Skip to content

Models

zenml.models special

Pydantic models for the various concepts in ZenML.

artifact_models

Models representing artifacts.

ArtifactBaseModel (BaseModel) pydantic-model

Base model for artifacts.

Source code in zenml/models/artifact_models.py
class ArtifactBaseModel(BaseModel):
    """Base model for artifacts."""

    name: str = Field(
        title="Name of the output in the parent step.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

    artifact_store_id: Optional[UUID]
    type: ArtifactType
    uri: str = Field(
        title="URI of the artifact.", max_length=STR_FIELD_MAX_LENGTH
    )
    materializer: str = Field(
        title="Materializer class to use for this artifact.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    data_type: str = Field(
        title="Data type of the artifact.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

ArtifactRequestModel (ArtifactBaseModel, ProjectScopedRequestModel) pydantic-model

Request model for artifacts.

Source code in zenml/models/artifact_models.py
class ArtifactRequestModel(ArtifactBaseModel, ProjectScopedRequestModel):
    """Request model for artifacts."""

ArtifactResponseModel (ArtifactBaseModel, ProjectScopedResponseModel) pydantic-model

Response model for artifacts.

Source code in zenml/models/artifact_models.py
class ArtifactResponseModel(ArtifactBaseModel, ProjectScopedResponseModel):
    """Response model for artifacts."""

    producer_step_run_id: Optional[UUID]

ArtifactUpdateModel (ArtifactRequestModel) pydantic-model

Update model for artifacts.

Source code in zenml/models/artifact_models.py
class ArtifactUpdateModel(ArtifactRequestModel):
    """Update model for artifacts."""

base_models

Base domain model definitions.

BaseRequestModel (AnalyticsTrackedModelMixin) pydantic-model

Base request model.

Used as a base class for all request models.

Source code in zenml/models/base_models.py
class BaseRequestModel(AnalyticsTrackedModelMixin):
    """Base request model.

    Used as a base class for all request models.
    """

BaseResponseModel (AnalyticsTrackedModelMixin) pydantic-model

Base domain model.

Used as a base class for all domain models that have the following common characteristics:

  • are uniquely identified by a UUID
  • have a creation timestamp and a last modified timestamp
Source code in zenml/models/base_models.py
class BaseResponseModel(AnalyticsTrackedModelMixin):
    """Base domain model.

    Used as a base class for all domain models that have the following common
    characteristics:

      * are uniquely identified by a UUID
      * have a creation timestamp and a last modified timestamp
    """

    id: UUID = Field(title="The unique resource id.")

    created: datetime = Field(title="Time when this resource was created.")
    updated: datetime = Field(title="Time when this resource was last updated.")

    def __hash__(self) -> int:
        """Implementation of hash magic method.

        Returns:
            Hash of the UUID.
        """
        return hash((type(self),) + tuple([self.id]))

    def __eq__(self, other: Any) -> bool:
        """Implementation of equality magic method.

        Args:
            other: The other object to compare to.

        Returns:
            True if the other object is of the same type and has the same UUID.
        """
        if isinstance(other, BaseResponseModel):
            return self.id == other.id
        else:
            return False

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Fetches the analytics metadata for base response models.

        Returns:
            The analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata["entity_id"] = self.id
        return metadata
__eq__(self, other) special

Implementation of equality magic method.

Parameters:

Name Type Description Default
other Any

The other object to compare to.

required

Returns:

Type Description
bool

True if the other object is of the same type and has the same UUID.

Source code in zenml/models/base_models.py
def __eq__(self, other: Any) -> bool:
    """Implementation of equality magic method.

    Args:
        other: The other object to compare to.

    Returns:
        True if the other object is of the same type and has the same UUID.
    """
    if isinstance(other, BaseResponseModel):
        return self.id == other.id
    else:
        return False
__hash__(self) special

Implementation of hash magic method.

Returns:

Type Description
int

Hash of the UUID.

Source code in zenml/models/base_models.py
def __hash__(self) -> int:
    """Implementation of hash magic method.

    Returns:
        Hash of the UUID.
    """
    return hash((type(self),) + tuple([self.id]))
get_analytics_metadata(self)

Fetches the analytics metadata for base response models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in zenml/models/base_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for base response models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata["entity_id"] = self.id
    return metadata

ProjectScopedRequestModel (UserScopedRequestModel) pydantic-model

Base project-scoped request domain model.

Used as a base class for all domain models that are project-scoped.

Source code in zenml/models/base_models.py
class ProjectScopedRequestModel(UserScopedRequestModel):
    """Base project-scoped request domain model.

    Used as a base class for all domain models that are project-scoped.
    """

    project: UUID = Field(title="The project to which this resource belongs.")

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Fetches the analytics metadata for project scoped models.

        Returns:
            The analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata["project_id"] = self.project
        return metadata
get_analytics_metadata(self)

Fetches the analytics metadata for project scoped models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in zenml/models/base_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for project scoped models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata["project_id"] = self.project
    return metadata

ProjectScopedResponseModel (UserScopedResponseModel) pydantic-model

Base project-scoped domain model.

Used as a base class for all domain models that are project-scoped.

Source code in zenml/models/base_models.py
class ProjectScopedResponseModel(UserScopedResponseModel):
    """Base project-scoped domain model.

    Used as a base class for all domain models that are project-scoped.
    """

    project: "ProjectResponseModel" = Field(
        title="The project of this resource."
    )

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Fetches the analytics metadata for project scoped models.

        Returns:
            The analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata["project_id"] = self.project.id
        return metadata
get_analytics_metadata(self)

Fetches the analytics metadata for project scoped models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in zenml/models/base_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for project scoped models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata["project_id"] = self.project.id
    return metadata

ShareableRequestModel (ProjectScopedRequestModel) pydantic-model

Base shareable project-scoped domain model.

Used as a base class for all domain models that are project-scoped and are shareable.

Source code in zenml/models/base_models.py
class ShareableRequestModel(ProjectScopedRequestModel):
    """Base shareable project-scoped domain model.

    Used as a base class for all domain models that are project-scoped and are
    shareable.
    """

    is_shared: bool = Field(
        default=False,
        title=(
            "Flag describing if this resource is shared with other users in "
            "the same project."
        ),
    )

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Fetches the analytics metadata for project scoped models.

        Returns:
            The analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata["is_shared"] = self.is_shared
        return metadata
get_analytics_metadata(self)

Fetches the analytics metadata for project scoped models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in zenml/models/base_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for project scoped models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata["is_shared"] = self.is_shared
    return metadata

ShareableResponseModel (ProjectScopedResponseModel) pydantic-model

Base shareable project-scoped domain model.

Used as a base class for all domain models that are project-scoped and are shareable.

Source code in zenml/models/base_models.py
class ShareableResponseModel(ProjectScopedResponseModel):
    """Base shareable project-scoped domain model.

    Used as a base class for all domain models that are project-scoped and are
    shareable.
    """

    is_shared: bool = Field(
        title=(
            "Flag describing if this resource is shared with other users in "
            "the same project."
        ),
    )

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Fetches the analytics metadata for project scoped models.

        Returns:
            The analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata["is_shared"] = self.is_shared
        return metadata
get_analytics_metadata(self)

Fetches the analytics metadata for project scoped models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in zenml/models/base_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for project scoped models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata["is_shared"] = self.is_shared
    return metadata

UserScopedRequestModel (BaseRequestModel) pydantic-model

Base user-owned request model.

Used as a base class for all domain models that are "owned" by a user.

Source code in zenml/models/base_models.py
class UserScopedRequestModel(BaseRequestModel):
    """Base user-owned request model.

    Used as a base class for all domain models that are "owned" by a user.
    """

    user: UUID = Field(title="The id of the user that created this resource.")

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Fetches the analytics metadata for user scoped models.

        Returns:
            The analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata["user_id"] = self.user
        return metadata
get_analytics_metadata(self)

Fetches the analytics metadata for user scoped models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in zenml/models/base_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for user scoped models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata["user_id"] = self.user
    return metadata

UserScopedResponseModel (BaseResponseModel) pydantic-model

Base user-owned domain model.

Used as a base class for all domain models that are "owned" by a user.

Source code in zenml/models/base_models.py
class UserScopedResponseModel(BaseResponseModel):
    """Base user-owned domain model.

    Used as a base class for all domain models that are "owned" by a user.
    """

    user: Optional["UserResponseModel"] = Field(
        title="The user that created this resource.", nullable=True
    )

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Fetches the analytics metadata for user scoped models.

        Returns:
            The analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        if self.user is not None:
            metadata["user_id"] = self.user.id
        return metadata
get_analytics_metadata(self)

Fetches the analytics metadata for user scoped models.

Returns:

Type Description
Dict[str, Any]

The analytics metadata.

Source code in zenml/models/base_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Fetches the analytics metadata for user scoped models.

    Returns:
        The analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    if self.user is not None:
        metadata["user_id"] = self.user.id
    return metadata

update_model(_cls)

Base update model.

This is used as a decorator on top of request models to convert them into update models where the fields are optional and can be set to None.

Parameters:

Name Type Description Default
_cls Type[~T]

The class to decorate

required

Returns:

Type Description
Type[~T]

The decorated class.

Source code in zenml/models/base_models.py
def update_model(_cls: Type[T]) -> Type[T]:
    """Base update model.

    This is used as a decorator on top of request models to convert them
    into update models where the fields are optional and can be set to None.

    Args:
        _cls: The class to decorate

    Returns:
        The decorated class.
    """
    for _, value in _cls.__fields__.items():
        value.required = False
        value.allow_none = True

    return _cls

component_models

Models representing stack components.

ComponentBaseModel (BaseModel) pydantic-model

Base model for stack components.

Source code in zenml/models/component_models.py
class ComponentBaseModel(BaseModel):
    """Base model for stack components."""

    name: str = Field(
        title="The name of the stack component.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    type: StackComponentType = Field(
        title="The type of the stack component.",
    )

    flavor: str = Field(
        title="The flavor of the stack component.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

    configuration: Dict[str, Any] = Field(
        title="The stack component configuration.",
    )

ComponentRequestModel (ComponentBaseModel, ShareableRequestModel) pydantic-model

Request model for stack components.

Source code in zenml/models/component_models.py
class ComponentRequestModel(ComponentBaseModel, ShareableRequestModel):
    """Request model for stack components."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = ["type", "flavor"]

    @validator("name")
    def name_cant_be_a_secret_reference(cls, name: str) -> str:
        """Validator to ensure that the given name is not a secret reference.

        Args:
            name: The name to validate.

        Returns:
            The name if it is not a secret reference.

        Raises:
            ValueError: If the name is a secret reference.
        """
        if secret_utils.is_secret_reference(name):
            raise ValueError(
                "Passing the `name` attribute of a stack component as a "
                "secret reference is not allowed."
            )
        return name
name_cant_be_a_secret_reference(name) classmethod

Validator to ensure that the given name is not a secret reference.

Parameters:

Name Type Description Default
name str

The name to validate.

required

Returns:

Type Description
str

The name if it is not a secret reference.

Exceptions:

Type Description
ValueError

If the name is a secret reference.

Source code in zenml/models/component_models.py
@validator("name")
def name_cant_be_a_secret_reference(cls, name: str) -> str:
    """Validator to ensure that the given name is not a secret reference.

    Args:
        name: The name to validate.

    Returns:
        The name if it is not a secret reference.

    Raises:
        ValueError: If the name is a secret reference.
    """
    if secret_utils.is_secret_reference(name):
        raise ValueError(
            "Passing the `name` attribute of a stack component as a "
            "secret reference is not allowed."
        )
    return name

ComponentResponseModel (ComponentBaseModel, ShareableResponseModel) pydantic-model

Response model for stack components.

Source code in zenml/models/component_models.py
class ComponentResponseModel(ComponentBaseModel, ShareableResponseModel):
    """Response model for stack components."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = ["type", "flavor"]

ComponentUpdateModel (ComponentRequestModel) pydantic-model

Update model for stack components.

Source code in zenml/models/component_models.py
class ComponentUpdateModel(ComponentRequestModel):
    """Update model for stack components."""

constants

Constants used by ZenML domain models.

flavor_models

Models representing stack component flavors.

FlavorBaseModel (BaseModel) pydantic-model

Base model for stack component flavors.

Source code in zenml/models/flavor_models.py
class FlavorBaseModel(BaseModel):
    """Base model for stack component flavors."""

    name: str = Field(
        title="The name of the Flavor.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    type: StackComponentType = Field(title="The type of the Flavor.")
    config_schema: str = Field(
        title="The JSON schema of this flavor's corresponding configuration.",
        max_length=TEXT_FIELD_MAX_LENGTH,
    )
    source: str = Field(
        title="The path to the module which contains this Flavor.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    integration: Optional[str] = Field(
        title="The name of the integration that the Flavor belongs to.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

FlavorRequestModel (FlavorBaseModel, ProjectScopedRequestModel) pydantic-model

Request model for stack component flavors.

Source code in zenml/models/flavor_models.py
class FlavorRequestModel(FlavorBaseModel, ProjectScopedRequestModel):
    """Request model for stack component flavors."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "type",
        "integration",
    ]

FlavorResponseModel (FlavorBaseModel, ProjectScopedResponseModel) pydantic-model

Response model for stack component flavors.

Source code in zenml/models/flavor_models.py
class FlavorResponseModel(FlavorBaseModel, ProjectScopedResponseModel):
    """Response model for stack component flavors."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "id",
        "type",
        "integration",
    ]

pipeline_models

Models representing pipelines.

PipelineBaseModel (BaseModel) pydantic-model

Base model for pipelines.

Source code in zenml/models/pipeline_models.py
class PipelineBaseModel(BaseModel):
    """Base model for pipelines."""

    name: str = Field(
        title="The name of the pipeline.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

    docstring: Optional[str] = Field(
        title="The docstring of the pipeline.",
        max_length=TEXT_FIELD_MAX_LENGTH,
    )
    spec: PipelineSpec

PipelineRequestModel (PipelineBaseModel, ProjectScopedRequestModel) pydantic-model

Pipeline request model.

Source code in zenml/models/pipeline_models.py
class PipelineRequestModel(PipelineBaseModel, ProjectScopedRequestModel):
    """Pipeline request model."""

PipelineResponseModel (PipelineBaseModel, ProjectScopedResponseModel) pydantic-model

Pipeline response model user, project, runs, and status hydrated.

Source code in zenml/models/pipeline_models.py
class PipelineResponseModel(PipelineBaseModel, ProjectScopedResponseModel):
    """Pipeline response model user, project, runs, and status hydrated."""

    runs: Optional[List["PipelineRunResponseModel"]] = Field(
        title="A list of the last x Pipeline Runs."
    )
    status: Optional[List[ExecutionStatus]] = Field(
        title="The status of the last x Pipeline Runs."
    )

PipelineUpdateModel (PipelineRequestModel) pydantic-model

Pipeline update model.

Source code in zenml/models/pipeline_models.py
class PipelineUpdateModel(PipelineRequestModel):
    """Pipeline update model."""

pipeline_run_models

Models representing pipeline runs.

PipelineRunBaseModel (BaseModel) pydantic-model

Base model for pipeline runs.

Source code in zenml/models/pipeline_run_models.py
class PipelineRunBaseModel(BaseModel):
    """Base model for pipeline runs."""

    name: str = Field(
        title="The name of the pipeline run.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    orchestrator_run_id: Optional[str] = Field(
        title="The orchestrator run ID.",
        max_length=STR_FIELD_MAX_LENGTH,
        default=None,
    )
    enable_cache: Optional[bool]
    start_time: Optional[datetime]
    end_time: Optional[datetime]
    status: ExecutionStatus
    pipeline_configuration: Dict[str, Any]
    num_steps: Optional[int]
    zenml_version: Optional[str] = Field(
        title="ZenML version.",
        default=current_zenml_version,
        max_length=STR_FIELD_MAX_LENGTH,
    )
    git_sha: Optional[str] = Field(
        default_factory=get_git_sha, max_length=STR_FIELD_MAX_LENGTH
    )

PipelineRunRequestModel (PipelineRunBaseModel, ProjectScopedRequestModel) pydantic-model

Pipeline run model with user, project, pipeline, and stack as UUIDs.

Source code in zenml/models/pipeline_run_models.py
class PipelineRunRequestModel(PipelineRunBaseModel, ProjectScopedRequestModel):
    """Pipeline run model with user, project, pipeline, and stack as UUIDs."""

    id: UUID
    stack: Optional[UUID]  # Might become None if the stack is deleted.
    pipeline: Optional[UUID]  # Unlisted runs have this as None.

PipelineRunResponseModel (PipelineRunBaseModel, ProjectScopedResponseModel) pydantic-model

Pipeline run model with user, project, pipeline, and stack hydrated.

Source code in zenml/models/pipeline_run_models.py
class PipelineRunResponseModel(
    PipelineRunBaseModel, ProjectScopedResponseModel
):
    """Pipeline run model with user, project, pipeline, and stack hydrated."""

    pipeline: Optional["PipelineResponseModel"] = Field(
        title="The pipeline this run belongs to."
    )
    stack: Optional["StackResponseModel"] = Field(
        title="The stack that was used for this run."
    )

PipelineRunUpdateModel (BaseModel) pydantic-model

Pipeline run update model.

Source code in zenml/models/pipeline_run_models.py
class PipelineRunUpdateModel(BaseModel):
    """Pipeline run update model."""

    status: Optional[ExecutionStatus] = None
    end_time: Optional[datetime] = None

get_git_sha(clean=True)

Returns the current git HEAD SHA.

If the current working directory is not inside a git repo, this will return None.

Parameters:

Name Type Description Default
clean bool

If True and there any untracked files or files in the index or working tree, this function will return None.

True

Returns:

Type Description
Optional[str]

The current git HEAD SHA or None if the current working directory is not inside a git repo.

Source code in zenml/models/pipeline_run_models.py
def get_git_sha(clean: bool = True) -> Optional[str]:
    """Returns the current git HEAD SHA.

    If the current working directory is not inside a git repo, this will return
    `None`.

    Args:
        clean: If `True` and there any untracked files or files in the index or
            working tree, this function will return `None`.

    Returns:
        The current git HEAD SHA or `None` if the current working directory is
        not inside a git repo.
    """
    try:
        from git.exc import InvalidGitRepositoryError
        from git.repo.base import Repo
    except ImportError:
        return None

    try:
        repo = Repo(search_parent_directories=True)
    except InvalidGitRepositoryError:
        return None

    if clean and repo.is_dirty(untracked_files=True):
        return None
    return cast(str, repo.head.object.hexsha)

project_models

Models representing projects.

ProjectBaseModel (BaseModel) pydantic-model

Base model for projects.

Source code in zenml/models/project_models.py
class ProjectBaseModel(BaseModel):
    """Base model for projects."""

    name: str = Field(
        title="The unique name of the project.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    description: str = Field(
        default="",
        title="The description of the project.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

ProjectRequestModel (ProjectBaseModel, BaseRequestModel) pydantic-model

Request model for projects.

Source code in zenml/models/project_models.py
class ProjectRequestModel(ProjectBaseModel, BaseRequestModel):
    """Request model for projects."""

ProjectResponseModel (ProjectBaseModel, BaseResponseModel) pydantic-model

Response model for projects.

Source code in zenml/models/project_models.py
class ProjectResponseModel(ProjectBaseModel, BaseResponseModel):
    """Response model for projects."""

ProjectUpdateModel (ProjectRequestModel) pydantic-model

Update model for projects.

Source code in zenml/models/project_models.py
class ProjectUpdateModel(ProjectRequestModel):
    """Update model for projects."""

role_assignment_models

Models representing role assignments.

RoleAssignmentBaseModel (BaseModel) pydantic-model

Base model for role assignments.

Source code in zenml/models/role_assignment_models.py
class RoleAssignmentBaseModel(BaseModel):
    """Base model for role assignments."""

    @root_validator(pre=True)
    def check_team_or_user(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Check that either a team or a user is set.

        Args:
            values: The values to validate.

        Returns:
            The validated values.

        Raises:
            ValueError: If both or neither team and user are set.
        """
        if not values.get("team") and not values.get("user"):
            raise ValueError("Either team or user is required")
        elif values.get("team") and values.get("user"):
            raise ValueError("An assignment can not contain a user and team")
        return values
check_team_or_user(values) classmethod

Check that either a team or a user is set.

Parameters:

Name Type Description Default
values Dict[str, Any]

The values to validate.

required

Returns:

Type Description
Dict[str, Any]

The validated values.

Exceptions:

Type Description
ValueError

If both or neither team and user are set.

Source code in zenml/models/role_assignment_models.py
@root_validator(pre=True)
def check_team_or_user(cls, values: Dict[str, Any]) -> Dict[str, Any]:
    """Check that either a team or a user is set.

    Args:
        values: The values to validate.

    Returns:
        The validated values.

    Raises:
        ValueError: If both or neither team and user are set.
    """
    if not values.get("team") and not values.get("user"):
        raise ValueError("Either team or user is required")
    elif values.get("team") and values.get("user"):
        raise ValueError("An assignment can not contain a user and team")
    return values

RoleAssignmentRequestModel (RoleAssignmentBaseModel, BaseRequestModel) pydantic-model

Request model for role assignments using UUIDs for all entities.

Source code in zenml/models/role_assignment_models.py
class RoleAssignmentRequestModel(RoleAssignmentBaseModel, BaseRequestModel):
    """Request model for role assignments using UUIDs for all entities."""

    project: Optional[UUID] = Field(
        None, title="The project that the role is limited to."
    )
    team: Optional[UUID] = Field(
        None, title="The team that the role is assigned to."
    )
    user: Optional[UUID] = Field(
        None, title="The user that the role is assigned to."
    )

    role: UUID = Field(title="The role.")

RoleAssignmentResponseModel (RoleAssignmentBaseModel, BaseResponseModel) pydantic-model

Response model for role assignments with all entities hydrated.

Source code in zenml/models/role_assignment_models.py
class RoleAssignmentResponseModel(RoleAssignmentBaseModel, BaseResponseModel):
    """Response model for role assignments with all entities hydrated."""

    project: Optional["ProjectResponseModel"] = Field(
        title="The project scope of this role assignment.", default=None
    )
    team: Optional["TeamResponseModel"] = Field(
        title="The team the role is assigned to.", default=None
    )
    user: Optional["UserResponseModel"] = Field(
        title="The team the role is assigned to.", default=None
    )
    role: "RoleResponseModel" = Field(
        title="The team the role is assigned to.", default=None
    )

role_models

Models representing roles that can be assigned to users or teams.

RoleBaseModel (BaseModel) pydantic-model

Base model for roles.

Source code in zenml/models/role_models.py
class RoleBaseModel(BaseModel):
    """Base model for roles."""

    name: str = Field(
        title="The unique name of the role.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    permissions: Set[PermissionType]

RoleRequestModel (RoleBaseModel, BaseRequestModel) pydantic-model

Request model for roles.

Source code in zenml/models/role_models.py
class RoleRequestModel(RoleBaseModel, BaseRequestModel):
    """Request model for roles."""

RoleResponseModel (RoleBaseModel, BaseResponseModel) pydantic-model

Response model for roles.

Source code in zenml/models/role_models.py
class RoleResponseModel(RoleBaseModel, BaseResponseModel):
    """Response model for roles."""

RoleUpdateModel (RoleRequestModel) pydantic-model

Update model for roles.

Source code in zenml/models/role_models.py
class RoleUpdateModel(RoleRequestModel):
    """Update model for roles."""

server_models

Model definitions for ZenML servers.

ServerDatabaseType (StrEnum)

Enum for server database types.

Source code in zenml/models/server_models.py
class ServerDatabaseType(StrEnum):
    """Enum for server database types."""

    SQLITE = "sqlite"
    MYSQL = "mysql"
    OTHER = "other"

ServerDeploymentType (StrEnum)

Enum for server deployment types.

Source code in zenml/models/server_models.py
class ServerDeploymentType(StrEnum):
    """Enum for server deployment types."""

    LOCAL = "local"
    DOCKER = "docker"
    KUBERNETES = "kubernetes"
    AWS = "aws"
    GCP = "gcp"
    AZURE = "azure"
    ALPHA = "alpha"
    OTHER = "other"

ServerModel (BaseModel) pydantic-model

Domain model for ZenML servers.

Source code in zenml/models/server_models.py
class ServerModel(BaseModel):
    """Domain model for ZenML servers."""

    id: UUID = Field(default_factory=uuid4, title="The unique server id.")

    version: str = Field(
        title="The ZenML version that the server is running.",
    )
    deployment_type: ServerDeploymentType = Field(
        ServerDeploymentType.OTHER,
        title="The ZenML server deployment type.",
    )
    database_type: ServerDatabaseType = Field(
        ServerDatabaseType.OTHER,
        title="The database type that the server is using.",
    )

    def is_local(self) -> bool:
        """Return whether the server is running locally.

        Returns:
            True if the server is running locally, False otherwise.
        """
        from zenml.config.global_config import GlobalConfiguration

        # Local ZenML servers are identifiable by the fact that their
        # server ID is the same as the local client (user) ID.
        return self.id == GlobalConfiguration().user_id
is_local(self)

Return whether the server is running locally.

Returns:

Type Description
bool

True if the server is running locally, False otherwise.

Source code in zenml/models/server_models.py
def is_local(self) -> bool:
    """Return whether the server is running locally.

    Returns:
        True if the server is running locally, False otherwise.
    """
    from zenml.config.global_config import GlobalConfiguration

    # Local ZenML servers are identifiable by the fact that their
    # server ID is the same as the local client (user) ID.
    return self.id == GlobalConfiguration().user_id

stack_models

Models representing stacks.

StackBaseModel (BaseModel) pydantic-model

Base model for stacks.

Source code in zenml/models/stack_models.py
class StackBaseModel(BaseModel):
    """Base model for stacks."""

    name: str = Field(
        title="The name of the stack.", max_length=STR_FIELD_MAX_LENGTH
    )
    description: str = Field(
        default="",
        title="The description of the stack",
        max_length=STR_FIELD_MAX_LENGTH,
    )

StackRequestModel (StackBaseModel, ShareableRequestModel) pydantic-model

Stack model with components, user and project as UUIDs.

Source code in zenml/models/stack_models.py
class StackRequestModel(StackBaseModel, ShareableRequestModel):
    """Stack model with components, user and project as UUIDs."""

    components: Dict[StackComponentType, List[UUID]] = Field(
        title="A mapping of stack component types to the actual"
        "instances of components of this type."
    )

    @property
    def is_valid(self) -> bool:
        """Check if the stack is valid.

        Returns:
            True if the stack is valid, False otherwise.
        """
        return (
            StackComponentType.ARTIFACT_STORE in self.components
            and StackComponentType.ORCHESTRATOR in self.components
        )
is_valid: bool property readonly

Check if the stack is valid.

Returns:

Type Description
bool

True if the stack is valid, False otherwise.

StackResponseModel (StackBaseModel, ShareableResponseModel) pydantic-model

Stack model with Components, User and Project fully hydrated.

Source code in zenml/models/stack_models.py
class StackResponseModel(StackBaseModel, ShareableResponseModel):
    """Stack model with Components, User and Project fully hydrated."""

    components: Dict[StackComponentType, List[ComponentResponseModel]] = Field(
        title="A mapping of stack component types to the actual"
        "instances of components of this type."
    )

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Add the stack components to the stack analytics metadata.

        Returns:
            Dict of analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata.update({ct: c[0].flavor for ct, c in self.components.items()})
        return metadata

    @property
    def is_valid(self) -> bool:
        """Check if the stack is valid.

        Returns:
            True if the stack is valid, False otherwise.
        """
        return (
            StackComponentType.ARTIFACT_STORE in self.components
            and StackComponentType.ORCHESTRATOR in self.components
        )

    def to_yaml(self) -> Dict[str, Any]:
        """Create yaml representation of the Stack Model.

        Returns:
            The yaml representation of the Stack Model.
        """
        component_data = {}
        for component_type, components_list in self.components.items():
            component = components_list[0]
            component_dict = json.loads(
                component.json(
                    include={"name", "type", "flavor", "configuration"}
                )
            )
            component_data[component_type.value] = component_dict

        # write zenml version and stack dict to YAML
        yaml_data = {
            "stack_name": self.name,
            "components": component_data,
        }

        return yaml_data
is_valid: bool property readonly

Check if the stack is valid.

Returns:

Type Description
bool

True if the stack is valid, False otherwise.

get_analytics_metadata(self)

Add the stack components to the stack analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in zenml/models/stack_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Add the stack components to the stack analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata.update({ct: c[0].flavor for ct, c in self.components.items()})
    return metadata
to_yaml(self)

Create yaml representation of the Stack Model.

Returns:

Type Description
Dict[str, Any]

The yaml representation of the Stack Model.

Source code in zenml/models/stack_models.py
def to_yaml(self) -> Dict[str, Any]:
    """Create yaml representation of the Stack Model.

    Returns:
        The yaml representation of the Stack Model.
    """
    component_data = {}
    for component_type, components_list in self.components.items():
        component = components_list[0]
        component_dict = json.loads(
            component.json(
                include={"name", "type", "flavor", "configuration"}
            )
        )
        component_data[component_type.value] = component_dict

    # write zenml version and stack dict to YAML
    yaml_data = {
        "stack_name": self.name,
        "components": component_data,
    }

    return yaml_data

StackUpdateModel (StackRequestModel) pydantic-model

The update model for stacks.

Source code in zenml/models/stack_models.py
class StackUpdateModel(StackRequestModel):
    """The update model for stacks."""

step_run_models

Models representing steps of pipeline runs.

StepRunBaseModel (BaseModel) pydantic-model

Base model for step runs.

Source code in zenml/models/step_run_models.py
class StepRunBaseModel(BaseModel):
    """Base model for step runs."""

    name: str = Field(
        title="The name of the pipeline run step.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    step: Step
    pipeline_run_id: UUID
    original_step_run_id: Optional[UUID] = None
    status: ExecutionStatus
    parent_step_ids: List[UUID] = []
    cache_key: Optional[str] = Field(
        title="The cache key of the step run.",
        default=None,
        max_length=STR_FIELD_MAX_LENGTH,
    )
    start_time: Optional[datetime] = None
    end_time: Optional[datetime] = None

StepRunRequestModel (StepRunBaseModel, ProjectScopedRequestModel) pydantic-model

Request model for step runs.

Source code in zenml/models/step_run_models.py
class StepRunRequestModel(StepRunBaseModel, ProjectScopedRequestModel):
    """Request model for step runs."""

    input_artifacts: Dict[str, UUID] = {}
    output_artifacts: Dict[str, UUID] = {}

StepRunResponseModel (StepRunBaseModel, ProjectScopedResponseModel) pydantic-model

Response model for step runs.

Source code in zenml/models/step_run_models.py
class StepRunResponseModel(StepRunBaseModel, ProjectScopedResponseModel):
    """Response model for step runs."""

    input_artifacts: Dict[str, "ArtifactResponseModel"] = {}
    output_artifacts: Dict[str, "ArtifactResponseModel"] = {}

StepRunUpdateModel (BaseModel) pydantic-model

Update model for step runs.

Source code in zenml/models/step_run_models.py
class StepRunUpdateModel(BaseModel):
    """Update model for step runs."""

    output_artifacts: Dict[str, UUID] = {}
    status: Optional[ExecutionStatus] = None
    end_time: Optional[datetime] = None

team_models

Models representing teams.

TeamBaseModel (BaseModel) pydantic-model

Base model for teams.

Source code in zenml/models/team_models.py
class TeamBaseModel(BaseModel):
    """Base model for teams."""

    name: str = Field(
        title="The unique name of the team.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )

TeamRequestModel (TeamBaseModel, BaseRequestModel) pydantic-model

Request model for teams.

Source code in zenml/models/team_models.py
class TeamRequestModel(TeamBaseModel, BaseRequestModel):
    """Request model for teams."""

    users: Optional[List[UUID]] = Field(
        title="The list of users within this team."
    )

TeamResponseModel (TeamBaseModel, BaseResponseModel) pydantic-model

Response model for teams.

Source code in zenml/models/team_models.py
class TeamResponseModel(TeamBaseModel, BaseResponseModel):
    """Response model for teams."""

    users: List["UserResponseModel"] = Field(
        title="The list of users within this team."
    )

    @property
    def user_ids(self) -> List[UUID]:
        """Returns a list of user IDs that are part of this team.

        Returns:
            A list of user IDs.
        """
        if self.users:
            return [u.id for u in self.users]
        else:
            return []

    @property
    def user_names(self) -> List[str]:
        """Returns a list names of users that are part of this team.

        Returns:
            A list of names of users.
        """
        if self.users:
            return [u.name for u in self.users]
        else:
            return []
user_ids: List[uuid.UUID] property readonly

Returns a list of user IDs that are part of this team.

Returns:

Type Description
List[uuid.UUID]

A list of user IDs.

user_names: List[str] property readonly

Returns a list names of users that are part of this team.

Returns:

Type Description
List[str]

A list of names of users.

TeamUpdateModel (TeamRequestModel) pydantic-model

Update model for teams.

Source code in zenml/models/team_models.py
class TeamUpdateModel(TeamRequestModel):
    """Update model for teams."""

user_models

Models representing users.

JWTToken (BaseModel) pydantic-model

Pydantic object representing a JWT token.

Attributes:

Name Type Description
token_type JWTTokenType

The type of token.

user_id UUID

The id of the authenticated User

permissions List[str]

The permissions scope of the authenticated user

Source code in zenml/models/user_models.py
class JWTToken(BaseModel):
    """Pydantic object representing a JWT token.

    Attributes:
        token_type: The type of token.
        user_id: The id of the authenticated User
        permissions: The permissions scope of the authenticated user
    """

    JWT_ALGORITHM: ClassVar[str] = "HS256"

    token_type: JWTTokenType
    user_id: UUID
    permissions: List[str]

    @classmethod
    def decode(cls, token_type: JWTTokenType, token: str) -> "JWTToken":
        """Decodes a JWT access token.

        Decodes a JWT access token and returns a `JWTToken` object with the
        information retrieved from its subject claim.

        Args:
            token_type: The type of token.
            token: The encoded JWT token.

        Returns:
            The decoded JWT access token.

        Raises:
            AuthorizationException: If the token is invalid.
        """
        # import here to keep these dependencies out of the client
        from jose import JWTError, jwt

        try:
            payload = jwt.decode(
                token,
                GlobalConfiguration().jwt_secret_key,
                algorithms=[cls.JWT_ALGORITHM],
            )
        except JWTError as e:
            raise AuthorizationException(f"Invalid JWT token: {e}") from e

        subject: str = payload.get("sub")
        if subject is None:
            raise AuthorizationException(
                "Invalid JWT token: the subject claim is missing"
            )
        permissions: List[str] = payload.get("permissions")
        if permissions is None:
            raise AuthorizationException(
                "Invalid JWT token: the permissions scope is missing"
            )

        try:
            return cls(
                token_type=token_type,
                user_id=UUID(subject),
                permissions=set(permissions),
            )
        except ValueError as e:
            raise AuthorizationException(
                f"Invalid JWT token: could not decode subject claim: {e}"
            ) from e

    def encode(self, expire_minutes: Optional[int] = None) -> str:
        """Creates a JWT access token.

        Generates and returns a JWT access token with the subject claim set to
        contain the information in this Pydantic object.

        Args:
            expire_minutes: Number of minutes the token should be valid. If not
                provided, the token will not be set to expire.

        Returns:
            The generated access token.
        """
        # import here to keep these dependencies out of the client
        from jose import jwt

        claims: Dict[str, Any] = {
            "sub": str(self.user_id),
            "permissions": list(self.permissions),
        }

        if expire_minutes:
            expire = datetime.utcnow() + timedelta(minutes=expire_minutes)
            claims["exp"] = expire

        token: str = jwt.encode(
            claims,
            GlobalConfiguration().jwt_secret_key,
            algorithm=self.JWT_ALGORITHM,
        )
        return token
decode(token_type, token) classmethod

Decodes a JWT access token.

Decodes a JWT access token and returns a JWTToken object with the information retrieved from its subject claim.

Parameters:

Name Type Description Default
token_type JWTTokenType

The type of token.

required
token str

The encoded JWT token.

required

Returns:

Type Description
JWTToken

The decoded JWT access token.

Exceptions:

Type Description
AuthorizationException

If the token is invalid.

Source code in zenml/models/user_models.py
@classmethod
def decode(cls, token_type: JWTTokenType, token: str) -> "JWTToken":
    """Decodes a JWT access token.

    Decodes a JWT access token and returns a `JWTToken` object with the
    information retrieved from its subject claim.

    Args:
        token_type: The type of token.
        token: The encoded JWT token.

    Returns:
        The decoded JWT access token.

    Raises:
        AuthorizationException: If the token is invalid.
    """
    # import here to keep these dependencies out of the client
    from jose import JWTError, jwt

    try:
        payload = jwt.decode(
            token,
            GlobalConfiguration().jwt_secret_key,
            algorithms=[cls.JWT_ALGORITHM],
        )
    except JWTError as e:
        raise AuthorizationException(f"Invalid JWT token: {e}") from e

    subject: str = payload.get("sub")
    if subject is None:
        raise AuthorizationException(
            "Invalid JWT token: the subject claim is missing"
        )
    permissions: List[str] = payload.get("permissions")
    if permissions is None:
        raise AuthorizationException(
            "Invalid JWT token: the permissions scope is missing"
        )

    try:
        return cls(
            token_type=token_type,
            user_id=UUID(subject),
            permissions=set(permissions),
        )
    except ValueError as e:
        raise AuthorizationException(
            f"Invalid JWT token: could not decode subject claim: {e}"
        ) from e
encode(self, expire_minutes=None)

Creates a JWT access token.

Generates and returns a JWT access token with the subject claim set to contain the information in this Pydantic object.

Parameters:

Name Type Description Default
expire_minutes Optional[int]

Number of minutes the token should be valid. If not provided, the token will not be set to expire.

None

Returns:

Type Description
str

The generated access token.

Source code in zenml/models/user_models.py
def encode(self, expire_minutes: Optional[int] = None) -> str:
    """Creates a JWT access token.

    Generates and returns a JWT access token with the subject claim set to
    contain the information in this Pydantic object.

    Args:
        expire_minutes: Number of minutes the token should be valid. If not
            provided, the token will not be set to expire.

    Returns:
        The generated access token.
    """
    # import here to keep these dependencies out of the client
    from jose import jwt

    claims: Dict[str, Any] = {
        "sub": str(self.user_id),
        "permissions": list(self.permissions),
    }

    if expire_minutes:
        expire = datetime.utcnow() + timedelta(minutes=expire_minutes)
        claims["exp"] = expire

    token: str = jwt.encode(
        claims,
        GlobalConfiguration().jwt_secret_key,
        algorithm=self.JWT_ALGORITHM,
    )
    return token

JWTTokenType (StrEnum)

The type of JWT token.

Source code in zenml/models/user_models.py
class JWTTokenType(StrEnum):
    """The type of JWT token."""

    ACCESS_TOKEN = "access_token"

UserAuthModel (UserBaseModel, BaseResponseModel) pydantic-model

Authentication Model for the User.

This model is only used server-side. The server endpoints can use this model to authenticate the user credentials (Token, Password).

Source code in zenml/models/user_models.py
class UserAuthModel(UserBaseModel, BaseResponseModel):
    """Authentication Model for the User.

    This model is only used server-side. The server endpoints can use this model
    to authenticate the user credentials (Token, Password).
    """

    active: bool = Field(default=False, title="Active account.")

    activation_token: Optional[SecretStr] = Field(default=None, exclude=True)
    password: Optional[SecretStr] = Field(default=None, exclude=True)
    teams: Optional[List["TeamResponseModel"]] = Field(
        title="The list of teams for this user."
    )

    def generate_access_token(self, permissions: List[str]) -> str:
        """Generates an access token.

        Generates an access token and returns it.

        Args:
            permissions: Permissions to add to the token

        Returns:
            The generated access token.
        """
        return JWTToken(
            token_type=JWTTokenType.ACCESS_TOKEN,
            user_id=self.id,
            permissions=permissions,
        ).encode()

    @classmethod
    def _is_hashed_secret(cls, secret: SecretStr) -> bool:
        """Checks if a secret value is already hashed.

        Args:
            secret: The secret value to check.

        Returns:
            True if the secret value is hashed, otherwise False.
        """
        return (
            re.match(r"^\$2[ayb]\$.{56}$", secret.get_secret_value())
            is not None
        )

    @classmethod
    def _get_hashed_secret(cls, secret: Optional[SecretStr]) -> Optional[str]:
        """Hashes the input secret and returns the hash value.

        Only applied if supplied and if not already hashed.

        Args:
            secret: The secret value to hash.

        Returns:
            The secret hash value, or None if no secret was supplied.
        """
        if secret is None:
            return None
        if cls._is_hashed_secret(secret):
            return secret.get_secret_value()
        pwd_context = cls._get_crypt_context()
        return cast(str, pwd_context.hash(secret.get_secret_value()))

    def get_password(self) -> Optional[str]:
        """Get the password.

        Returns:
            The password as a plain string, if it exists.
        """
        if self.password is None:
            return None
        return self.password.get_secret_value()

    def get_hashed_password(self) -> Optional[str]:
        """Returns the hashed password, if configured.

        Returns:
            The hashed password.
        """
        return self._get_hashed_secret(self.password)

    def get_hashed_activation_token(self) -> Optional[str]:
        """Returns the hashed activation token, if configured.

        Returns:
            The hashed activation token.
        """
        return self._get_hashed_secret(self.activation_token)

    @classmethod
    def verify_password(
        cls, plain_password: str, user: Optional["UserAuthModel"] = None
    ) -> bool:
        """Verifies a given plain password against the stored password.

        Args:
            plain_password: Input password to be verified.
            user: User for which the password is to be verified.

        Returns:
            True if the passwords match.
        """
        # even when the user or password is not set, we still want to execute
        # the password hash verification to protect against response discrepancy
        # attacks (https://cwe.mitre.org/data/definitions/204.html)
        password_hash: Optional[str] = None
        if user is not None and user.password is not None:  # and user.active:
            password_hash = user.get_hashed_password()
        pwd_context = cls._get_crypt_context()
        return cast(bool, pwd_context.verify(plain_password, password_hash))

    @classmethod
    def verify_access_token(cls, token: str) -> Optional["UserAuthModel"]:
        """Verifies an access token.

        Verifies an access token and returns the user that was used to generate
        it if the token is valid and None otherwise.

        Args:
            token: The access token to verify.

        Returns:
            The user that generated the token if valid, None otherwise.
        """
        try:
            access_token = JWTToken.decode(
                token_type=JWTTokenType.ACCESS_TOKEN, token=token
            )
        except AuthorizationException:
            return None

        zen_store = GlobalConfiguration().zen_store
        try:
            user = zen_store.get_auth_user(user_name_or_id=access_token.user_id)
        except KeyError:
            return None
        else:
            if user.active:
                return user

        return None

    @classmethod
    def verify_activation_token(
        cls, activation_token: str, user: Optional["UserAuthModel"] = None
    ) -> bool:
        """Verifies a given activation token against the stored token.

        Args:
            activation_token: Input activation token to be verified.
            user: User for which the activation token is to be verified.

        Returns:
            True if the token is valid.
        """
        # even when the user or token is not set, we still want to execute the
        # token hash verification to protect against response discrepancy
        # attacks (https://cwe.mitre.org/data/definitions/204.html)
        token_hash: Optional[str] = None
        if (
            user is not None
            and user.activation_token is not None
            and not user.active
        ):
            token_hash = user.get_hashed_activation_token()
        pwd_context = cls._get_crypt_context()
        return cast(bool, pwd_context.verify(activation_token, token_hash))
generate_access_token(self, permissions)

Generates an access token.

Generates an access token and returns it.

Parameters:

Name Type Description Default
permissions List[str]

Permissions to add to the token

required

Returns:

Type Description
str

The generated access token.

Source code in zenml/models/user_models.py
def generate_access_token(self, permissions: List[str]) -> str:
    """Generates an access token.

    Generates an access token and returns it.

    Args:
        permissions: Permissions to add to the token

    Returns:
        The generated access token.
    """
    return JWTToken(
        token_type=JWTTokenType.ACCESS_TOKEN,
        user_id=self.id,
        permissions=permissions,
    ).encode()
get_hashed_activation_token(self)

Returns the hashed activation token, if configured.

Returns:

Type Description
Optional[str]

The hashed activation token.

Source code in zenml/models/user_models.py
def get_hashed_activation_token(self) -> Optional[str]:
    """Returns the hashed activation token, if configured.

    Returns:
        The hashed activation token.
    """
    return self._get_hashed_secret(self.activation_token)
get_hashed_password(self)

Returns the hashed password, if configured.

Returns:

Type Description
Optional[str]

The hashed password.

Source code in zenml/models/user_models.py
def get_hashed_password(self) -> Optional[str]:
    """Returns the hashed password, if configured.

    Returns:
        The hashed password.
    """
    return self._get_hashed_secret(self.password)
get_password(self)

Get the password.

Returns:

Type Description
Optional[str]

The password as a plain string, if it exists.

Source code in zenml/models/user_models.py
def get_password(self) -> Optional[str]:
    """Get the password.

    Returns:
        The password as a plain string, if it exists.
    """
    if self.password is None:
        return None
    return self.password.get_secret_value()
verify_access_token(token) classmethod

Verifies an access token.

Verifies an access token and returns the user that was used to generate it if the token is valid and None otherwise.

Parameters:

Name Type Description Default
token str

The access token to verify.

required

Returns:

Type Description
Optional[UserAuthModel]

The user that generated the token if valid, None otherwise.

Source code in zenml/models/user_models.py
@classmethod
def verify_access_token(cls, token: str) -> Optional["UserAuthModel"]:
    """Verifies an access token.

    Verifies an access token and returns the user that was used to generate
    it if the token is valid and None otherwise.

    Args:
        token: The access token to verify.

    Returns:
        The user that generated the token if valid, None otherwise.
    """
    try:
        access_token = JWTToken.decode(
            token_type=JWTTokenType.ACCESS_TOKEN, token=token
        )
    except AuthorizationException:
        return None

    zen_store = GlobalConfiguration().zen_store
    try:
        user = zen_store.get_auth_user(user_name_or_id=access_token.user_id)
    except KeyError:
        return None
    else:
        if user.active:
            return user

    return None
verify_activation_token(activation_token, user=None) classmethod

Verifies a given activation token against the stored token.

Parameters:

Name Type Description Default
activation_token str

Input activation token to be verified.

required
user Optional[UserAuthModel]

User for which the activation token is to be verified.

None

Returns:

Type Description
bool

True if the token is valid.

Source code in zenml/models/user_models.py
@classmethod
def verify_activation_token(
    cls, activation_token: str, user: Optional["UserAuthModel"] = None
) -> bool:
    """Verifies a given activation token against the stored token.

    Args:
        activation_token: Input activation token to be verified.
        user: User for which the activation token is to be verified.

    Returns:
        True if the token is valid.
    """
    # even when the user or token is not set, we still want to execute the
    # token hash verification to protect against response discrepancy
    # attacks (https://cwe.mitre.org/data/definitions/204.html)
    token_hash: Optional[str] = None
    if (
        user is not None
        and user.activation_token is not None
        and not user.active
    ):
        token_hash = user.get_hashed_activation_token()
    pwd_context = cls._get_crypt_context()
    return cast(bool, pwd_context.verify(activation_token, token_hash))
verify_password(plain_password, user=None) classmethod

Verifies a given plain password against the stored password.

Parameters:

Name Type Description Default
plain_password str

Input password to be verified.

required
user Optional[UserAuthModel]

User for which the password is to be verified.

None

Returns:

Type Description
bool

True if the passwords match.

Source code in zenml/models/user_models.py
@classmethod
def verify_password(
    cls, plain_password: str, user: Optional["UserAuthModel"] = None
) -> bool:
    """Verifies a given plain password against the stored password.

    Args:
        plain_password: Input password to be verified.
        user: User for which the password is to be verified.

    Returns:
        True if the passwords match.
    """
    # even when the user or password is not set, we still want to execute
    # the password hash verification to protect against response discrepancy
    # attacks (https://cwe.mitre.org/data/definitions/204.html)
    password_hash: Optional[str] = None
    if user is not None and user.password is not None:  # and user.active:
        password_hash = user.get_hashed_password()
    pwd_context = cls._get_crypt_context()
    return cast(bool, pwd_context.verify(plain_password, password_hash))

UserBaseModel (BaseModel) pydantic-model

Base model for users.

Source code in zenml/models/user_models.py
class UserBaseModel(BaseModel):
    """Base model for users."""

    name: str = Field(
        title="The unique username for the account.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    full_name: str = Field(
        default="",
        title="The full name for the account owner.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

    email_opted_in: Optional[bool] = Field(
        title="Whether the user agreed to share their email.",
        description="`null` if not answered, `true` if agreed, "
        "`false` if skipped.",
    )

    active: bool = Field(default=False, title="Active account.")

    @classmethod
    def _get_crypt_context(cls) -> "CryptContext":
        """Returns the password encryption context.

        Returns:
            The password encryption context.
        """
        from passlib.context import CryptContext

        return CryptContext(schemes=["bcrypt"], deprecated="auto")
email_opted_in: bool pydantic-field

null if not answered, true if agreed, false if skipped.

UserRequestModel (UserBaseModel, BaseRequestModel) pydantic-model

Request model for users.

This model is used to create a user. The email field is optional but is more commonly set on the UpdateRequestModel which inherits from this model. Users can also optionally set their password during creation.

Source code in zenml/models/user_models.py
class UserRequestModel(UserBaseModel, BaseRequestModel):
    """Request model for users.

    This model is used to create a user. The email field is optional but is
    more commonly set on the UpdateRequestModel which inherits from this model.
    Users can also optionally set their password during creation.
    """

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "name",
        "full_name",
        "active",
        "email_opted_in",
    ]

    email: Optional[str] = Field(
        default=None,
        title="The email address associated with the account.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

    password: Optional[str] = Field(
        default=None,
        title="A password for the user.",
        max_length=STR_FIELD_MAX_LENGTH,
    )
    activation_token: Optional[str] = Field(
        default=None, max_length=STR_FIELD_MAX_LENGTH
    )

    class Config:
        """Pydantic configuration class."""

        # Validate attributes when assigning them
        validate_assignment = True
        # Forbid extra attributes to prevent unexpected behavior
        extra = "forbid"
        underscore_attrs_are_private = True

    @classmethod
    def _create_hashed_secret(cls, secret: Optional[str]) -> Optional[str]:
        """Hashes the input secret and returns the hash value.

        Only applied if supplied and if not already hashed.

        Args:
            secret: The secret value to hash.

        Returns:
            The secret hash value, or None if no secret was supplied.
        """
        if secret is None:
            return None
        pwd_context = cls._get_crypt_context()
        return cast(str, pwd_context.hash(secret))

    def create_hashed_password(self) -> Optional[str]:
        """Hashes the password.

        Returns:
            The hashed password.
        """
        return self._create_hashed_secret(self.password)

    def create_hashed_activation_token(self) -> Optional[str]:
        """Hashes the activation token.

        Returns:
            The hashed activation token.
        """
        return self._create_hashed_secret(self.activation_token)

    def generate_activation_token(self) -> str:
        """Generates and stores a new activation token.

        Returns:
            The generated activation token.
        """
        self.activation_token = token_hex(32)
        return self.activation_token
Config

Pydantic configuration class.

Source code in zenml/models/user_models.py
class Config:
    """Pydantic configuration class."""

    # Validate attributes when assigning them
    validate_assignment = True
    # Forbid extra attributes to prevent unexpected behavior
    extra = "forbid"
    underscore_attrs_are_private = True
create_hashed_activation_token(self)

Hashes the activation token.

Returns:

Type Description
Optional[str]

The hashed activation token.

Source code in zenml/models/user_models.py
def create_hashed_activation_token(self) -> Optional[str]:
    """Hashes the activation token.

    Returns:
        The hashed activation token.
    """
    return self._create_hashed_secret(self.activation_token)
create_hashed_password(self)

Hashes the password.

Returns:

Type Description
Optional[str]

The hashed password.

Source code in zenml/models/user_models.py
def create_hashed_password(self) -> Optional[str]:
    """Hashes the password.

    Returns:
        The hashed password.
    """
    return self._create_hashed_secret(self.password)
generate_activation_token(self)

Generates and stores a new activation token.

Returns:

Type Description
str

The generated activation token.

Source code in zenml/models/user_models.py
def generate_activation_token(self) -> str:
    """Generates and stores a new activation token.

    Returns:
        The generated activation token.
    """
    self.activation_token = token_hex(32)
    return self.activation_token

UserResponseModel (UserBaseModel, BaseResponseModel) pydantic-model

Response model for users.

This returns the activation_token (which is required for the user-invitation-flow of the frontend. This also optionally includes the team the user is a part of. The email is returned optionally as well for use by the analytics on the client-side.

Source code in zenml/models/user_models.py
class UserResponseModel(UserBaseModel, BaseResponseModel):
    """Response model for users.

    This returns the activation_token (which is required for the
    user-invitation-flow of the frontend. This also optionally includes the
    team the user is a part of. The email is returned optionally as well
    for use by the analytics on the client-side.
    """

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "name",
        "full_name",
        "active",
        "email_opted_in",
    ]

    activation_token: Optional[str] = Field(
        default=None, max_length=STR_FIELD_MAX_LENGTH
    )
    teams: Optional[List["TeamResponseModel"]] = Field(
        title="The list of teams for this user."
    )
    email: Optional[str] = Field(
        default="",
        title="The email address associated with the account.",
        max_length=STR_FIELD_MAX_LENGTH,
    )

    def generate_access_token(self, permissions: List[str]) -> str:
        """Generates an access token.

        Generates an access token and returns it.

        Args:
            permissions: Permissions to add to the token

        Returns:
            The generated access token.
        """
        return JWTToken(
            token_type=JWTTokenType.ACCESS_TOKEN,
            user_id=self.id,
            permissions=permissions,
        ).encode()
generate_access_token(self, permissions)

Generates an access token.

Generates an access token and returns it.

Parameters:

Name Type Description Default
permissions List[str]

Permissions to add to the token

required

Returns:

Type Description
str

The generated access token.

Source code in zenml/models/user_models.py
def generate_access_token(self, permissions: List[str]) -> str:
    """Generates an access token.

    Generates an access token and returns it.

    Args:
        permissions: Permissions to add to the token

    Returns:
        The generated access token.
    """
    return JWTToken(
        token_type=JWTTokenType.ACCESS_TOKEN,
        user_id=self.id,
        permissions=permissions,
    ).encode()

UserUpdateModel (UserRequestModel) pydantic-model

Update model for users.

Source code in zenml/models/user_models.py
class UserUpdateModel(UserRequestModel):
    """Update model for users."""

    @root_validator
    def user_email_updates(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Validate that the UserUpdateModel conforms to the email-opt-in-flow.

        Args:
            values: The values to validate.

        Returns:
            The validated values.

        Raises:
            ValueError: If the email was not provided when the email_opted_in
                field was set to True.
        """
        # When someone sets the email, or updates the email and hasn't
        #  before explicitly opted out, they are opted in
        if values["email"] is not None:
            if values["email_opted_in"] is None:
                values["email_opted_in"] = True

        # It should not be possible to do opt in without an email
        if values["email_opted_in"] is True:
            if values["email"] is None:
                raise ValueError(
                    "Please provide an email, when you are opting-in with "
                    "your email."
                )
        return values
user_email_updates(values) classmethod

Validate that the UserUpdateModel conforms to the email-opt-in-flow.

Parameters:

Name Type Description Default
values Dict[str, Any]

The values to validate.

required

Returns:

Type Description
Dict[str, Any]

The validated values.

Exceptions:

Type Description
ValueError

If the email was not provided when the email_opted_in field was set to True.

Source code in zenml/models/user_models.py
@root_validator
def user_email_updates(cls, values: Dict[str, Any]) -> Dict[str, Any]:
    """Validate that the UserUpdateModel conforms to the email-opt-in-flow.

    Args:
        values: The values to validate.

    Returns:
        The validated values.

    Raises:
        ValueError: If the email was not provided when the email_opted_in
            field was set to True.
    """
    # When someone sets the email, or updates the email and hasn't
    #  before explicitly opted out, they are opted in
    if values["email"] is not None:
        if values["email_opted_in"] is None:
            values["email_opted_in"] = True

    # It should not be possible to do opt in without an email
    if values["email_opted_in"] is True:
        if values["email"] is None:
            raise ValueError(
                "Please provide an email, when you are opting-in with "
                "your email."
            )
    return values