Skip to content

Kubernetes

zenml.integrations.kubernetes special

Kubernetes integration for Kubernetes-native orchestration.

The Kubernetes integration sub-module powers an alternative to the local orchestrator. You can enable it by registering the Kubernetes orchestrator with the CLI tool.

KubernetesIntegration (Integration)

Definition of Kubernetes integration for ZenML.

Source code in zenml/integrations/kubernetes/__init__.py
class KubernetesIntegration(Integration):
    """Definition of Kubernetes integration for ZenML."""

    NAME = KUBERNETES
    REQUIREMENTS = ["kubernetes==18.20.0"]

    @classmethod
    def flavors(cls) -> List[Type[Flavor]]:
        """Declare the stack component flavors for the Kubernetes integration.

        Returns:
            List of new stack component flavors.
        """
        from zenml.integrations.kubernetes.flavors import (
            KubernetesOrchestratorFlavor,
        )

        return [KubernetesOrchestratorFlavor]

flavors() classmethod

Declare the stack component flavors for the Kubernetes integration.

Returns:

Type Description
List[Type[zenml.stack.flavor.Flavor]]

List of new stack component flavors.

Source code in zenml/integrations/kubernetes/__init__.py
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Declare the stack component flavors for the Kubernetes integration.

    Returns:
        List of new stack component flavors.
    """
    from zenml.integrations.kubernetes.flavors import (
        KubernetesOrchestratorFlavor,
    )

    return [KubernetesOrchestratorFlavor]

flavors special

Kubernetes integration flavors.

kubernetes_orchestrator_flavor

Kubernetes orchestrator flavor.

KubernetesOrchestratorConfig (BaseOrchestratorConfig) pydantic-model

Configuration for the Kubernetes orchestrator.

Attributes:

Name Type Description
kubernetes_context Optional[str]

Optional name of a Kubernetes context to run pipelines in. If not set, the current active context will be used. You can find the active context by running kubectl config current-context.

kubernetes_namespace str

Name of the Kubernetes namespace to be used. If not provided, zenml namespace will be used.

synchronous bool

If True, running a pipeline using this orchestrator will block until all steps finished running on Kubernetes.

skip_config_loading bool

If True, don't load the Kubernetes context and clients. This is only useful for unit testing.

Source code in zenml/integrations/kubernetes/flavors/kubernetes_orchestrator_flavor.py
class KubernetesOrchestratorConfig(BaseOrchestratorConfig):
    """Configuration for the Kubernetes orchestrator.

    Attributes:
        kubernetes_context: Optional name of a Kubernetes context to run
            pipelines in. If not set, the current active context will be used.
            You can find the active context by running `kubectl config
            current-context`.
        kubernetes_namespace: Name of the Kubernetes namespace to be used.
            If not provided, `zenml` namespace will be used.
        synchronous: If `True`, running a pipeline using this orchestrator will
            block until all steps finished running on Kubernetes.
        skip_config_loading: If `True`, don't load the Kubernetes context and
            clients. This is only useful for unit testing.
    """

    kubernetes_context: Optional[str] = None
    kubernetes_namespace: str = "zenml"
    synchronous: bool = False
    skip_config_loading: bool = False

    @property
    def is_remote(self) -> bool:
        """Checks if this stack component is running remotely.

        This designation is used to determine if the stack component can be
        used with a local ZenML database or if it requires a remote ZenML
        server.

        Returns:
            True if this config is for a remote component, False otherwise.
        """
        return True
is_remote: bool property readonly

Checks if this stack component is running remotely.

This designation is used to determine if the stack component can be used with a local ZenML database or if it requires a remote ZenML server.

Returns:

Type Description
bool

True if this config is for a remote component, False otherwise.

KubernetesOrchestratorFlavor (BaseOrchestratorFlavor)

Kubernetes orchestrator flavor.

Source code in zenml/integrations/kubernetes/flavors/kubernetes_orchestrator_flavor.py
class KubernetesOrchestratorFlavor(BaseOrchestratorFlavor):
    """Kubernetes orchestrator flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return KUBERNETES_ORCHESTRATOR_FLAVOR

    @property
    def config_class(self) -> Type[KubernetesOrchestratorConfig]:
        """Returns `KubernetesOrchestratorConfig` config class.

        Returns:
                The config class.
        """
        return KubernetesOrchestratorConfig

    @property
    def implementation_class(self) -> Type["KubernetesOrchestrator"]:
        """Implementation class for this flavor.

        Returns:
            The implementation class.
        """
        from zenml.integrations.kubernetes.orchestrators import (
            KubernetesOrchestrator,
        )

        return KubernetesOrchestrator
config_class: Type[zenml.integrations.kubernetes.flavors.kubernetes_orchestrator_flavor.KubernetesOrchestratorConfig] property readonly

Returns KubernetesOrchestratorConfig config class.

Returns:

Type Description
Type[zenml.integrations.kubernetes.flavors.kubernetes_orchestrator_flavor.KubernetesOrchestratorConfig]

The config class.

implementation_class: Type[KubernetesOrchestrator] property readonly

Implementation class for this flavor.

Returns:

Type Description
Type[KubernetesOrchestrator]

The implementation class.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

orchestrators special

Kubernetes-native orchestration.

dag_runner

DAG (Directed Acyclic Graph) Runners.

NodeStatus (Enum)

Status of the execution of a node.

Source code in zenml/integrations/kubernetes/orchestrators/dag_runner.py
class NodeStatus(Enum):
    """Status of the execution of a node."""

    WAITING = "Waiting"
    RUNNING = "Running"
    COMPLETED = "Completed"
ThreadedDagRunner

Multi-threaded DAG Runner.

This class expects a DAG of strings in adjacency list representation, as well as a custom run_fn as input, then calls run_fn(node) for each string node in the DAG.

Steps that can be executed in parallel will be started in separate threads.

Source code in zenml/integrations/kubernetes/orchestrators/dag_runner.py
class ThreadedDagRunner:
    """Multi-threaded DAG Runner.

    This class expects a DAG of strings in adjacency list representation, as
    well as a custom `run_fn` as input, then calls `run_fn(node)` for each
    string node in the DAG.

    Steps that can be executed in parallel will be started in separate threads.
    """

    def __init__(
        self, dag: Dict[str, List[str]], run_fn: Callable[[str], Any]
    ) -> None:
        """Define attributes and initialize all nodes in waiting state.

        Args:
            dag: Adjacency list representation of a DAG.
                E.g.: [(1->2), (1->3), (2->4), (3->4)] should be represented as
                `dag={2: [1], 3: [1], 4: [2, 3]}`
            run_fn: A function `run_fn(node)` that runs a single node
        """
        self.dag = dag
        self.reversed_dag = reverse_dag(dag)
        self.run_fn = run_fn
        self.nodes = dag.keys()
        self.node_states = {node: NodeStatus.WAITING for node in self.nodes}
        self._lock = threading.Lock()

    def _can_run(self, node: str) -> bool:
        """Determine whether a node is ready to be run.

        This is the case if the node has not run yet and all of its upstream
        node have already completed.

        Args:
            node: The node.

        Returns:
            True if the node can run else False.
        """
        # Check that node has not run yet.
        if not self.node_states[node] == NodeStatus.WAITING:
            return False

        # Check that all upstream nodes of this node have already completed.
        for upstream_node in self.dag[node]:
            if not self.node_states[upstream_node] == NodeStatus.COMPLETED:
                return False

        return True

    def _run_node(self, node: str) -> None:
        """Run a single node.

        Calls the user-defined run_fn, then calls `self._finish_node`.

        Args:
            node: The node.
        """
        self.run_fn(node)
        self._finish_node(node)

    def _run_node_in_thread(self, node: str) -> threading.Thread:
        """Run a single node in a separate thread.

        First updates the node status to running.
        Then calls self._run_node() in a new thread and returns the thread.

        Args:
            node: The node.

        Returns:
            The thread in which the node was run.
        """
        # Update node status to running.
        assert self.node_states[node] == NodeStatus.WAITING
        with self._lock:
            self.node_states[node] = NodeStatus.RUNNING

        # Run node in new thread.
        thread = threading.Thread(target=self._run_node, args=(node,))
        thread.start()
        return thread

    def _finish_node(self, node: str) -> None:
        """Finish a node run.

        First updates the node status to completed.
        Then starts all other nodes that can now be run and waits for them.

        Args:
            node: The node.
        """
        # Update node status to completed.
        assert self.node_states[node] == NodeStatus.RUNNING
        with self._lock:
            self.node_states[node] = NodeStatus.COMPLETED

        # Run downstream nodes.
        threads = []
        for downstram_node in self.reversed_dag[node]:
            if self._can_run(downstram_node):
                thread = self._run_node_in_thread(downstram_node)
                threads.append(thread)

        # Wait for all downstream nodes to complete.
        for thread in threads:
            thread.join()

    def run(self) -> None:
        """Call `self.run_fn` on all nodes in `self.dag`.

        The order of execution is determined using topological sort.
        Each node is run in a separate thread to enable parallelism.
        """
        # Run all nodes that can be started immediately.
        # These will, in turn, start other nodes once all of their respective
        # upstream nodes have completed.
        threads = []
        for node in self.nodes:
            if self._can_run(node):
                thread = self._run_node_in_thread(node)
                threads.append(thread)

        # Wait till all nodes have completed.
        for thread in threads:
            thread.join()

        # Make sure all nodes were run, otherwise print a warning.
        for node in self.nodes:
            if self.node_states[node] == NodeStatus.WAITING:
                upstream_nodes = self.dag[node]
                logger.warning(
                    f"Node `{node}` was never run, because it was still"
                    f" waiting for the following nodes: `{upstream_nodes}`."
                )
__init__(self, dag, run_fn) special

Define attributes and initialize all nodes in waiting state.

Parameters:

Name Type Description Default
dag Dict[str, List[str]]

Adjacency list representation of a DAG. E.g.: [(1->2), (1->3), (2->4), (3->4)] should be represented as dag={2: [1], 3: [1], 4: [2, 3]}

required
run_fn Callable[[str], Any]

A function run_fn(node) that runs a single node

required
Source code in zenml/integrations/kubernetes/orchestrators/dag_runner.py
def __init__(
    self, dag: Dict[str, List[str]], run_fn: Callable[[str], Any]
) -> None:
    """Define attributes and initialize all nodes in waiting state.

    Args:
        dag: Adjacency list representation of a DAG.
            E.g.: [(1->2), (1->3), (2->4), (3->4)] should be represented as
            `dag={2: [1], 3: [1], 4: [2, 3]}`
        run_fn: A function `run_fn(node)` that runs a single node
    """
    self.dag = dag
    self.reversed_dag = reverse_dag(dag)
    self.run_fn = run_fn
    self.nodes = dag.keys()
    self.node_states = {node: NodeStatus.WAITING for node in self.nodes}
    self._lock = threading.Lock()
run(self)

Call self.run_fn on all nodes in self.dag.

The order of execution is determined using topological sort. Each node is run in a separate thread to enable parallelism.

Source code in zenml/integrations/kubernetes/orchestrators/dag_runner.py
def run(self) -> None:
    """Call `self.run_fn` on all nodes in `self.dag`.

    The order of execution is determined using topological sort.
    Each node is run in a separate thread to enable parallelism.
    """
    # Run all nodes that can be started immediately.
    # These will, in turn, start other nodes once all of their respective
    # upstream nodes have completed.
    threads = []
    for node in self.nodes:
        if self._can_run(node):
            thread = self._run_node_in_thread(node)
            threads.append(thread)

    # Wait till all nodes have completed.
    for thread in threads:
        thread.join()

    # Make sure all nodes were run, otherwise print a warning.
    for node in self.nodes:
        if self.node_states[node] == NodeStatus.WAITING:
            upstream_nodes = self.dag[node]
            logger.warning(
                f"Node `{node}` was never run, because it was still"
                f" waiting for the following nodes: `{upstream_nodes}`."
            )
reverse_dag(dag)

Reverse a DAG.

Parameters:

Name Type Description Default
dag Dict[str, List[str]]

Adjacency list representation of a DAG.

required

Returns:

Type Description
Dict[str, List[str]]

Adjacency list representation of the reversed DAG.

Source code in zenml/integrations/kubernetes/orchestrators/dag_runner.py
def reverse_dag(dag: Dict[str, List[str]]) -> Dict[str, List[str]]:
    """Reverse a DAG.

    Args:
        dag: Adjacency list representation of a DAG.

    Returns:
        Adjacency list representation of the reversed DAG.
    """
    reversed_dag = defaultdict(list)

    # Reverse all edges in the graph.
    for node, upstream_nodes in dag.items():
        for upstream_node in upstream_nodes:
            reversed_dag[upstream_node].append(node)

    # Add nodes without incoming edges back in.
    for node in dag:
        if node not in reversed_dag:
            reversed_dag[node] = []

    return reversed_dag

kube_utils

Utilities for Kubernetes related functions.

Internal interface: no backwards compatibility guarantees. Adjusted from https://github.com/tensorflow/tfx/blob/master/tfx/utils/kube_utils.py.

PodPhase (Enum)

Phase of the Kubernetes pod.

Pod phases are defined in https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
class PodPhase(enum.Enum):
    """Phase of the Kubernetes pod.

    Pod phases are defined in
    https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase.
    """

    PENDING = "Pending"
    RUNNING = "Running"
    SUCCEEDED = "Succeeded"
    FAILED = "Failed"
    UNKNOWN = "Unknown"
create_edit_service_account(core_api, rbac_api, service_account_name, namespace, cluster_role_binding_name='zenml-edit')

Create a new Kubernetes service account with "edit" rights.

Parameters:

Name Type Description Default
core_api CoreV1Api

Client of Core V1 API of Kubernetes API.

required
rbac_api RbacAuthorizationV1Api

Client of Rbac Authorization V1 API of Kubernetes API.

required
service_account_name str

Name of the service account.

required
namespace str

Kubernetes namespace. Defaults to "default".

required
cluster_role_binding_name str

Name of the cluster role binding. Defaults to "zenml-edit".

'zenml-edit'
Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def create_edit_service_account(
    core_api: k8s_client.CoreV1Api,
    rbac_api: k8s_client.RbacAuthorizationV1Api,
    service_account_name: str,
    namespace: str,
    cluster_role_binding_name: str = "zenml-edit",
) -> None:
    """Create a new Kubernetes service account with "edit" rights.

    Args:
        core_api: Client of Core V1 API of Kubernetes API.
        rbac_api: Client of Rbac Authorization V1 API of Kubernetes API.
        service_account_name: Name of the service account.
        namespace: Kubernetes namespace. Defaults to "default".
        cluster_role_binding_name: Name of the cluster role binding.
            Defaults to "zenml-edit".
    """
    crb_manifest = build_cluster_role_binding_manifest_for_service_account(
        name=cluster_role_binding_name,
        role_name="edit",
        service_account_name=service_account_name,
        namespace=namespace,
    )
    _if_not_exists(rbac_api.create_cluster_role_binding)(body=crb_manifest)

    sa_manifest = build_service_account_manifest(
        name=service_account_name, namespace=namespace
    )
    _if_not_exists(core_api.create_namespaced_service_account)(
        namespace=namespace,
        body=sa_manifest,
    )
create_mysql_deployment(core_api, apps_api, deployment_name, namespace, storage_capacity='10Gi', volume_name='mysql-pv-volume', volume_claim_name='mysql-pv-claim')

Create a Kubernetes deployment with a MySQL database running on it.

Parameters:

Name Type Description Default
core_api CoreV1Api

Client of Core V1 API of Kubernetes API.

required
apps_api AppsV1Api

Client of Apps V1 API of Kubernetes API.

required
namespace str

Kubernetes namespace. Defaults to "default".

required
storage_capacity str

Storage capacity of the database. Defaults to "10Gi".

'10Gi'
deployment_name str

Name of the deployment. Defaults to "mysql".

required
volume_name str

Name of the persistent volume. Defaults to "mysql-pv-volume".

'mysql-pv-volume'
volume_claim_name str

Name of the persistent volume claim. Defaults to "mysql-pv-claim".

'mysql-pv-claim'
Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def create_mysql_deployment(
    core_api: k8s_client.CoreV1Api,
    apps_api: k8s_client.AppsV1Api,
    deployment_name: str,
    namespace: str,
    storage_capacity: str = "10Gi",
    volume_name: str = "mysql-pv-volume",
    volume_claim_name: str = "mysql-pv-claim",
) -> None:
    """Create a Kubernetes deployment with a MySQL database running on it.

    Args:
        core_api: Client of Core V1 API of Kubernetes API.
        apps_api: Client of Apps V1 API of Kubernetes API.
        namespace: Kubernetes namespace. Defaults to "default".
        storage_capacity: Storage capacity of the database.
            Defaults to `"10Gi"`.
        deployment_name: Name of the deployment. Defaults to "mysql".
        volume_name: Name of the persistent volume.
            Defaults to `"mysql-pv-volume"`.
        volume_claim_name: Name of the persistent volume claim.
            Defaults to `"mysql-pv-claim"`.
    """
    pvc_manifest = build_persistent_volume_claim_manifest(
        name=volume_claim_name,
        namespace=namespace,
        storage_request=storage_capacity,
    )
    _if_not_exists(core_api.create_namespaced_persistent_volume_claim)(
        namespace=namespace,
        body=pvc_manifest,
    )
    pv_manifest = build_persistent_volume_manifest(
        name=volume_name, storage_capacity=storage_capacity
    )
    _if_not_exists(core_api.create_persistent_volume)(body=pv_manifest)
    deployment_manifest = build_mysql_deployment_manifest(
        name=deployment_name,
        namespace=namespace,
        pv_claim_name=volume_claim_name,
    )
    _if_not_exists(apps_api.create_namespaced_deployment)(
        body=deployment_manifest, namespace=namespace
    )
    service_manifest = build_mysql_service_manifest(
        name=deployment_name, namespace=namespace
    )
    _if_not_exists(core_api.create_namespaced_service)(
        namespace=namespace, body=service_manifest
    )
create_namespace(core_api, namespace)

Create a Kubernetes namespace.

Parameters:

Name Type Description Default
core_api CoreV1Api

Client of Core V1 API of Kubernetes API.

required
namespace str

Kubernetes namespace. Defaults to "default".

required
Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def create_namespace(core_api: k8s_client.CoreV1Api, namespace: str) -> None:
    """Create a Kubernetes namespace.

    Args:
        core_api: Client of Core V1 API of Kubernetes API.
        namespace: Kubernetes namespace. Defaults to "default".
    """
    manifest = build_namespace_manifest(namespace)
    _if_not_exists(core_api.create_namespace)(body=manifest)
delete_deployment(apps_api, deployment_name, namespace)

Delete a Kubernetes deployment.

Parameters:

Name Type Description Default
apps_api AppsV1Api

Client of Apps V1 API of Kubernetes API.

required
deployment_name str

Name of the deployment to be deleted.

required
namespace str

Kubernetes namespace containing the deployment.

required
Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def delete_deployment(
    apps_api: k8s_client.AppsV1Api, deployment_name: str, namespace: str
) -> None:
    """Delete a Kubernetes deployment.

    Args:
        apps_api: Client of Apps V1 API of Kubernetes API.
        deployment_name: Name of the deployment to be deleted.
        namespace: Kubernetes namespace containing the deployment.
    """
    options = k8s_client.V1DeleteOptions()
    apps_api.delete_namespaced_deployment(
        name=deployment_name,
        namespace=namespace,
        body=options,
        propagation_policy="Foreground",
    )
get_pod(core_api, pod_name, namespace)

Get a pod from Kubernetes metadata API.

Parameters:

Name Type Description Default
core_api CoreV1Api

Client of CoreV1Api of Kubernetes API.

required
pod_name str

The name of the pod.

required
namespace str

The namespace of the pod.

required

Exceptions:

Type Description
RuntimeError

When it sees unexpected errors from Kubernetes API.

Returns:

Type Description
Optional[kubernetes.client.models.v1_pod.V1Pod]

The found pod object. None if it's not found.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def get_pod(
    core_api: k8s_client.CoreV1Api, pod_name: str, namespace: str
) -> Optional[k8s_client.V1Pod]:
    """Get a pod from Kubernetes metadata API.

    Args:
        core_api: Client of `CoreV1Api` of Kubernetes API.
        pod_name: The name of the pod.
        namespace: The namespace of the pod.

    Raises:
        RuntimeError: When it sees unexpected errors from Kubernetes API.

    Returns:
        The found pod object. None if it's not found.
    """
    try:
        return core_api.read_namespaced_pod(name=pod_name, namespace=namespace)
    except k8s_client.rest.ApiException as e:
        if e.status == 404:
            return None
        raise RuntimeError from e
is_inside_kubernetes()

Check whether we are inside a Kubernetes cluster or on a remote host.

Returns:

Type Description
bool

True if inside a Kubernetes cluster, else False.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def is_inside_kubernetes() -> bool:
    """Check whether we are inside a Kubernetes cluster or on a remote host.

    Returns:
        True if inside a Kubernetes cluster, else False.
    """
    try:
        k8s_config.load_incluster_config()
        return True
    except k8s_config.ConfigException:
        return False
load_kube_config(context=None)

Load the Kubernetes client config.

Depending on the environment (whether it is inside the running Kubernetes cluster or remote host), different location will be searched for the config file.

Parameters:

Name Type Description Default
context Optional[str]

Name of the Kubernetes context. If not provided, uses the currently active context.

None
Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def load_kube_config(context: Optional[str] = None) -> None:
    """Load the Kubernetes client config.

    Depending on the environment (whether it is inside the running Kubernetes
    cluster or remote host), different location will be searched for the config
    file.

    Args:
        context: Name of the Kubernetes context. If not provided, uses the
            currently active context.
    """
    try:
        k8s_config.load_incluster_config()
    except k8s_config.ConfigException:
        k8s_config.load_kube_config(context=context)
pod_failed(pod)

Check if pod status is 'Failed'.

Parameters:

Name Type Description Default
pod V1Pod

Kubernetes pod.

required

Returns:

Type Description
bool

True if pod status is 'Failed' else False.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def pod_failed(pod: k8s_client.V1Pod) -> bool:
    """Check if pod status is 'Failed'.

    Args:
        pod: Kubernetes pod.

    Returns:
        True if pod status is 'Failed' else False.
    """
    return pod.status.phase == PodPhase.FAILED.value  # type: ignore[no-any-return]
pod_is_done(pod)

Check if pod status is 'Succeeded'.

Parameters:

Name Type Description Default
pod V1Pod

Kubernetes pod.

required

Returns:

Type Description
bool

True if pod status is 'Succeeded' else False.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def pod_is_done(pod: k8s_client.V1Pod) -> bool:
    """Check if pod status is 'Succeeded'.

    Args:
        pod: Kubernetes pod.

    Returns:
        True if pod status is 'Succeeded' else False.
    """
    return pod.status.phase == PodPhase.SUCCEEDED.value  # type: ignore[no-any-return]
pod_is_not_pending(pod)

Check if pod status is not 'Pending'.

Parameters:

Name Type Description Default
pod V1Pod

Kubernetes pod.

required

Returns:

Type Description
bool

False if the pod status is 'Pending' else True.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def pod_is_not_pending(pod: k8s_client.V1Pod) -> bool:
    """Check if pod status is not 'Pending'.

    Args:
        pod: Kubernetes pod.

    Returns:
        False if the pod status is 'Pending' else True.
    """
    return pod.status.phase != PodPhase.PENDING.value  # type: ignore[no-any-return]
sanitize_pod_name(pod_name)

Sanitize pod names so they conform to Kubernetes pod naming convention.

Parameters:

Name Type Description Default
pod_name str

Arbitrary input pod name.

required

Returns:

Type Description
str

Sanitized pod name.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def sanitize_pod_name(pod_name: str) -> str:
    """Sanitize pod names so they conform to Kubernetes pod naming convention.

    Args:
        pod_name: Arbitrary input pod name.

    Returns:
        Sanitized pod name.
    """
    pod_name = re.sub(r"[^a-z0-9-]", "-", pod_name.lower())
    pod_name = re.sub(r"^[-]+", "", pod_name)
    return re.sub(r"[-]+", "-", pod_name)
wait_pod(core_api, pod_name, namespace, exit_condition_lambda, timeout_sec=0, exponential_backoff=False, stream_logs=False)

Wait for a pod to meet an exit condition.

Parameters:

Name Type Description Default
core_api CoreV1Api

Client of CoreV1Api of Kubernetes API.

required
pod_name str

The name of the pod.

required
namespace str

The namespace of the pod.

required
exit_condition_lambda Callable[[kubernetes.client.models.v1_pod.V1Pod], bool]

A lambda which will be called periodically to wait for a pod to exit. The function returns True to exit.

required
timeout_sec int

Timeout in seconds to wait for pod to reach exit condition, or 0 to wait for an unlimited duration. Defaults to unlimited.

0
exponential_backoff bool

Whether to use exponential back off for polling. Defaults to False.

False
stream_logs bool

Whether to stream the pod logs to zenml.logger.info(). Defaults to False.

False

Exceptions:

Type Description
RuntimeError

when the function times out.

Returns:

Type Description
V1Pod

The pod object which meets the exit condition.

Source code in zenml/integrations/kubernetes/orchestrators/kube_utils.py
def wait_pod(
    core_api: k8s_client.CoreV1Api,
    pod_name: str,
    namespace: str,
    exit_condition_lambda: Callable[[k8s_client.V1Pod], bool],
    timeout_sec: int = 0,
    exponential_backoff: bool = False,
    stream_logs: bool = False,
) -> k8s_client.V1Pod:
    """Wait for a pod to meet an exit condition.

    Args:
        core_api: Client of `CoreV1Api` of Kubernetes API.
        pod_name: The name of the pod.
        namespace: The namespace of the pod.
        exit_condition_lambda: A lambda
            which will be called periodically to wait for a pod to exit. The
            function returns True to exit.
        timeout_sec: Timeout in seconds to wait for pod to reach exit
            condition, or 0 to wait for an unlimited duration.
            Defaults to unlimited.
        exponential_backoff: Whether to use exponential back off for polling.
            Defaults to False.
        stream_logs: Whether to stream the pod logs to
            `zenml.logger.info()`. Defaults to False.

    Raises:
        RuntimeError: when the function times out.

    Returns:
        The pod object which meets the exit condition.
    """
    start_time = datetime.datetime.utcnow()

    # Link to exponential back-off algorithm used here:
    # https://cloud.google.com/storage/docs/exponential-backoff
    backoff_interval = 1
    maximum_backoff = 32

    logged_lines = 0

    while True:
        resp = get_pod(core_api, pod_name, namespace)

        # Stream logs to `zenml.logger.info()`.
        # TODO: can we do this without parsing all logs every time?
        if stream_logs and pod_is_not_pending(resp):
            response = core_api.read_namespaced_pod_log(
                name=pod_name,
                namespace=namespace,
            )
            logs = response.splitlines()
            if len(logs) > logged_lines:
                for line in logs[logged_lines:]:
                    logger.info(line)
                logged_lines = len(logs)

        # Raise an error if the pod failed.
        if pod_failed(resp):
            raise RuntimeError(f"Pod `{namespace}:{pod_name}` failed.")

        # Check if pod is in desired state (e.g. finished / running / ...).
        if exit_condition_lambda(resp):
            return resp

        # Check if wait timed out.
        elapse_time = datetime.datetime.utcnow() - start_time
        if elapse_time.seconds >= timeout_sec and timeout_sec != 0:
            raise RuntimeError(
                f"Waiting for pod `{namespace}:{pod_name}` timed out after "
                f"{timeout_sec} seconds."
            )

        # Wait (using exponential backoff).
        time.sleep(backoff_interval)
        if exponential_backoff and backoff_interval < maximum_backoff:
            backoff_interval *= 2

kubernetes_orchestrator

Kubernetes-native orchestrator.

KubernetesOrchestrator (BaseOrchestrator)

Orchestrator for running ZenML pipelines using native Kubernetes.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator.py
class KubernetesOrchestrator(BaseOrchestrator):
    """Orchestrator for running ZenML pipelines using native Kubernetes."""

    _k8s_core_api: k8s_client.CoreV1Api = None
    _k8s_batch_api: k8s_client.BatchV1beta1Api = None
    _k8s_rbac_api: k8s_client.RbacAuthorizationV1Api = None

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        """Initialize the class and the Kubernetes clients.

        Args:
            *args: The positional arguments to pass to the Pydantic object.
            **kwargs: The keyword arguments to pass to the Pydantic object.
        """
        super().__init__(*args, **kwargs)
        self._initialize_k8s_clients()

    def _initialize_k8s_clients(self) -> None:
        """Initialize the Kubernetes clients."""
        if self.config.skip_config_loading:
            return
        kube_utils.load_kube_config(context=self.config.kubernetes_context)
        self._k8s_core_api = k8s_client.CoreV1Api()
        self._k8s_batch_api = k8s_client.BatchV1beta1Api()
        self._k8s_rbac_api = k8s_client.RbacAuthorizationV1Api()

    @property
    def config(self) -> KubernetesOrchestratorConfig:
        """Returns the `KubernetesOrchestratorConfig` config.

        Returns:
            The configuration.
        """
        return cast(KubernetesOrchestratorConfig, self._config)

    def get_kubernetes_contexts(self) -> Tuple[List[str], str]:
        """Get list of configured Kubernetes contexts and the active context.

        Raises:
            RuntimeError: if the Kubernetes configuration cannot be loaded.

        Returns:
            context_name: List of configured Kubernetes contexts
            active_context_name: Name of the active Kubernetes context.
        """
        try:
            contexts, active_context = k8s_config.list_kube_config_contexts()
        except k8s_config.config_exception.ConfigException as e:
            raise RuntimeError(
                "Could not load the Kubernetes configuration"
            ) from e

        context_names = [c["name"] for c in contexts]
        active_context_name = active_context["name"]
        return context_names, active_context_name

    @property
    def validator(self) -> Optional[StackValidator]:
        """Defines the validator that checks whether the stack is valid.

        Returns:
            Stack validator.
        """

        def _validate_local_requirements(stack: "Stack") -> Tuple[bool, str]:
            """Validates that the stack contains no local components.

            Args:
                stack: The stack.

            Returns:
                Whether the stack is valid or not.
                An explanation why the stack is invalid, if applicable.
            """
            container_registry = stack.container_registry

            # should not happen, because the stack validation takes care of
            # this, but just in case
            assert container_registry is not None

            if not self.config.skip_config_loading:
                contexts, active_context = self.get_kubernetes_contexts()
                if self.config.kubernetes_context not in contexts:
                    return False, (
                        f"Could not find a Kubernetes context named "
                        f"'{self.config.kubernetes_context}' in the local Kubernetes "
                        f"configuration. Please make sure that the Kubernetes "
                        f"cluster is running and that the kubeconfig file is "
                        f"configured correctly. To list all configured "
                        f"contexts, run:\n\n"
                        f"  `kubectl config get-contexts`\n"
                    )
                if self.config.kubernetes_context != active_context:
                    logger.warning(
                        f"The Kubernetes context '{self.config.kubernetes_context}' "
                        f"configured for the Kubernetes orchestrator is not "
                        f"the same as the active context in the local "
                        f"Kubernetes configuration. If this is not deliberate,"
                        f" you should update the orchestrator's "
                        f"`kubernetes_context` field by running:\n\n"
                        f"  `zenml orchestrator update {self.name} "
                        f"--kubernetes_context={active_context}`\n"
                        f"To list all configured contexts, run:\n\n"
                        f"  `kubectl config get-contexts`\n"
                        f"To set the active context to be the same as the one "
                        f"configured in the Kubernetes orchestrator and "
                        f"silence this warning, run:\n\n"
                        f"  `kubectl config use-context "
                        f"{self.config.kubernetes_context}`\n"
                    )

            # Check that all stack components are non-local.
            for stack_component in stack.components.values():
                if stack_component.local_path is not None:
                    return False, (
                        f"The Kubernetes orchestrator currently only supports "
                        f"remote stacks, but the '{stack_component.name}' "
                        f"{stack_component.type.value} is a local component. "
                        f"Please make sure to only use non-local stack "
                        f"components with a Kubernetes orchestrator."
                    )

            # if the orchestrator is remote, the container registry must
            # also be remote.
            if container_registry.config.is_local:
                return False, (
                    f"The Kubernetes orchestrator requires a remote container "
                    f"registry, but the '{container_registry.name}' container "
                    f"registry of your active stack points to a local URI "
                    f"'{container_registry.config.uri}'. Please make sure "
                    f"stacks with a Kubernetes orchestrator always contain "
                    f"remote container registries."
                )

            return True, ""

        return StackValidator(
            required_components={StackComponentType.CONTAINER_REGISTRY},
            custom_validation_function=_validate_local_requirements,
        )

    def prepare_pipeline_deployment(
        self,
        deployment: "PipelineDeployment",
        stack: "Stack",
    ) -> None:
        """Build a Docker image and push it to the container registry.

        Args:
            deployment: The pipeline deployment configuration.
            stack: The stack on which the pipeline will be deployed.
        """
        docker_image_builder = PipelineDockerImageBuilder()
        repo_digest = docker_image_builder.build_and_push_docker_image(
            deployment=deployment, stack=stack
        )
        deployment.add_extra(ORCHESTRATOR_DOCKER_IMAGE_KEY, repo_digest)

    def prepare_or_run_pipeline(
        self,
        deployment: "PipelineDeployment",
        stack: "Stack",
    ) -> Any:
        """Runs the pipeline in Kubernetes.

        Args:
            deployment: The pipeline deployment to prepare or run.
            stack: The stack the pipeline will run on.

        Raises:
            RuntimeError: If trying to run from a Jupyter notebook.
        """
        # First check whether the code is running in a notebook.
        if Environment.in_notebook():
            raise RuntimeError(
                "The Kubernetes orchestrator cannot run pipelines in a notebook "
                "environment. The reason is that it is non-trivial to create "
                "a Docker image of a notebook. Please consider refactoring "
                "your notebook cells into separate scripts in a Python module "
                "and run the code outside of a notebook when using this "
                "orchestrator."
            )

        for step in deployment.steps.values():
            if self.requires_resources_in_orchestration_environment(step):
                logger.warning(
                    "Specifying step resources is not yet supported for "
                    "the Kubernetes orchestrator, ignoring resource "
                    "configuration for step %s.",
                    step.config.name,
                )

        run_name = deployment.run_name
        pipeline_name = deployment.pipeline.name
        pod_name = kube_utils.sanitize_pod_name(run_name)

        # Get Docker image name (for all pods).
        image_name = deployment.pipeline.extra[ORCHESTRATOR_DOCKER_IMAGE_KEY]

        # Build entrypoint command and args for the orchestrator pod.
        # This will internally also build the command/args for all step pods.
        command = (
            KubernetesOrchestratorEntrypointConfiguration.get_entrypoint_command()
        )
        args = KubernetesOrchestratorEntrypointConfiguration.get_entrypoint_arguments(
            run_name=run_name,
            image_name=image_name,
            kubernetes_namespace=self.config.kubernetes_namespace,
        )

        # Authorize pod to run Kubernetes commands inside the cluster.
        service_account_name = "zenml-service-account"
        kube_utils.create_edit_service_account(
            core_api=self._k8s_core_api,
            rbac_api=self._k8s_rbac_api,
            service_account_name=service_account_name,
            namespace=self.config.kubernetes_namespace,
        )

        # Schedule as CRON job if CRON schedule is given.
        if deployment.schedule:
            if not deployment.schedule.cron_expression:
                raise RuntimeError(
                    "The Kubernetes orchestrator only supports scheduling via "
                    "CRON jobs, but the run was configured with a manual "
                    "schedule. Use `Schedule(cron_expression=...)` instead."
                )
            cron_expression = deployment.schedule.cron_expression
            cron_job_manifest = build_cron_job_manifest(
                cron_expression=cron_expression,
                run_name=run_name,
                pod_name=pod_name,
                pipeline_name=pipeline_name,
                image_name=image_name,
                command=command,
                args=args,
                service_account_name=service_account_name,
            )
            self._k8s_batch_api.create_namespaced_cron_job(
                body=cron_job_manifest,
                namespace=self.config.kubernetes_namespace,
            )
            logger.info(
                f"Scheduling Kubernetes run `{pod_name}` with CRON expression "
                f'`"{cron_expression}"`.'
            )
            return

        # Create and run the orchestrator pod.
        pod_manifest = build_pod_manifest(
            run_name=run_name,
            pod_name=pod_name,
            pipeline_name=pipeline_name,
            image_name=image_name,
            command=command,
            args=args,
            service_account_name=service_account_name,
        )
        self._k8s_core_api.create_namespaced_pod(
            namespace=self.config.kubernetes_namespace,
            body=pod_manifest,
        )

        # Wait for the orchestrator pod to finish and stream logs.
        if self.config.synchronous:
            logger.info("Waiting for Kubernetes orchestrator pod...")
            kube_utils.wait_pod(
                core_api=self._k8s_core_api,
                pod_name=pod_name,
                namespace=self.config.kubernetes_namespace,
                exit_condition_lambda=kube_utils.pod_is_done,
                stream_logs=True,
            )
        else:
            logger.info(
                f"Orchestration started asynchronously in pod "
                f"`{self.config.kubernetes_namespace}:{pod_name}`. "
                f"Run the following command to inspect the logs: "
                f"`kubectl logs {pod_name} -n {self.config.kubernetes_namespace}`."
            )
config: KubernetesOrchestratorConfig property readonly

Returns the KubernetesOrchestratorConfig config.

Returns:

Type Description
KubernetesOrchestratorConfig

The configuration.

validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Defines the validator that checks whether the stack is valid.

Returns:

Type Description
Optional[zenml.stack.stack_validator.StackValidator]

Stack validator.

__init__(self, *args, **kwargs) special

Initialize the class and the Kubernetes clients.

Parameters:

Name Type Description Default
*args Any

The positional arguments to pass to the Pydantic object.

()
**kwargs Any

The keyword arguments to pass to the Pydantic object.

{}
Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator.py
def __init__(self, *args: Any, **kwargs: Any) -> None:
    """Initialize the class and the Kubernetes clients.

    Args:
        *args: The positional arguments to pass to the Pydantic object.
        **kwargs: The keyword arguments to pass to the Pydantic object.
    """
    super().__init__(*args, **kwargs)
    self._initialize_k8s_clients()
get_kubernetes_contexts(self)

Get list of configured Kubernetes contexts and the active context.

Exceptions:

Type Description
RuntimeError

if the Kubernetes configuration cannot be loaded.

Returns:

Type Description
context_name

List of configured Kubernetes contexts active_context_name: Name of the active Kubernetes context.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator.py
def get_kubernetes_contexts(self) -> Tuple[List[str], str]:
    """Get list of configured Kubernetes contexts and the active context.

    Raises:
        RuntimeError: if the Kubernetes configuration cannot be loaded.

    Returns:
        context_name: List of configured Kubernetes contexts
        active_context_name: Name of the active Kubernetes context.
    """
    try:
        contexts, active_context = k8s_config.list_kube_config_contexts()
    except k8s_config.config_exception.ConfigException as e:
        raise RuntimeError(
            "Could not load the Kubernetes configuration"
        ) from e

    context_names = [c["name"] for c in contexts]
    active_context_name = active_context["name"]
    return context_names, active_context_name
prepare_or_run_pipeline(self, deployment, stack)

Runs the pipeline in Kubernetes.

Parameters:

Name Type Description Default
deployment PipelineDeployment

The pipeline deployment to prepare or run.

required
stack Stack

The stack the pipeline will run on.

required

Exceptions:

Type Description
RuntimeError

If trying to run from a Jupyter notebook.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator.py
def prepare_or_run_pipeline(
    self,
    deployment: "PipelineDeployment",
    stack: "Stack",
) -> Any:
    """Runs the pipeline in Kubernetes.

    Args:
        deployment: The pipeline deployment to prepare or run.
        stack: The stack the pipeline will run on.

    Raises:
        RuntimeError: If trying to run from a Jupyter notebook.
    """
    # First check whether the code is running in a notebook.
    if Environment.in_notebook():
        raise RuntimeError(
            "The Kubernetes orchestrator cannot run pipelines in a notebook "
            "environment. The reason is that it is non-trivial to create "
            "a Docker image of a notebook. Please consider refactoring "
            "your notebook cells into separate scripts in a Python module "
            "and run the code outside of a notebook when using this "
            "orchestrator."
        )

    for step in deployment.steps.values():
        if self.requires_resources_in_orchestration_environment(step):
            logger.warning(
                "Specifying step resources is not yet supported for "
                "the Kubernetes orchestrator, ignoring resource "
                "configuration for step %s.",
                step.config.name,
            )

    run_name = deployment.run_name
    pipeline_name = deployment.pipeline.name
    pod_name = kube_utils.sanitize_pod_name(run_name)

    # Get Docker image name (for all pods).
    image_name = deployment.pipeline.extra[ORCHESTRATOR_DOCKER_IMAGE_KEY]

    # Build entrypoint command and args for the orchestrator pod.
    # This will internally also build the command/args for all step pods.
    command = (
        KubernetesOrchestratorEntrypointConfiguration.get_entrypoint_command()
    )
    args = KubernetesOrchestratorEntrypointConfiguration.get_entrypoint_arguments(
        run_name=run_name,
        image_name=image_name,
        kubernetes_namespace=self.config.kubernetes_namespace,
    )

    # Authorize pod to run Kubernetes commands inside the cluster.
    service_account_name = "zenml-service-account"
    kube_utils.create_edit_service_account(
        core_api=self._k8s_core_api,
        rbac_api=self._k8s_rbac_api,
        service_account_name=service_account_name,
        namespace=self.config.kubernetes_namespace,
    )

    # Schedule as CRON job if CRON schedule is given.
    if deployment.schedule:
        if not deployment.schedule.cron_expression:
            raise RuntimeError(
                "The Kubernetes orchestrator only supports scheduling via "
                "CRON jobs, but the run was configured with a manual "
                "schedule. Use `Schedule(cron_expression=...)` instead."
            )
        cron_expression = deployment.schedule.cron_expression
        cron_job_manifest = build_cron_job_manifest(
            cron_expression=cron_expression,
            run_name=run_name,
            pod_name=pod_name,
            pipeline_name=pipeline_name,
            image_name=image_name,
            command=command,
            args=args,
            service_account_name=service_account_name,
        )
        self._k8s_batch_api.create_namespaced_cron_job(
            body=cron_job_manifest,
            namespace=self.config.kubernetes_namespace,
        )
        logger.info(
            f"Scheduling Kubernetes run `{pod_name}` with CRON expression "
            f'`"{cron_expression}"`.'
        )
        return

    # Create and run the orchestrator pod.
    pod_manifest = build_pod_manifest(
        run_name=run_name,
        pod_name=pod_name,
        pipeline_name=pipeline_name,
        image_name=image_name,
        command=command,
        args=args,
        service_account_name=service_account_name,
    )
    self._k8s_core_api.create_namespaced_pod(
        namespace=self.config.kubernetes_namespace,
        body=pod_manifest,
    )

    # Wait for the orchestrator pod to finish and stream logs.
    if self.config.synchronous:
        logger.info("Waiting for Kubernetes orchestrator pod...")
        kube_utils.wait_pod(
            core_api=self._k8s_core_api,
            pod_name=pod_name,
            namespace=self.config.kubernetes_namespace,
            exit_condition_lambda=kube_utils.pod_is_done,
            stream_logs=True,
        )
    else:
        logger.info(
            f"Orchestration started asynchronously in pod "
            f"`{self.config.kubernetes_namespace}:{pod_name}`. "
            f"Run the following command to inspect the logs: "
            f"`kubectl logs {pod_name} -n {self.config.kubernetes_namespace}`."
        )
prepare_pipeline_deployment(self, deployment, stack)

Build a Docker image and push it to the container registry.

Parameters:

Name Type Description Default
deployment PipelineDeployment

The pipeline deployment configuration.

required
stack Stack

The stack on which the pipeline will be deployed.

required
Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator.py
def prepare_pipeline_deployment(
    self,
    deployment: "PipelineDeployment",
    stack: "Stack",
) -> None:
    """Build a Docker image and push it to the container registry.

    Args:
        deployment: The pipeline deployment configuration.
        stack: The stack on which the pipeline will be deployed.
    """
    docker_image_builder = PipelineDockerImageBuilder()
    repo_digest = docker_image_builder.build_and_push_docker_image(
        deployment=deployment, stack=stack
    )
    deployment.add_extra(ORCHESTRATOR_DOCKER_IMAGE_KEY, repo_digest)

kubernetes_orchestrator_entrypoint

Entrypoint of the Kubernetes master/orchestrator pod.

main()

Entrypoint of the k8s master/orchestrator pod.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint.py
def main() -> None:
    """Entrypoint of the k8s master/orchestrator pod."""
    # Log to the container's stdout so it can be streamed by the client.
    logger.info("Kubernetes orchestrator pod started.")

    # Parse / extract args.
    args = parse_args()

    # Get Kubernetes Core API for running kubectl commands later.
    kube_utils.load_kube_config()
    core_api = k8s_client.CoreV1Api()

    # Patch run name (only needed for CRON scheduling)
    run_name = patch_run_name_for_cron_scheduling(args.run_name)

    config_dict = yaml_utils.read_yaml(DOCKER_IMAGE_DEPLOYMENT_CONFIG_FILE)
    deployment_config = PipelineDeployment.parse_obj(config_dict)

    pipeline_dag = {}
    step_name_to_pipeline_step_name = {}
    for name_in_pipeline, step in deployment_config.steps.items():
        step_name_to_pipeline_step_name[step.config.name] = name_in_pipeline
        pipeline_dag[step.config.name] = step.spec.upstream_steps

    step_command = (
        KubernetesStepEntrypointConfiguration.get_entrypoint_command()
    )

    def run_step_on_kubernetes(step_name: str) -> None:
        """Run a pipeline step in a separate Kubernetes pod.

        Args:
            step_name: Name of the step.
        """
        # Define Kubernetes pod name.
        pod_name = f"{run_name}-{step_name}"
        pod_name = kube_utils.sanitize_pod_name(pod_name)

        pipeline_step_name = step_name_to_pipeline_step_name[step_name]
        step_args = (
            KubernetesStepEntrypointConfiguration.get_entrypoint_arguments(
                step_name=pipeline_step_name, run_name=run_name
            )
        )

        # Define Kubernetes pod manifest.
        pod_manifest = build_pod_manifest(
            pod_name=pod_name,
            run_name=run_name,
            pipeline_name=deployment_config.pipeline.name,
            image_name=args.image_name,
            command=step_command,
            args=step_args,
        )

        # Create and run pod.
        core_api.create_namespaced_pod(
            namespace=args.kubernetes_namespace,
            body=pod_manifest,
        )

        # Wait for pod to finish.
        logger.info(f"Waiting for pod of step `{step_name}` to start...")
        kube_utils.wait_pod(
            core_api=core_api,
            pod_name=pod_name,
            namespace=args.kubernetes_namespace,
            exit_condition_lambda=kube_utils.pod_is_done,
            stream_logs=True,
        )
        logger.info(f"Pod of step `{step_name}` completed.")

    ThreadedDagRunner(dag=pipeline_dag, run_fn=run_step_on_kubernetes).run()

    logger.info("Orchestration pod completed.")
parse_args()

Parse entrypoint arguments.

Returns:

Type Description
Namespace

Parsed args.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint.py
def parse_args() -> argparse.Namespace:
    """Parse entrypoint arguments.

    Returns:
        Parsed args.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument("--run_name", type=str, required=True)
    parser.add_argument("--image_name", type=str, required=True)
    parser.add_argument("--kubernetes_namespace", type=str, required=True)
    return parser.parse_args()
patch_run_name_for_cron_scheduling(run_name)

Adjust run name according to the Kubernetes orchestrator pod name.

This is required for scheduling via CRON jobs, since each job would otherwise have the same run name, which zenml does not support.

Parameters:

Name Type Description Default
run_name str

Initial run name.

required

Returns:

Type Description
str

New unique run name.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint.py
def patch_run_name_for_cron_scheduling(run_name: str) -> str:
    """Adjust run name according to the Kubernetes orchestrator pod name.

    This is required for scheduling via CRON jobs, since each job would
    otherwise have the same run name, which zenml does not support.

    Args:
        run_name: Initial run name.

    Returns:
        New unique run name.
    """
    # Get name of the orchestrator pod.
    host_name = socket.gethostname()

    # If we are not running as CRON job, we don't need to do anything.
    if host_name == kube_utils.sanitize_pod_name(run_name):
        return run_name

    # Otherwise, define new run_name.
    job_id = host_name.split("-")[-1]
    run_name = f"{run_name}-{job_id}"

    return run_name

kubernetes_orchestrator_entrypoint_configuration

Entrypoint configuration for the Kubernetes master/orchestrator pod.

KubernetesOrchestratorEntrypointConfiguration

Entrypoint configuration for the k8s master/orchestrator pod.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint_configuration.py
class KubernetesOrchestratorEntrypointConfiguration:
    """Entrypoint configuration for the k8s master/orchestrator pod."""

    @classmethod
    def get_entrypoint_options(cls) -> Set[str]:
        """Gets all the options required for running this entrypoint.

        Returns:
            Entrypoint options.
        """
        options = {
            RUN_NAME_OPTION,
            IMAGE_NAME_OPTION,
            NAMESPACE_OPTION,
        }
        return options

    @classmethod
    def get_entrypoint_command(cls) -> List[str]:
        """Returns a command that runs the entrypoint module.

        Returns:
            Entrypoint command.
        """
        command = [
            "python",
            "-m",
            "zenml.integrations.kubernetes.orchestrators.kubernetes_orchestrator_entrypoint",
        ]
        return command

    @classmethod
    def get_entrypoint_arguments(
        cls,
        run_name: str,
        image_name: str,
        kubernetes_namespace: str,
    ) -> List[str]:
        """Gets all arguments that the entrypoint command should be called with.

        Args:
            run_name: Name of the ZenML run.
            image_name: Name of the Docker image.
            kubernetes_namespace: Name of the Kubernetes namespace.

        Returns:
            List of entrypoint arguments.
        """
        args = [
            f"--{RUN_NAME_OPTION}",
            run_name,
            f"--{IMAGE_NAME_OPTION}",
            image_name,
            f"--{NAMESPACE_OPTION}",
            kubernetes_namespace,
        ]

        return args
get_entrypoint_arguments(run_name, image_name, kubernetes_namespace) classmethod

Gets all arguments that the entrypoint command should be called with.

Parameters:

Name Type Description Default
run_name str

Name of the ZenML run.

required
image_name str

Name of the Docker image.

required
kubernetes_namespace str

Name of the Kubernetes namespace.

required

Returns:

Type Description
List[str]

List of entrypoint arguments.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint_configuration.py
@classmethod
def get_entrypoint_arguments(
    cls,
    run_name: str,
    image_name: str,
    kubernetes_namespace: str,
) -> List[str]:
    """Gets all arguments that the entrypoint command should be called with.

    Args:
        run_name: Name of the ZenML run.
        image_name: Name of the Docker image.
        kubernetes_namespace: Name of the Kubernetes namespace.

    Returns:
        List of entrypoint arguments.
    """
    args = [
        f"--{RUN_NAME_OPTION}",
        run_name,
        f"--{IMAGE_NAME_OPTION}",
        image_name,
        f"--{NAMESPACE_OPTION}",
        kubernetes_namespace,
    ]

    return args
get_entrypoint_command() classmethod

Returns a command that runs the entrypoint module.

Returns:

Type Description
List[str]

Entrypoint command.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint_configuration.py
@classmethod
def get_entrypoint_command(cls) -> List[str]:
    """Returns a command that runs the entrypoint module.

    Returns:
        Entrypoint command.
    """
    command = [
        "python",
        "-m",
        "zenml.integrations.kubernetes.orchestrators.kubernetes_orchestrator_entrypoint",
    ]
    return command
get_entrypoint_options() classmethod

Gets all the options required for running this entrypoint.

Returns:

Type Description
Set[str]

Entrypoint options.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint_configuration.py
@classmethod
def get_entrypoint_options(cls) -> Set[str]:
    """Gets all the options required for running this entrypoint.

    Returns:
        Entrypoint options.
    """
    options = {
        RUN_NAME_OPTION,
        IMAGE_NAME_OPTION,
        NAMESPACE_OPTION,
    }
    return options

kubernetes_step_entrypoint_configuration

Entrypoint configuration for the Kubernetes worker/step pods.

KubernetesStepEntrypointConfiguration (StepEntrypointConfiguration)

Entrypoint configuration for running steps on Kubernetes.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_step_entrypoint_configuration.py
class KubernetesStepEntrypointConfiguration(StepEntrypointConfiguration):
    """Entrypoint configuration for running steps on Kubernetes."""

    @classmethod
    def get_entrypoint_options(cls) -> Set[str]:
        """Gets all options required for running with this configuration.

        Returns:
            The superclass options as well as an option for the run name.
        """
        return super().get_entrypoint_options() | {RUN_NAME_OPTION}

    @classmethod
    def get_entrypoint_arguments(cls, **kwargs: Any) -> List[str]:
        """Gets all arguments that the entrypoint command should be called with.

        Args:
            **kwargs: Kwargs, must include the run name.

        Returns:
            The superclass arguments as well as arguments for the run name.
        """
        return super().get_entrypoint_arguments(**kwargs) + [
            f"--{RUN_NAME_OPTION}",
            kwargs[RUN_NAME_OPTION],
        ]

    def get_run_name(self, pipeline_name: str) -> Optional[str]:
        """Returns the ZenML run name.

        Args:
            pipeline_name: Name of the ZenML pipeline (unused).

        Returns:
            ZenML run name.
        """
        job_id: str = self.entrypoint_args[RUN_NAME_OPTION]
        return job_id
get_entrypoint_arguments(**kwargs) classmethod

Gets all arguments that the entrypoint command should be called with.

Parameters:

Name Type Description Default
**kwargs Any

Kwargs, must include the run name.

{}

Returns:

Type Description
List[str]

The superclass arguments as well as arguments for the run name.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_step_entrypoint_configuration.py
@classmethod
def get_entrypoint_arguments(cls, **kwargs: Any) -> List[str]:
    """Gets all arguments that the entrypoint command should be called with.

    Args:
        **kwargs: Kwargs, must include the run name.

    Returns:
        The superclass arguments as well as arguments for the run name.
    """
    return super().get_entrypoint_arguments(**kwargs) + [
        f"--{RUN_NAME_OPTION}",
        kwargs[RUN_NAME_OPTION],
    ]
get_entrypoint_options() classmethod

Gets all options required for running with this configuration.

Returns:

Type Description
Set[str]

The superclass options as well as an option for the run name.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_step_entrypoint_configuration.py
@classmethod
def get_entrypoint_options(cls) -> Set[str]:
    """Gets all options required for running with this configuration.

    Returns:
        The superclass options as well as an option for the run name.
    """
    return super().get_entrypoint_options() | {RUN_NAME_OPTION}
get_run_name(self, pipeline_name)

Returns the ZenML run name.

Parameters:

Name Type Description Default
pipeline_name str

Name of the ZenML pipeline (unused).

required

Returns:

Type Description
Optional[str]

ZenML run name.

Source code in zenml/integrations/kubernetes/orchestrators/kubernetes_step_entrypoint_configuration.py
def get_run_name(self, pipeline_name: str) -> Optional[str]:
    """Returns the ZenML run name.

    Args:
        pipeline_name: Name of the ZenML pipeline (unused).

    Returns:
        ZenML run name.
    """
    job_id: str = self.entrypoint_args[RUN_NAME_OPTION]
    return job_id

manifest_utils

Utility functions for building manifests for k8s pods.

build_cluster_role_binding_manifest_for_service_account(name, role_name, service_account_name, namespace='default')

Build a manifest for a cluster role binding of a service account.

Parameters:

Name Type Description Default
name str

Name of the cluster role binding.

required
role_name str

Name of the role.

required
service_account_name str

Name of the service account.

required
namespace str

Kubernetes namespace. Defaults to "default".

'default'

Returns:

Type Description
Dict[str, Any]

Manifest for a cluster role binding of a service account.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_cluster_role_binding_manifest_for_service_account(
    name: str,
    role_name: str,
    service_account_name: str,
    namespace: str = "default",
) -> Dict[str, Any]:
    """Build a manifest for a cluster role binding of a service account.

    Args:
        name: Name of the cluster role binding.
        role_name: Name of the role.
        service_account_name: Name of the service account.
        namespace: Kubernetes namespace. Defaults to "default".

    Returns:
        Manifest for a cluster role binding of a service account.
    """
    return {
        "apiVersion": "rbac.authorization.k8s.io/v1",
        "kind": "ClusterRoleBinding",
        "metadata": {"name": name},
        "subjects": [
            {
                "kind": "ServiceAccount",
                "name": service_account_name,
                "namespace": namespace,
            }
        ],
        "roleRef": {
            "kind": "ClusterRole",
            "name": role_name,
            "apiGroup": "rbac.authorization.k8s.io",
        },
    }
build_cron_job_manifest(cron_expression, pod_name, run_name, pipeline_name, image_name, command, args, service_account_name=None)

Create a manifest for launching a pod as scheduled CRON job.

Parameters:

Name Type Description Default
cron_expression str

CRON job schedule expression, e.g. " * * *".

required
pod_name str

Name of the pod.

required
run_name str

Name of the ZenML run.

required
pipeline_name str

Name of the ZenML pipeline.

required
image_name str

Name of the Docker image.

required
command List[str]

Command to execute the entrypoint in the pod.

required
args List[str]

Arguments provided to the entrypoint command.

required
service_account_name Optional[str]

Optional name of a service account. Can be used to assign certain roles to a pod, e.g., to allow it to run Kubernetes commands from within the cluster.

None

Returns:

Type Description
Dict[str, Any]

CRON job manifest.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_cron_job_manifest(
    cron_expression: str,
    pod_name: str,
    run_name: str,
    pipeline_name: str,
    image_name: str,
    command: List[str],
    args: List[str],
    service_account_name: Optional[str] = None,
) -> Dict[str, Any]:
    """Create a manifest for launching a pod as scheduled CRON job.

    Args:
        cron_expression: CRON job schedule expression, e.g. "* * * * *".
        pod_name: Name of the pod.
        run_name: Name of the ZenML run.
        pipeline_name: Name of the ZenML pipeline.
        image_name: Name of the Docker image.
        command: Command to execute the entrypoint in the pod.
        args: Arguments provided to the entrypoint command.
        service_account_name: Optional name of a service account.
            Can be used to assign certain roles to a pod, e.g., to allow it to
            run Kubernetes commands from within the cluster.

    Returns:
        CRON job manifest.
    """
    pod_manifest = build_pod_manifest(
        pod_name=pod_name,
        run_name=run_name,
        pipeline_name=pipeline_name,
        image_name=image_name,
        command=command,
        args=args,
        service_account_name=service_account_name,
    )
    return {
        "apiVersion": "batch/v1beta1",
        "kind": "CronJob",
        "metadata": pod_manifest["metadata"],
        "spec": {
            "schedule": cron_expression,
            "jobTemplate": {
                "metadata": pod_manifest["metadata"],
                "spec": {"template": {"spec": pod_manifest["spec"]}},
            },
        },
    }
build_mysql_deployment_manifest(name='mysql', namespace='default', port=3306, pv_claim_name='mysql-pv-claim')

Build a manifest for deploying a MySQL database.

Parameters:

Name Type Description Default
name str

Name of the deployment. Defaults to "mysql".

'mysql'
namespace str

Kubernetes namespace. Defaults to "default".

'default'
port int

Port where MySQL is running. Defaults to 3306.

3306
pv_claim_name str

Name of the required persistent volume claim. Defaults to "mysql-pv-claim".

'mysql-pv-claim'

Returns:

Type Description
Dict[str, Any]

Manifest for deploying a MySQL database.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_mysql_deployment_manifest(
    name: str = "mysql",
    namespace: str = "default",
    port: int = 3306,
    pv_claim_name: str = "mysql-pv-claim",
) -> Dict[str, Any]:
    """Build a manifest for deploying a MySQL database.

    Args:
        name: Name of the deployment. Defaults to "mysql".
        namespace: Kubernetes namespace. Defaults to "default".
        port: Port where MySQL is running. Defaults to 3306.
        pv_claim_name: Name of the required persistent volume claim.
            Defaults to `"mysql-pv-claim"`.

    Returns:
        Manifest for deploying a MySQL database.
    """
    return {
        "apiVersion": "apps/v1",
        "kind": "Deployment",
        "metadata": {"name": name, "namespace": namespace},
        "spec": {
            "selector": {
                "matchLabels": {
                    "app": name,
                },
            },
            "strategy": {
                "type": "Recreate",
            },
            "template": {
                "metadata": {
                    "labels": {"app": name},
                },
                "spec": {
                    "containers": [
                        {
                            "image": "gcr.io/ml-pipeline/mysql:5.6",
                            "name": name,
                            "env": [
                                {
                                    "name": "MYSQL_ALLOW_EMPTY_PASSWORD",
                                    "value": '"true"',
                                }
                            ],
                            "ports": [{"containerPort": port, "name": name}],
                            "volumeMounts": [
                                {
                                    "name": "mysql-persistent-storage",
                                    "mountPath": "/var/lib/mysql",
                                }
                            ],
                        }
                    ],
                    "volumes": [
                        {
                            "name": "mysql-persistent-storage",
                            "persistentVolumeClaim": {
                                "claimName": pv_claim_name
                            },
                        }
                    ],
                },
            },
        },
    }
build_mysql_service_manifest(name='mysql', namespace='default', port=3306)

Build a manifest for a service relating to a deployed MySQL database.

Parameters:

Name Type Description Default
name str

Name of the service. Defaults to "mysql".

'mysql'
namespace str

Kubernetes namespace. Defaults to "default".

'default'
port int

Port where MySQL is running. Defaults to 3306.

3306

Returns:

Type Description
Dict[str, Any]

Manifest for the MySQL service.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_mysql_service_manifest(
    name: str = "mysql",
    namespace: str = "default",
    port: int = 3306,
) -> Dict[str, Any]:
    """Build a manifest for a service relating to a deployed MySQL database.

    Args:
        name: Name of the service. Defaults to "mysql".
        namespace: Kubernetes namespace. Defaults to "default".
        port: Port where MySQL is running. Defaults to 3306.

    Returns:
        Manifest for the MySQL service.
    """
    return {
        "apiVersion": "v1",
        "kind": "Service",
        "metadata": {
            "name": name,
            "namespace": namespace,
        },
        "spec": {
            "selector": {"app": "mysql"},
            "clusterIP": "None",
            "ports": [{"port": port}],
        },
    }
build_namespace_manifest(namespace)

Build the manifest for a new namespace.

Parameters:

Name Type Description Default
namespace str

Kubernetes namespace.

required

Returns:

Type Description
Dict[str, Any]

Manifest of the new namespace.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_namespace_manifest(namespace: str) -> Dict[str, Any]:
    """Build the manifest for a new namespace.

    Args:
        namespace: Kubernetes namespace.

    Returns:
        Manifest of the new namespace.
    """
    return {
        "apiVersion": "v1",
        "kind": "Namespace",
        "metadata": {
            "name": namespace,
        },
    }
build_persistent_volume_claim_manifest(name, namespace='default', storage_request='10Gi')

Build a manifest for a persistent volume claim.

Parameters:

Name Type Description Default
name str

Name of the persistent volume claim.

required
namespace str

Kubernetes namespace. Defaults to "default".

'default'
storage_request str

Size of the storage to request. Defaults to "10Gi".

'10Gi'

Returns:

Type Description
Dict[str, Any]

Manifest for a persistent volume claim.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_persistent_volume_claim_manifest(
    name: str,
    namespace: str = "default",
    storage_request: str = "10Gi",
) -> Dict[str, Any]:
    """Build a manifest for a persistent volume claim.

    Args:
        name: Name of the persistent volume claim.
        namespace: Kubernetes namespace. Defaults to "default".
        storage_request: Size of the storage to request. Defaults to `"10Gi"`.

    Returns:
        Manifest for a persistent volume claim.
    """
    return {
        "apiVersion": "v1",
        "kind": "PersistentVolumeClaim",
        "metadata": {
            "name": name,
            "namespace": namespace,
        },
        "spec": {
            "storageClassName": "manual",
            "accessModes": ["ReadWriteOnce"],
            "resources": {
                "requests": {
                    "storage": storage_request,
                }
            },
        },
    }
build_persistent_volume_manifest(name, namespace='default', storage_capacity='10Gi', path='/mnt/data')

Build a manifest for a persistent volume.

Parameters:

Name Type Description Default
name str

Name of the persistent volume.

required
namespace str

Kubernetes namespace. Defaults to "default".

'default'
storage_capacity str

Storage capacity of the volume. Defaults to "10Gi".

'10Gi'
path str

Path where the volume is mounted. Defaults to "/mnt/data".

'/mnt/data'

Returns:

Type Description
Dict[str, Any]

Manifest for a persistent volume.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_persistent_volume_manifest(
    name: str,
    namespace: str = "default",
    storage_capacity: str = "10Gi",
    path: str = "/mnt/data",
) -> Dict[str, Any]:
    """Build a manifest for a persistent volume.

    Args:
        name: Name of the persistent volume.
        namespace: Kubernetes namespace. Defaults to "default".
        storage_capacity: Storage capacity of the volume. Defaults to `"10Gi"`.
        path: Path where the volume is mounted. Defaults to `"/mnt/data"`.

    Returns:
        Manifest for a persistent volume.
    """
    return {
        "apiVersion": "v1",
        "kind": "PersistentVolume",
        "metadata": {
            "name": name,
            "namespace": namespace,
            "labels": {"type": "local"},
        },
        "spec": {
            "storageClassName": "manual",
            "capacity": {"storage": storage_capacity},
            "accessModes": ["ReadWriteOnce"],
            "hostPath": {"path": path},
        },
    }
build_pod_manifest(pod_name, run_name, pipeline_name, image_name, command, args, service_account_name=None)

Build a Kubernetes pod manifest for a ZenML run or step.

Parameters:

Name Type Description Default
pod_name str

Name of the pod.

required
run_name str

Name of the ZenML run.

required
pipeline_name str

Name of the ZenML pipeline.

required
image_name str

Name of the Docker image.

required
command List[str]

Command to execute the entrypoint in the pod.

required
args List[str]

Arguments provided to the entrypoint command.

required
service_account_name Optional[str]

Optional name of a service account. Can be used to assign certain roles to a pod, e.g., to allow it to run Kubernetes commands from within the cluster.

None

Returns:

Type Description
Dict[str, Any]

Pod manifest.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_pod_manifest(
    pod_name: str,
    run_name: str,
    pipeline_name: str,
    image_name: str,
    command: List[str],
    args: List[str],
    service_account_name: Optional[str] = None,
) -> Dict[str, Any]:
    """Build a Kubernetes pod manifest for a ZenML run or step.

    Args:
        pod_name: Name of the pod.
        run_name: Name of the ZenML run.
        pipeline_name: Name of the ZenML pipeline.
        image_name: Name of the Docker image.
        command: Command to execute the entrypoint in the pod.
        args: Arguments provided to the entrypoint command.
        service_account_name: Optional name of a service account.
            Can be used to assign certain roles to a pod, e.g., to allow it to
            run Kubernetes commands from within the cluster.

    Returns:
        Pod manifest.
    """
    manifest = {
        "apiVersion": "v1",
        "kind": "Pod",
        "metadata": {
            "name": pod_name,
            "labels": {
                "run": run_name,
                "pipeline": pipeline_name,
            },
        },
        "spec": {
            "restartPolicy": "Never",
            "containers": [
                {
                    "name": "main",
                    "image": image_name,
                    "command": command,
                    "args": args,
                    "env": [
                        {
                            "name": ENV_ZENML_ENABLE_REPO_INIT_WARNINGS,
                            "value": "False",
                        }
                    ],
                }
            ],
        },
    }
    if service_account_name is not None:
        spec = cast(Dict[str, Any], manifest["spec"])  # mypy stupid
        spec["serviceAccountName"] = service_account_name
    return manifest
build_service_account_manifest(name, namespace='default')

Build the manifest for a service account.

Parameters:

Name Type Description Default
name str

Name of the service account.

required
namespace str

Kubernetes namespace. Defaults to "default".

'default'

Returns:

Type Description
Dict[str, Any]

Manifest for a service account.

Source code in zenml/integrations/kubernetes/orchestrators/manifest_utils.py
def build_service_account_manifest(
    name: str, namespace: str = "default"
) -> Dict[str, Any]:
    """Build the manifest for a service account.

    Args:
        name: Name of the service account.
        namespace: Kubernetes namespace. Defaults to "default".

    Returns:
        Manifest for a service account.
    """
    return {
        "apiVersion": "v1",
        "metadata": {
            "name": name,
            "namespace": namespace,
        },
    }