Alerter
zenml.alerter
special
Alerters allow you to send alerts from within your pipeline.
This is useful to immediately get notified when failures happen, and also for general monitoring / reporting.
alerter_utils
Utility functions for alerters.
get_active_alerter(context)
Get the alerter component of the active stack.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
context |
StepContext |
StepContext of the ZenML repository. |
required |
Returns:
Type | Description |
---|---|
BaseAlerter |
Alerter component of the active stack. |
Exceptions:
Type | Description |
---|---|
DoesNotExistException |
if active stack has no slack alerter. |
Source code in zenml/alerter/alerter_utils.py
def get_active_alerter(context: StepContext) -> BaseAlerter:
"""Get the alerter component of the active stack.
Args:
context: StepContext of the ZenML repository.
Returns:
Alerter component of the active stack.
Raises:
DoesNotExistException: if active stack has no slack alerter.
"""
# TODO: duplicate code with examples/feast_feature_store/run.py
if not context.stack:
raise DoesNotExistException(
"No active stack is available. "
"Please make sure that you have registered and set a stack."
)
if not context.stack.alerter:
raise DoesNotExistException(
"The active stack needs to have an alerter component registered "
"to be able to use an `alerter_step`. "
"You can create a new stack with e.g. a Slack alerter component or update "
"your existing stack to add this component, e.g.:\n\n"
" 'zenml alerter register slack_alerter --flavor=slack' ...\n"
" 'zenml stack register stack-name -al slack_alerter ...'\n"
)
return context.stack.alerter
base_alerter
Base class for all ZenML alerters.
BaseAlerter (StackComponent, ABC)
Base class for all ZenML alerters.
Source code in zenml/alerter/base_alerter.py
class BaseAlerter(StackComponent, ABC):
"""Base class for all ZenML alerters."""
@property
def config(self) -> BaseAlerterConfig:
"""Returns the `BaseAlerterConfig` config.
Returns:
The configuration.
"""
return cast(BaseAlerterConfig, self._config)
def post(
self, message: str, params: Optional[BaseAlerterStepParameters]
) -> bool:
"""Post a message to a chat service.
Args:
message: Message to be posted.
params: Optional parameters of this function.
Returns:
bool: True if operation succeeded, else False.
"""
return True
def ask(
self, question: str, params: Optional[BaseAlerterStepParameters]
) -> bool:
"""Post a message to a chat service and wait for approval.
This can be useful to easily get a human in the loop, e.g., when
deploying models.
Args:
question: Question to ask (message to be posted).
params: Optional parameters of this function.
Returns:
bool: True if operation succeeded and was approved, else False.
"""
return True
config: BaseAlerterConfig
property
readonly
Returns the BaseAlerterConfig
config.
Returns:
Type | Description |
---|---|
BaseAlerterConfig |
The configuration. |
ask(self, question, params)
Post a message to a chat service and wait for approval.
This can be useful to easily get a human in the loop, e.g., when deploying models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
question |
str |
Question to ask (message to be posted). |
required |
params |
Optional[zenml.alerter.base_alerter.BaseAlerterStepParameters] |
Optional parameters of this function. |
required |
Returns:
Type | Description |
---|---|
bool |
True if operation succeeded and was approved, else False. |
Source code in zenml/alerter/base_alerter.py
def ask(
self, question: str, params: Optional[BaseAlerterStepParameters]
) -> bool:
"""Post a message to a chat service and wait for approval.
This can be useful to easily get a human in the loop, e.g., when
deploying models.
Args:
question: Question to ask (message to be posted).
params: Optional parameters of this function.
Returns:
bool: True if operation succeeded and was approved, else False.
"""
return True
post(self, message, params)
Post a message to a chat service.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message |
str |
Message to be posted. |
required |
params |
Optional[zenml.alerter.base_alerter.BaseAlerterStepParameters] |
Optional parameters of this function. |
required |
Returns:
Type | Description |
---|---|
bool |
True if operation succeeded, else False. |
Source code in zenml/alerter/base_alerter.py
def post(
self, message: str, params: Optional[BaseAlerterStepParameters]
) -> bool:
"""Post a message to a chat service.
Args:
message: Message to be posted.
params: Optional parameters of this function.
Returns:
bool: True if operation succeeded, else False.
"""
return True
BaseAlerterConfig (StackComponentConfig)
pydantic-model
Base config for alerters.
Source code in zenml/alerter/base_alerter.py
class BaseAlerterConfig(StackComponentConfig):
"""Base config for alerters."""
BaseAlerterFlavor (Flavor, ABC)
Base class for all ZenML alerter flavors.
Source code in zenml/alerter/base_alerter.py
class BaseAlerterFlavor(Flavor, ABC):
"""Base class for all ZenML alerter flavors."""
@property
def type(self) -> StackComponentType:
"""Returns the flavor type.
Returns:
The flavor type.
"""
return StackComponentType.ALERTER
@property
def config_class(self) -> Type[BaseAlerterConfig]:
"""Returns BaseAlerterConfig class.
Returns:
The BaseAlerterConfig class.
"""
return BaseAlerterConfig
@property
def implementation_class(self) -> Type[BaseAlerter]:
"""Implementation class.
Returns:
The implementation class.
"""
return BaseAlerter
config_class: Type[zenml.alerter.base_alerter.BaseAlerterConfig]
property
readonly
Returns BaseAlerterConfig class.
Returns:
Type | Description |
---|---|
Type[zenml.alerter.base_alerter.BaseAlerterConfig] |
The BaseAlerterConfig class. |
implementation_class: Type[zenml.alerter.base_alerter.BaseAlerter]
property
readonly
Implementation class.
Returns:
Type | Description |
---|---|
Type[zenml.alerter.base_alerter.BaseAlerter] |
The implementation class. |
type: StackComponentType
property
readonly
Returns the flavor type.
Returns:
Type | Description |
---|---|
StackComponentType |
The flavor type. |
BaseAlerterStepParameters (BaseParameters)
pydantic-model
Step parameters definition for all alerters.
Source code in zenml/alerter/base_alerter.py
class BaseAlerterStepParameters(BaseParameters):
"""Step parameters definition for all alerters."""