Skip to content

Evidently

zenml.integrations.evidently special

Initialization of the Evidently integration.

The Evidently integration provides a way to monitor your models in production. It includes a way to detect data drift and different kinds of model performance issues.

The results of Evidently calculations can either be exported as an interactive dashboard (visualized as an html file or in your Jupyter notebook), or as a JSON file.

EvidentlyIntegration (Integration)

Evidently integration for ZenML.

Source code in zenml/integrations/evidently/__init__.py
class EvidentlyIntegration(Integration):
    """[Evidently](https://github.com/evidentlyai/evidently) integration for ZenML."""

    NAME = EVIDENTLY
    REQUIREMENTS = ["evidently==0.1.54dev0"]

    @staticmethod
    def activate() -> None:
        """Activate the Deepchecks integration."""
        from zenml.integrations.evidently import materializers  # noqa
        from zenml.integrations.evidently import visualizers  # noqa

    @classmethod
    def flavors(cls) -> List[Type[Flavor]]:
        """Declare the stack component flavors for the Great Expectations integration.

        Returns:
            List of stack component flavors for this integration.
        """
        from zenml.integrations.evidently.flavors import (
            EvidentlyDataValidatorFlavor,
        )

        return [EvidentlyDataValidatorFlavor]

activate() staticmethod

Activate the Deepchecks integration.

Source code in zenml/integrations/evidently/__init__.py
@staticmethod
def activate() -> None:
    """Activate the Deepchecks integration."""
    from zenml.integrations.evidently import materializers  # noqa
    from zenml.integrations.evidently import visualizers  # noqa

flavors() classmethod

Declare the stack component flavors for the Great Expectations integration.

Returns:

Type Description
List[Type[zenml.stack.flavor.Flavor]]

List of stack component flavors for this integration.

Source code in zenml/integrations/evidently/__init__.py
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Declare the stack component flavors for the Great Expectations integration.

    Returns:
        List of stack component flavors for this integration.
    """
    from zenml.integrations.evidently.flavors import (
        EvidentlyDataValidatorFlavor,
    )

    return [EvidentlyDataValidatorFlavor]

data_validators special

Initialization of the Evidently data validator for ZenML.

evidently_data_validator

Implementation of the Evidently data validator.

EvidentlyDataValidator (BaseDataValidator)

Evidently data validator stack component.

Source code in zenml/integrations/evidently/data_validators/evidently_data_validator.py
class EvidentlyDataValidator(BaseDataValidator):
    """Evidently data validator stack component."""

    NAME: ClassVar[str] = "Evidently"
    FLAVOR: ClassVar[
        Type[BaseDataValidatorFlavor]
    ] = EvidentlyDataValidatorFlavor

    @classmethod
    def _unpack_options(
        cls, option_list: Sequence[Tuple[str, Dict[str, Any]]]
    ) -> Sequence[Any]:
        """Unpack Evidently options.

        Implements de-serialization for [Evidently options](https://docs.evidentlyai.com/user-guide/customization)
        that can be passed as constructor arguments when creating Profile and
        Dashboard objects. The convention used is that each item in the list
        consists of two elements:

        * a string containing the full class path of a `dataclass` based
        class with Evidently options
        * a dictionary with kwargs used as parameters for the option instance

        For example,

        ```python
            options = [
                (
                    "evidently.options.ColorOptions",{
                        "primary_color": "#5a86ad",
                        "fill_color": "#fff4f2",
                        "zero_line_color": "#016795",
                        "current_data_color": "#c292a1",
                        "reference_data_color": "#017b92",
                    }
                ),
            ]
        ```

        This is the same as saying:

        ```python
        from evidently.options import ColorOptions

        color_scheme = ColorOptions()
        color_scheme.primary_color = "#5a86ad"
        color_scheme.fill_color = "#fff4f2"
        color_scheme.zero_line_color = "#016795"
        color_scheme.current_data_color = "#c292a1"
        color_scheme.reference_data_color = "#017b92"
        ```

        Args:
            option_list: list of packed Evidently options

        Returns:
            A list of unpacked Evidently options

        Raises:
            ValueError: if one of the passed Evidently class paths cannot be
                resolved to an actual class.
        """
        options = []
        for option_clspath, option_args in option_list:
            try:
                option_cls = load_source_path_class(option_clspath)
            except AttributeError:
                raise ValueError(
                    f"Could not map the `{option_clspath}` Evidently option "
                    f"class path to a valid class."
                )
            option = option_cls(**option_args)
            options.append(option)

        return options

    def data_profiling(
        self,
        dataset: pd.DataFrame,
        comparison_dataset: Optional[pd.DataFrame] = None,
        profile_list: Optional[Sequence[str]] = None,
        column_mapping: Optional[ColumnMapping] = None,
        verbose_level: int = 1,
        profile_options: Sequence[Tuple[str, Dict[str, Any]]] = [],
        dashboard_options: Sequence[Tuple[str, Dict[str, Any]]] = [],
        **kwargs: Any,
    ) -> Tuple[Profile, Dashboard]:
        """Analyze a dataset and generate a data profile with Evidently.

        The method takes in an optional list of Evidently options to be passed
        to the profile constructor (`profile_options`) and the dashboard
        constructor (`dashboard_options`). Each element in the list must be
        composed of two items: the first is a full class path of an Evidently
        option `dataclass`, the second is a dictionary of kwargs with the actual
        option parameters, e.g.:

        ```python
        options = [
            (
                "evidently.options.ColorOptions",{
                    "primary_color": "#5a86ad",
                    "fill_color": "#fff4f2",
                    "zero_line_color": "#016795",
                    "current_data_color": "#c292a1",
                    "reference_data_color": "#017b92",
                }
            ),
        ]
        ```

        Args:
            dataset: Target dataset to be profiled.
            comparison_dataset: Optional dataset to be used for data profiles
                that require a baseline for comparison (e.g data drift profiles).
            profile_list: Optional list identifying the categories of Evidently
                data profiles to be generated.
            column_mapping: Properties of the DataFrame columns used
            verbose_level: Level of verbosity for the Evidently dashboards. Use
                0 for a brief dashboard, 1 for a detailed dashboard.
            profile_options: Optional list of options to pass to the
                profile constructor.
            dashboard_options: Optional list of options to pass to the
                dashboard constructor.
            **kwargs: Extra keyword arguments (unused).

        Returns:
            The Evidently Profile and Dashboard objects corresponding to the set
            of generated profiles.
        """
        sections, tabs = get_profile_sections_and_tabs(
            profile_list, verbose_level
        )
        unpacked_profile_options = self._unpack_options(profile_options)
        unpacked_dashboard_options = self._unpack_options(dashboard_options)

        dashboard = Dashboard(tabs=tabs, options=unpacked_dashboard_options)
        dashboard.calculate(
            reference_data=dataset,
            current_data=comparison_dataset,
            column_mapping=column_mapping,
        )
        profile = Profile(sections=sections, options=unpacked_profile_options)
        profile.calculate(
            reference_data=dataset,
            current_data=comparison_dataset,
            column_mapping=column_mapping,
        )
        return profile, dashboard
FLAVOR (BaseDataValidatorFlavor)

Evidently data validator flavor.

Source code in zenml/integrations/evidently/data_validators/evidently_data_validator.py
class EvidentlyDataValidatorFlavor(BaseDataValidatorFlavor):
    """Evidently data validator flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return EVIDENTLY_DATA_VALIDATOR_FLAVOR

    @property
    def implementation_class(self) -> Type["EvidentlyDataValidator"]:
        """Implementation class.

        Returns:
            The implementation class.
        """
        from zenml.integrations.evidently.data_validators import (
            EvidentlyDataValidator,
        )

        return EvidentlyDataValidator
implementation_class: Type[EvidentlyDataValidator] property readonly

Implementation class.

Returns:

Type Description
Type[EvidentlyDataValidator]

The implementation class.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

data_profiling(self, dataset, comparison_dataset=None, profile_list=None, column_mapping=None, verbose_level=1, profile_options=[], dashboard_options=[], **kwargs)

Analyze a dataset and generate a data profile with Evidently.

The method takes in an optional list of Evidently options to be passed to the profile constructor (profile_options) and the dashboard constructor (dashboard_options). Each element in the list must be composed of two items: the first is a full class path of an Evidently option dataclass, the second is a dictionary of kwargs with the actual option parameters, e.g.:

options = [
    (
        "evidently.options.ColorOptions",{
            "primary_color": "#5a86ad",
            "fill_color": "#fff4f2",
            "zero_line_color": "#016795",
            "current_data_color": "#c292a1",
            "reference_data_color": "#017b92",
        }
    ),
]

Parameters:

Name Type Description Default
dataset DataFrame

Target dataset to be profiled.

required
comparison_dataset Optional[pandas.core.frame.DataFrame]

Optional dataset to be used for data profiles that require a baseline for comparison (e.g data drift profiles).

None
profile_list Optional[Sequence[str]]

Optional list identifying the categories of Evidently data profiles to be generated.

None
column_mapping Optional[evidently.pipeline.column_mapping.ColumnMapping]

Properties of the DataFrame columns used

None
verbose_level int

Level of verbosity for the Evidently dashboards. Use 0 for a brief dashboard, 1 for a detailed dashboard.

1
profile_options Sequence[Tuple[str, Dict[str, Any]]]

Optional list of options to pass to the profile constructor.

[]
dashboard_options Sequence[Tuple[str, Dict[str, Any]]]

Optional list of options to pass to the dashboard constructor.

[]
**kwargs Any

Extra keyword arguments (unused).

{}

Returns:

Type Description
Tuple[evidently.model_profile.model_profile.Profile, evidently.dashboard.dashboard.Dashboard]

The Evidently Profile and Dashboard objects corresponding to the set of generated profiles.

Source code in zenml/integrations/evidently/data_validators/evidently_data_validator.py
def data_profiling(
    self,
    dataset: pd.DataFrame,
    comparison_dataset: Optional[pd.DataFrame] = None,
    profile_list: Optional[Sequence[str]] = None,
    column_mapping: Optional[ColumnMapping] = None,
    verbose_level: int = 1,
    profile_options: Sequence[Tuple[str, Dict[str, Any]]] = [],
    dashboard_options: Sequence[Tuple[str, Dict[str, Any]]] = [],
    **kwargs: Any,
) -> Tuple[Profile, Dashboard]:
    """Analyze a dataset and generate a data profile with Evidently.

    The method takes in an optional list of Evidently options to be passed
    to the profile constructor (`profile_options`) and the dashboard
    constructor (`dashboard_options`). Each element in the list must be
    composed of two items: the first is a full class path of an Evidently
    option `dataclass`, the second is a dictionary of kwargs with the actual
    option parameters, e.g.:

    ```python
    options = [
        (
            "evidently.options.ColorOptions",{
                "primary_color": "#5a86ad",
                "fill_color": "#fff4f2",
                "zero_line_color": "#016795",
                "current_data_color": "#c292a1",
                "reference_data_color": "#017b92",
            }
        ),
    ]
    ```

    Args:
        dataset: Target dataset to be profiled.
        comparison_dataset: Optional dataset to be used for data profiles
            that require a baseline for comparison (e.g data drift profiles).
        profile_list: Optional list identifying the categories of Evidently
            data profiles to be generated.
        column_mapping: Properties of the DataFrame columns used
        verbose_level: Level of verbosity for the Evidently dashboards. Use
            0 for a brief dashboard, 1 for a detailed dashboard.
        profile_options: Optional list of options to pass to the
            profile constructor.
        dashboard_options: Optional list of options to pass to the
            dashboard constructor.
        **kwargs: Extra keyword arguments (unused).

    Returns:
        The Evidently Profile and Dashboard objects corresponding to the set
        of generated profiles.
    """
    sections, tabs = get_profile_sections_and_tabs(
        profile_list, verbose_level
    )
    unpacked_profile_options = self._unpack_options(profile_options)
    unpacked_dashboard_options = self._unpack_options(dashboard_options)

    dashboard = Dashboard(tabs=tabs, options=unpacked_dashboard_options)
    dashboard.calculate(
        reference_data=dataset,
        current_data=comparison_dataset,
        column_mapping=column_mapping,
    )
    profile = Profile(sections=sections, options=unpacked_profile_options)
    profile.calculate(
        reference_data=dataset,
        current_data=comparison_dataset,
        column_mapping=column_mapping,
    )
    return profile, dashboard
get_profile_sections_and_tabs(profile_list, verbose_level=1)

Get the profile sections and dashboard tabs for a profile list.

Parameters:

Name Type Description Default
profile_list Optional[Sequence[str]]

List of identifiers for Evidently profiles.

required
verbose_level int

Verbosity level for the rendered dashboard. Use 0 for a brief dashboard, 1 for a detailed dashboard.

1

Returns:

Type Description
Tuple[List[evidently.model_profile.sections.base_profile_section.ProfileSection], List[evidently.dashboard.tabs.base_tab.Tab]]

A tuple of two lists of profile sections and tabs.

Exceptions:

Type Description
ValueError

if the profile_section is not supported.

Source code in zenml/integrations/evidently/data_validators/evidently_data_validator.py
def get_profile_sections_and_tabs(
    profile_list: Optional[Sequence[str]],
    verbose_level: int = 1,
) -> Tuple[List[ProfileSection], List[Tab]]:
    """Get the profile sections and dashboard tabs for a profile list.

    Args:
        profile_list: List of identifiers for Evidently profiles.
        verbose_level: Verbosity level for the rendered dashboard. Use
            0 for a brief dashboard, 1 for a detailed dashboard.

    Returns:
        A tuple of two lists of profile sections and tabs.

    Raises:
        ValueError: if the profile_section is not supported.
    """
    profile_list = profile_list or list(profile_mapper.keys())
    try:
        return (
            [profile_mapper[profile]() for profile in profile_list],
            [
                dashboard_mapper[profile](verbose_level=verbose_level)
                for profile in profile_list
            ],
        )
    except KeyError as e:
        nl = "\n"
        raise ValueError(
            f"Invalid profile sections: {profile_list} \n\n"
            f"Valid and supported options are: {nl}- "
            f'{f"{nl}- ".join(list(profile_mapper.keys()))}'
        ) from e

flavors special

Evidently integration flavors.

evidently_data_validator_flavor

Evidently data validator flavor.

EvidentlyDataValidatorFlavor (BaseDataValidatorFlavor)

Evidently data validator flavor.

Source code in zenml/integrations/evidently/flavors/evidently_data_validator_flavor.py
class EvidentlyDataValidatorFlavor(BaseDataValidatorFlavor):
    """Evidently data validator flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return EVIDENTLY_DATA_VALIDATOR_FLAVOR

    @property
    def implementation_class(self) -> Type["EvidentlyDataValidator"]:
        """Implementation class.

        Returns:
            The implementation class.
        """
        from zenml.integrations.evidently.data_validators import (
            EvidentlyDataValidator,
        )

        return EvidentlyDataValidator
implementation_class: Type[EvidentlyDataValidator] property readonly

Implementation class.

Returns:

Type Description
Type[EvidentlyDataValidator]

The implementation class.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

materializers special

Evidently materializers.

evidently_profile_materializer

Implementation of Evidently profile materializer.

EvidentlyProfileMaterializer (BaseMaterializer)

Materializer to read data to and from an Evidently Profile.

Source code in zenml/integrations/evidently/materializers/evidently_profile_materializer.py
class EvidentlyProfileMaterializer(BaseMaterializer):
    """Materializer to read data to and from an Evidently Profile."""

    ASSOCIATED_TYPES = (Profile,)
    ASSOCIATED_ARTIFACT_TYPE = ArtifactType.DATA_ANALYSIS

    def load(self, data_type: Type[Any]) -> Profile:
        """Reads an Evidently Profile object from a json file.

        Args:
            data_type: The type of the data to read.

        Returns:
            The Evidently Profile

        Raises:
            TypeError: if the json file contains an invalid data type.
        """
        super().load(data_type)
        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        contents = yaml_utils.read_json(filepath)
        if type(contents) != dict:
            raise TypeError(
                f"Contents {contents} was type {type(contents)} but expected "
                f"dictionary"
            )

        section_types = contents.pop("section_types", [])
        sections = []
        for section_type in section_types:
            section_cls = import_class_by_path(section_type)
            section = section_cls()
            section._result = contents[section.part_id()]
            sections.append(section)

        return Profile(sections=sections)

    def save(self, data: Profile) -> None:
        """Serialize an Evidently Profile to a json file.

        Args:
            data: The Evidently Profile to be serialized.
        """
        super().save(data)

        contents = data.object()
        # include the list of profile sections in the serialized dictionary,
        # so we'll be able to re-create them during de-serialization
        contents["section_types"] = [
            resolve_class(stage.__class__) for stage in data.stages
        ]

        filepath = os.path.join(self.uri, DEFAULT_FILENAME)
        yaml_utils.write_json(filepath, contents, encoder=NumpyEncoder)
load(self, data_type)

Reads an Evidently Profile object from a json file.

Parameters:

Name Type Description Default
data_type Type[Any]

The type of the data to read.

required

Returns:

Type Description
Profile

The Evidently Profile

Exceptions:

Type Description
TypeError

if the json file contains an invalid data type.

Source code in zenml/integrations/evidently/materializers/evidently_profile_materializer.py
def load(self, data_type: Type[Any]) -> Profile:
    """Reads an Evidently Profile object from a json file.

    Args:
        data_type: The type of the data to read.

    Returns:
        The Evidently Profile

    Raises:
        TypeError: if the json file contains an invalid data type.
    """
    super().load(data_type)
    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    contents = yaml_utils.read_json(filepath)
    if type(contents) != dict:
        raise TypeError(
            f"Contents {contents} was type {type(contents)} but expected "
            f"dictionary"
        )

    section_types = contents.pop("section_types", [])
    sections = []
    for section_type in section_types:
        section_cls = import_class_by_path(section_type)
        section = section_cls()
        section._result = contents[section.part_id()]
        sections.append(section)

    return Profile(sections=sections)
save(self, data)

Serialize an Evidently Profile to a json file.

Parameters:

Name Type Description Default
data Profile

The Evidently Profile to be serialized.

required
Source code in zenml/integrations/evidently/materializers/evidently_profile_materializer.py
def save(self, data: Profile) -> None:
    """Serialize an Evidently Profile to a json file.

    Args:
        data: The Evidently Profile to be serialized.
    """
    super().save(data)

    contents = data.object()
    # include the list of profile sections in the serialized dictionary,
    # so we'll be able to re-create them during de-serialization
    contents["section_types"] = [
        resolve_class(stage.__class__) for stage in data.stages
    ]

    filepath = os.path.join(self.uri, DEFAULT_FILENAME)
    yaml_utils.write_json(filepath, contents, encoder=NumpyEncoder)

steps special

Initialization of the Evidently Standard Steps.

evidently_profile

Implementation of the Evidently Profile Step.

EvidentlyColumnMapping (BaseModel) pydantic-model

Column mapping configuration for Evidently.

This class is a 1-to-1 serializable analog of Evidently's ColumnMapping data type that can be used as a step configuration field (see https://docs.evidentlyai.com/features/dashboards/column_mapping).

Attributes:

Name Type Description
target Optional[str]

target column

prediction Union[str, Sequence[str]]

target column

datetime Optional[str]

datetime column

id Optional[str]

id column

numerical_features Optional[List[str]]

numerical features

categorical_features Optional[List[str]]

categorical features

datetime_features Optional[List[str]]

datetime features

target_names Optional[List[str]]

target column names

task Optional[Literal['classification', 'regression']]

model task (regression or classification)

Source code in zenml/integrations/evidently/steps/evidently_profile.py
class EvidentlyColumnMapping(BaseModel):
    """Column mapping configuration for Evidently.

    This class is a 1-to-1 serializable analog of Evidently's
    ColumnMapping data type that can be used as a step configuration field
    (see https://docs.evidentlyai.com/features/dashboards/column_mapping).

    Attributes:
        target: target column
        prediction: target column
        datetime: datetime column
        id: id column
        numerical_features: numerical features
        categorical_features: categorical features
        datetime_features: datetime features
        target_names: target column names
        task: model task (regression or classification)
    """

    target: Optional[str] = None
    prediction: Optional[Union[str, Sequence[str]]] = None
    datetime: Optional[str] = None
    id: Optional[str] = None
    numerical_features: Optional[List[str]] = None
    categorical_features: Optional[List[str]] = None
    datetime_features: Optional[List[str]] = None
    target_names: Optional[List[str]] = None
    task: Optional[Literal["classification", "regression"]] = None

    def to_evidently_column_mapping(self) -> ColumnMapping:
        """Convert this Pydantic object to an Evidently ColumnMapping object.

        Returns:
            An Evidently column mapping converted from this Pydantic object.
        """
        column_mapping = ColumnMapping()

        # preserve the Evidently defaults where possible
        column_mapping.target = self.target or column_mapping.target
        column_mapping.prediction = (
            self.prediction or column_mapping.prediction
        )
        column_mapping.datetime = self.datetime or column_mapping.datetime
        column_mapping.id = self.id or column_mapping.id
        column_mapping.numerical_features = (
            self.numerical_features or column_mapping.numerical_features
        )
        column_mapping.datetime_features = (
            self.datetime_features or column_mapping.datetime_features
        )
        column_mapping.target_names = (
            self.target_names or column_mapping.target_names
        )
        column_mapping.task = self.task or column_mapping.task

        return column_mapping
to_evidently_column_mapping(self)

Convert this Pydantic object to an Evidently ColumnMapping object.

Returns:

Type Description
ColumnMapping

An Evidently column mapping converted from this Pydantic object.

Source code in zenml/integrations/evidently/steps/evidently_profile.py
def to_evidently_column_mapping(self) -> ColumnMapping:
    """Convert this Pydantic object to an Evidently ColumnMapping object.

    Returns:
        An Evidently column mapping converted from this Pydantic object.
    """
    column_mapping = ColumnMapping()

    # preserve the Evidently defaults where possible
    column_mapping.target = self.target or column_mapping.target
    column_mapping.prediction = (
        self.prediction or column_mapping.prediction
    )
    column_mapping.datetime = self.datetime or column_mapping.datetime
    column_mapping.id = self.id or column_mapping.id
    column_mapping.numerical_features = (
        self.numerical_features or column_mapping.numerical_features
    )
    column_mapping.datetime_features = (
        self.datetime_features or column_mapping.datetime_features
    )
    column_mapping.target_names = (
        self.target_names or column_mapping.target_names
    )
    column_mapping.task = self.task or column_mapping.task

    return column_mapping
EvidentlyProfileParameters (BaseParameters) pydantic-model

Parameters class for Evidently profile steps.

Attributes:

Name Type Description
column_mapping Optional[zenml.integrations.evidently.steps.evidently_profile.EvidentlyColumnMapping]

properties of the DataFrame columns used

ignored_cols Optional[List[str]]

columns to ignore during the Evidently profile step

profile_sections Optional[Sequence[str]]

a list identifying the Evidently profile sections to be used. The following are valid options supported by Evidently: - "datadrift" - "categoricaltargetdrift" - "numericaltargetdrift" - "classificationmodelperformance" - "regressionmodelperformance" - "probabilisticmodelperformance"

verbose_level int

Verbosity level for the Evidently dashboards. Use 0 for a brief dashboard, 1 for a detailed dashboard.

profile_options Sequence[Tuple[str, Dict[str, Any]]]

Optional list of options to pass to the profile constructor. See EvidentlyDataValidator._unpack_options.

dashboard_options Sequence[Tuple[str, Dict[str, Any]]]

Optional list of options to pass to the dashboard constructor. See EvidentlyDataValidator._unpack_options.

Source code in zenml/integrations/evidently/steps/evidently_profile.py
class EvidentlyProfileParameters(BaseParameters):
    """Parameters class for Evidently profile steps.

    Attributes:
        column_mapping: properties of the DataFrame columns used
        ignored_cols: columns to ignore during the Evidently profile step
        profile_sections: a list identifying the Evidently profile sections to be
            used. The following are valid options supported by Evidently:
            - "datadrift"
            - "categoricaltargetdrift"
            - "numericaltargetdrift"
            - "classificationmodelperformance"
            - "regressionmodelperformance"
            - "probabilisticmodelperformance"
        verbose_level: Verbosity level for the Evidently dashboards. Use
            0 for a brief dashboard, 1 for a detailed dashboard.
        profile_options: Optional list of options to pass to the
            profile constructor. See `EvidentlyDataValidator._unpack_options`.
        dashboard_options: Optional list of options to pass to the
            dashboard constructor. See `EvidentlyDataValidator._unpack_options`.
    """

    column_mapping: Optional[EvidentlyColumnMapping] = None
    ignored_cols: Optional[List[str]] = None
    profile_sections: Optional[Sequence[str]] = None
    verbose_level: int = 1
    profile_options: Sequence[Tuple[str, Dict[str, Any]]] = Field(
        default_factory=list
    )
    dashboard_options: Sequence[Tuple[str, Dict[str, Any]]] = Field(
        default_factory=list
    )
EvidentlyProfileStep (BaseStep)

Step implementation implementing an Evidently Profile Step.

Source code in zenml/integrations/evidently/steps/evidently_profile.py
class EvidentlyProfileStep(BaseStep):
    """Step implementation implementing an Evidently Profile Step."""

    def entrypoint(
        self,
        reference_dataset: pd.DataFrame,
        comparison_dataset: pd.DataFrame,
        params: EvidentlyProfileParameters,
    ) -> Output(  # type:ignore[valid-type]
        profile=Profile, dashboard=str
    ):
        """Main entrypoint for the Evidently categorical target drift detection step.

        Args:
            reference_dataset: a Pandas DataFrame
            comparison_dataset: a Pandas DataFrame of new data you wish to
                compare against the reference data
            params: the parameters for the step

        Raises:
            ValueError: If ignored_cols is an empty list
            ValueError: If column is not found in reference or comparison
                dataset

        Returns:
            profile: Evidently Profile generated for the data drift
            dashboard: HTML report extracted from an Evidently Dashboard
              generated for the data drift
        """
        data_validator = cast(
            EvidentlyDataValidator,
            EvidentlyDataValidator.get_active_data_validator(),
        )
        column_mapping = None

        if params.ignored_cols is None:
            pass

        elif not params.ignored_cols:
            raise ValueError(
                f"Expects None or list of columns in strings, but got {params.ignored_cols}"
            )

        elif not (
            set(params.ignored_cols).issubset(set(reference_dataset.columns))
        ) or not (
            set(params.ignored_cols).issubset(set(comparison_dataset.columns))
        ):
            raise ValueError(
                "Column is not found in reference or comparison datasets"
            )

        else:
            reference_dataset = reference_dataset.drop(
                labels=list(params.ignored_cols), axis=1
            )
            comparison_dataset = comparison_dataset.drop(
                labels=list(params.ignored_cols), axis=1
            )

        if params.column_mapping:
            column_mapping = (
                params.column_mapping.to_evidently_column_mapping()
            )
        profile, dashboard = data_validator.data_profiling(
            dataset=reference_dataset,
            comparison_dataset=comparison_dataset,
            profile_list=params.profile_sections,
            column_mapping=column_mapping,
            verbose_level=params.verbose_level,
            profile_options=params.profile_options,
            dashboard_options=params.dashboard_options,
        )
        return [profile, dashboard.html()]
PARAMETERS_CLASS (BaseParameters) pydantic-model

Parameters class for Evidently profile steps.

Attributes:

Name Type Description
column_mapping Optional[zenml.integrations.evidently.steps.evidently_profile.EvidentlyColumnMapping]

properties of the DataFrame columns used

ignored_cols Optional[List[str]]

columns to ignore during the Evidently profile step

profile_sections Optional[Sequence[str]]

a list identifying the Evidently profile sections to be used. The following are valid options supported by Evidently: - "datadrift" - "categoricaltargetdrift" - "numericaltargetdrift" - "classificationmodelperformance" - "regressionmodelperformance" - "probabilisticmodelperformance"

verbose_level int

Verbosity level for the Evidently dashboards. Use 0 for a brief dashboard, 1 for a detailed dashboard.

profile_options Sequence[Tuple[str, Dict[str, Any]]]

Optional list of options to pass to the profile constructor. See EvidentlyDataValidator._unpack_options.

dashboard_options Sequence[Tuple[str, Dict[str, Any]]]

Optional list of options to pass to the dashboard constructor. See EvidentlyDataValidator._unpack_options.

Source code in zenml/integrations/evidently/steps/evidently_profile.py
class EvidentlyProfileParameters(BaseParameters):
    """Parameters class for Evidently profile steps.

    Attributes:
        column_mapping: properties of the DataFrame columns used
        ignored_cols: columns to ignore during the Evidently profile step
        profile_sections: a list identifying the Evidently profile sections to be
            used. The following are valid options supported by Evidently:
            - "datadrift"
            - "categoricaltargetdrift"
            - "numericaltargetdrift"
            - "classificationmodelperformance"
            - "regressionmodelperformance"
            - "probabilisticmodelperformance"
        verbose_level: Verbosity level for the Evidently dashboards. Use
            0 for a brief dashboard, 1 for a detailed dashboard.
        profile_options: Optional list of options to pass to the
            profile constructor. See `EvidentlyDataValidator._unpack_options`.
        dashboard_options: Optional list of options to pass to the
            dashboard constructor. See `EvidentlyDataValidator._unpack_options`.
    """

    column_mapping: Optional[EvidentlyColumnMapping] = None
    ignored_cols: Optional[List[str]] = None
    profile_sections: Optional[Sequence[str]] = None
    verbose_level: int = 1
    profile_options: Sequence[Tuple[str, Dict[str, Any]]] = Field(
        default_factory=list
    )
    dashboard_options: Sequence[Tuple[str, Dict[str, Any]]] = Field(
        default_factory=list
    )
entrypoint(self, reference_dataset, comparison_dataset, params)

Main entrypoint for the Evidently categorical target drift detection step.

Parameters:

Name Type Description Default
reference_dataset DataFrame

a Pandas DataFrame

required
comparison_dataset DataFrame

a Pandas DataFrame of new data you wish to compare against the reference data

required
params EvidentlyProfileParameters

the parameters for the step

required

Exceptions:

Type Description
ValueError

If ignored_cols is an empty list

ValueError

If column is not found in reference or comparison dataset

Returns:

Type Description
profile

Evidently Profile generated for the data drift dashboard: HTML report extracted from an Evidently Dashboard generated for the data drift

Source code in zenml/integrations/evidently/steps/evidently_profile.py
def entrypoint(
    self,
    reference_dataset: pd.DataFrame,
    comparison_dataset: pd.DataFrame,
    params: EvidentlyProfileParameters,
) -> Output(  # type:ignore[valid-type]
    profile=Profile, dashboard=str
):
    """Main entrypoint for the Evidently categorical target drift detection step.

    Args:
        reference_dataset: a Pandas DataFrame
        comparison_dataset: a Pandas DataFrame of new data you wish to
            compare against the reference data
        params: the parameters for the step

    Raises:
        ValueError: If ignored_cols is an empty list
        ValueError: If column is not found in reference or comparison
            dataset

    Returns:
        profile: Evidently Profile generated for the data drift
        dashboard: HTML report extracted from an Evidently Dashboard
          generated for the data drift
    """
    data_validator = cast(
        EvidentlyDataValidator,
        EvidentlyDataValidator.get_active_data_validator(),
    )
    column_mapping = None

    if params.ignored_cols is None:
        pass

    elif not params.ignored_cols:
        raise ValueError(
            f"Expects None or list of columns in strings, but got {params.ignored_cols}"
        )

    elif not (
        set(params.ignored_cols).issubset(set(reference_dataset.columns))
    ) or not (
        set(params.ignored_cols).issubset(set(comparison_dataset.columns))
    ):
        raise ValueError(
            "Column is not found in reference or comparison datasets"
        )

    else:
        reference_dataset = reference_dataset.drop(
            labels=list(params.ignored_cols), axis=1
        )
        comparison_dataset = comparison_dataset.drop(
            labels=list(params.ignored_cols), axis=1
        )

    if params.column_mapping:
        column_mapping = (
            params.column_mapping.to_evidently_column_mapping()
        )
    profile, dashboard = data_validator.data_profiling(
        dataset=reference_dataset,
        comparison_dataset=comparison_dataset,
        profile_list=params.profile_sections,
        column_mapping=column_mapping,
        verbose_level=params.verbose_level,
        profile_options=params.profile_options,
        dashboard_options=params.dashboard_options,
    )
    return [profile, dashboard.html()]
evidently_profile_step(step_name, params)

Shortcut function to create a new instance of the EvidentlyProfileConfig step.

The returned EvidentlyProfileStep can be used in a pipeline to run model drift analyses on two input pd.DataFrame datasets and return the results as an Evidently profile object and a rendered dashboard object.

Parameters:

Name Type Description Default
step_name str

The name of the step

required
params EvidentlyProfileParameters

The parameters for the step

required

Returns:

Type Description
BaseStep

a EvidentlyProfileStep step instance

Source code in zenml/integrations/evidently/steps/evidently_profile.py
def evidently_profile_step(
    step_name: str,
    params: EvidentlyProfileParameters,
) -> BaseStep:
    """Shortcut function to create a new instance of the EvidentlyProfileConfig step.

    The returned EvidentlyProfileStep can be used in a pipeline to
    run model drift analyses on two input pd.DataFrame datasets and return the
    results as an Evidently profile object and a rendered dashboard object.

    Args:
        step_name: The name of the step
        params: The parameters for the step

    Returns:
        a EvidentlyProfileStep step instance
    """
    return EvidentlyProfileStep(name=step_name, params=params)

visualizers special

Initialization for Evidently visualizer.

evidently_visualizer

Implementation of the Evidently visualizer.

EvidentlyVisualizer (BaseVisualizer)

The implementation of an Evidently Visualizer.

Source code in zenml/integrations/evidently/visualizers/evidently_visualizer.py
class EvidentlyVisualizer(BaseVisualizer):
    """The implementation of an Evidently Visualizer."""

    @abstractmethod
    def visualize(self, object: StepView, *args: Any, **kwargs: Any) -> None:
        """Method to visualize components.

        Args:
            object: StepView fetched from run.get_step().
            *args: Additional arguments.
            **kwargs: Additional keyword arguments.
        """
        for artifact_view in object.outputs.values():
            # filter out anything but data artifacts
            if (
                artifact_view.type == ArtifactType.DATA
                and artifact_view.data_type == "builtins.str"
            ):
                artifact = artifact_view.read()
                self.generate_facet(artifact)

    def generate_facet(self, html_: str) -> None:
        """Generate a Facet Overview.

        Args:
            html_: HTML represented as a string.
        """
        if Environment.in_notebook() or Environment.in_google_colab():
            from IPython.core.display import HTML, display

            display(HTML(html_))
        else:
            logger.warning(
                "The magic functions are only usable in a Jupyter notebook."
            )
            with tempfile.NamedTemporaryFile(
                mode="w", delete=False, suffix=".html", encoding="utf-8"
            ) as f:
                f.write(html_)
                url = f"file:///{f.name}"
                logger.info("Opening %s in a new browser.." % f.name)
                webbrowser.open(url, new=2)
generate_facet(self, html_)

Generate a Facet Overview.

Parameters:

Name Type Description Default
html_ str

HTML represented as a string.

required
Source code in zenml/integrations/evidently/visualizers/evidently_visualizer.py
def generate_facet(self, html_: str) -> None:
    """Generate a Facet Overview.

    Args:
        html_: HTML represented as a string.
    """
    if Environment.in_notebook() or Environment.in_google_colab():
        from IPython.core.display import HTML, display

        display(HTML(html_))
    else:
        logger.warning(
            "The magic functions are only usable in a Jupyter notebook."
        )
        with tempfile.NamedTemporaryFile(
            mode="w", delete=False, suffix=".html", encoding="utf-8"
        ) as f:
            f.write(html_)
            url = f"file:///{f.name}"
            logger.info("Opening %s in a new browser.." % f.name)
            webbrowser.open(url, new=2)
visualize(self, object, *args, **kwargs)

Method to visualize components.

Parameters:

Name Type Description Default
object StepView

StepView fetched from run.get_step().

required
*args Any

Additional arguments.

()
**kwargs Any

Additional keyword arguments.

{}
Source code in zenml/integrations/evidently/visualizers/evidently_visualizer.py
@abstractmethod
def visualize(self, object: StepView, *args: Any, **kwargs: Any) -> None:
    """Method to visualize components.

    Args:
        object: StepView fetched from run.get_step().
        *args: Additional arguments.
        **kwargs: Additional keyword arguments.
    """
    for artifact_view in object.outputs.values():
        # filter out anything but data artifacts
        if (
            artifact_view.type == ArtifactType.DATA
            and artifact_view.data_type == "builtins.str"
        ):
            artifact = artifact_view.read()
            self.generate_facet(artifact)