
    """Stops the KFP UI daemon process if it is running.

    Args:
        pid_file_path: Path to the file with the daemons process ID.
    """
    if fileio.exists(pid_file_path):
        if sys.platform == "win32":
            # Daemon functionality is not supported on Windows, so the PID
            # file won't exist. This if clause exists just for mypy to not
            # complain about missing functions
            pass
        else:
            from zenml.utils import daemon

            daemon.stop_daemon(pid_file_path)
            fileio.remove(pid_file_path)
            logger.info("Stopped Kubeflow Pipelines UI daemon.")
wait_until_kubeflow_pipelines_ready(kubernetes_context)

Waits until all Kubeflow Pipelines pods are ready.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context in which the pods should be checked.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def wait_until_kubeflow_pipelines_ready(kubernetes_context: str) -> None:
    """Waits until all Kubeflow Pipelines pods are ready.

    Args:
        kubernetes_context: The kubernetes context in which the pods
            should be checked.
    """
    logger.info(
        "Waiting for all Kubeflow Pipelines pods to be ready (this might "
        "take a few minutes)."
    )
    while True:
        logger.info("Current pod status:")
        subprocess.check_call(
            [
                "kubectl",
                "--context",
                kubernetes_context,
                "--namespace",
                "kubeflow",
                "get",
                "pods",
            ]
        )
        if kubeflow_pipelines_ready(kubernetes_context=kubernetes_context):
            break

        logger.info(
            "One or more pods not ready yet, waiting for 30 seconds..."
        )
        time.sleep(30)
write_local_registry_yaml(yaml_path, registry_name, registry_uri)

Writes a K3D registry config file.

Parameters:

Name Type Description Default
yaml_path str

Path where the config file should be written to.

required
registry_name str

Name of the registry.

required
registry_uri str

URI of the registry.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def write_local_registry_yaml(
    yaml_path: str, registry_name: str, registry_uri: str
) -> None:
    """Writes a K3D registry config file.

    Args:
        yaml_path: Path where the config file should be written to.
        registry_name: Name of the registry.
        registry_uri: URI of the registry.
    """
    yaml_content = {
        "mirrors": {registry_uri: {"endpoint": [f"http://{registry_name}"]}}
    }
    yaml_utils.write_yaml(yaml_path, yaml_content)

utils

KFP utilities.

apply_pod_settings(container_op, settings)

Applies Kubernetes Pod settings to a KFP container.

Parameters:

Name Type Description Default
container_op ContainerOp

The container to which to apply the settings.

required
settings KubernetesPodSettings

The settings to apply.

required
Source code in zenml/integrations/kubeflow/utils.py
def apply_pod_settings(
    container_op: "ContainerOp",
    settings: KubernetesPodSettings,
) -> None:
    """Applies Kubernetes Pod settings to a KFP container.

    Args:
        container_op: The container to which to apply the settings.
        settings: The settings to apply.
    """
    from kubernetes.client.models import V1Affinity, V1Toleration

    for key, value in settings.node_selectors.items():
        container_op.add_node_selector_constraint(label_name=key, value=value)

    if settings.affinity:
        affinity: V1Affinity = (
            serialization_utils.deserialize_kubernetes_model(
                settings.affinity, "V1Affinity"
            )
        )
        container_op.add_affinity(affinity)

    for toleration_dict in settings.tolerations:
        toleration: V1Toleration = (
            serialization_utils.deserialize_kubernetes_model(
                toleration_dict, "V1Toleration"
            )
        )
        container_op.add_toleration(toleration)

    resource_requests = settings.resources.get("requests") or {}
    for name, value in resource_requests.items():
        container_op.add_resource_request(name, value)

    resource_limits = settings.resources.get("limits") or {}
    for name, value in resource_limits.items():
        container_op.add_resource_limit(name, value)