Data Validators
zenml.data_validators
special
Data validators are stack components responsible for data profiling and validation.
base_data_validator
Base class for all ZenML data validators.
BaseDataValidator (StackComponent)
Base class for all ZenML data validators.
Source code in zenml/data_validators/base_data_validator.py
class BaseDataValidator(StackComponent):
"""Base class for all ZenML data validators."""
NAME: ClassVar[str]
FLAVOR: ClassVar[Type["BaseDataValidatorFlavor"]]
@property
def config(self) -> BaseDataValidatorConfig:
"""Returns the config of this data validator.
Returns:
The config of this data validator.
"""
return cast(BaseDataValidatorConfig, self._config)
@classmethod
def get_active_data_validator(cls) -> "BaseDataValidator":
"""Get the data validator registered in the active stack.
Returns:
The data validator registered in the active stack.
Raises:
TypeError: if a data validator is not part of the
active stack.
"""
flavor: BaseDataValidatorFlavor = cls.FLAVOR()
client = Client(skip_client_check=True) # type: ignore[call-arg]
data_validator = client.active_stack.data_validator
if not data_validator or not isinstance(data_validator, cls):
raise TypeError(
f"The active stack needs to have a {cls.NAME} data "
f"validator component registered to be able to run data validation "
f"actions with {cls.NAME}. You can create a new stack with "
f"a {cls.NAME} data validator component or update your "
f"active stack to add this component, e.g.:\n\n"
f" `zenml data-validator register {flavor.name} "
f"--flavor={flavor.name} ...`\n"
f" `zenml stack register <STACK-NAME> -dv {flavor.name} ...`\n"
f" or:\n"
f" `zenml stack update -dv {flavor.name}`\n\n"
)
return data_validator
def data_profiling(
self,
dataset: Any,
comparison_dataset: Optional[Any] = None,
profile_list: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Any:
"""Analyze one or more datasets and generate a data profile.
This method should be implemented by data validators that support
analyzing a dataset and generating a data profile (e.g. schema,
statistical summary, data distribution profile, validation
rules, data drift reports etc.).
The method should return a data profile object.
This method also accepts an optional second dataset argument to
accommodate different categories of data profiling, e.g.:
* profiles generated from a single dataset: schema inference, validation
rules inference, statistical profiles, data integrity reports
* differential profiles that need a second dataset for comparison:
differential statistical profiles, data drift reports
Data validators that support generating multiple categories of data
profiles should also take in a `profile_list` argument that lists the
subset of profiles to be generated. If not supplied, the behavior is
implementation specific, but it is recommended to provide a good default
(e.g. a single default data profile type may be generated and returned,
or all available data profiles may be generated and returned as a single
result).
Args:
dataset: Target dataset to be profiled.
comparison_dataset: Optional second dataset to be used for data
comparison profiles (e.g data drift reports).
profile_list: Optional list identifying the categories of data
profiles to be generated.
**kwargs: Implementation specific keyword arguments.
Raises:
NotImplementedError: if data profiling is not supported by this
data validator.
"""
raise NotImplementedError(
f"Data profiling is not supported by the {self.__class__} data "
f"validator."
)
def data_validation(
self,
dataset: Any,
comparison_dataset: Optional[Any] = None,
check_list: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Any:
"""Run data validation checks on a dataset.
This method should be implemented by data validators that support
running data quality checks an input dataset (e.g. data integrity
checks, data drift checks).
This method also accepts an optional second dataset argument to
accommodate different categories of data validation tests, e.g.:
* single dataset checks: data integrity checks (e.g. missing
values, conflicting labels, mixed data types etc.)
* checks that compare two datasets: data drift checks (e.g. new labels,
feature drift, label drift etc.)
Data validators that support running multiple categories of data
integrity checks should also take in a `check_list` argument that
lists the subset of checks to be performed. If not supplied, the
behavior is implementation specific, but it is recommended to provide a
good default (e.g. a single default validation check may be performed,
or all available validation checks may be performed and their results
returned as a list of objects).
Args:
dataset: Target dataset to be validated.
comparison_dataset: Optional second dataset to be used for data
comparison checks (e.g data drift checks).
check_list: Optional list identifying the data checks to
be performed.
**kwargs: Implementation specific keyword arguments.
Raises:
NotImplementedError: if data validation is not
supported by this data validator.
"""
raise NotImplementedError(
f"Data validation not implemented for {self}."
)
def model_validation(
self,
dataset: Any,
model: Any,
comparison_dataset: Optional[Any] = None,
check_list: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Any:
"""Run model validation checks.
This method should be implemented by data validators that support
running model validation checks (e.g. confusion matrix validation,
performance reports, model error analyses, etc).
Unlike `data_validation`, model validation checks require that a model
be present as an active component during the validation process.
This method also accepts an optional second dataset argument to
accommodate different categories of data validation tests, e.g.:
* single dataset tests: confusion matrix validation,
performance reports, model error analyses, etc
* model comparison tests: tests that identify changes in a model
behavior by comparing how it performs on two different datasets.
Data validators that support running multiple categories of model
validation checks should also take in a `check_list` argument that
lists the subset of checks to be performed. If not supplied, the
behavior is implementation specific, but it is recommended to provide a
good default (e.g. a single default validation check may be performed,
or all available validation checks may be performed and their results
returned as a list of objects).
Args:
dataset: Target dataset to be validated.
model: Target model to be validated.
comparison_dataset: Optional second dataset to be used for model
comparison checks (e.g model performance comparison checks).
check_list: Optional list identifying the model validation checks to
be performed.
**kwargs: Implementation specific keyword arguments.
Raises:
NotImplementedError: if model validation is not supported by this
data validator.
"""
raise NotImplementedError(
f"Model validation not implemented for {self}."
)
config: BaseDataValidatorConfig
property
readonly
Returns the config of this data validator.
Returns:
Type | Description |
---|---|
BaseDataValidatorConfig |
The config of this data validator. |
data_profiling(self, dataset, comparison_dataset=None, profile_list=None, **kwargs)
Analyze one or more datasets and generate a data profile.
This method should be implemented by data validators that support analyzing a dataset and generating a data profile (e.g. schema, statistical summary, data distribution profile, validation rules, data drift reports etc.). The method should return a data profile object.
This method also accepts an optional second dataset argument to accommodate different categories of data profiling, e.g.:
- profiles generated from a single dataset: schema inference, validation rules inference, statistical profiles, data integrity reports
- differential profiles that need a second dataset for comparison: differential statistical profiles, data drift reports
Data validators that support generating multiple categories of data
profiles should also take in a profile_list
argument that lists the
subset of profiles to be generated. If not supplied, the behavior is
implementation specific, but it is recommended to provide a good default
(e.g. a single default data profile type may be generated and returned,
or all available data profiles may be generated and returned as a single
result).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Any |
Target dataset to be profiled. |
required |
comparison_dataset |
Optional[Any] |
Optional second dataset to be used for data comparison profiles (e.g data drift reports). |
None |
profile_list |
Optional[Sequence[str]] |
Optional list identifying the categories of data profiles to be generated. |
None |
**kwargs |
Any |
Implementation specific keyword arguments. |
{} |
Exceptions:
Type | Description |
---|---|
NotImplementedError |
if data profiling is not supported by this data validator. |
Source code in zenml/data_validators/base_data_validator.py
def data_profiling(
self,
dataset: Any,
comparison_dataset: Optional[Any] = None,
profile_list: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Any:
"""Analyze one or more datasets and generate a data profile.
This method should be implemented by data validators that support
analyzing a dataset and generating a data profile (e.g. schema,
statistical summary, data distribution profile, validation
rules, data drift reports etc.).
The method should return a data profile object.
This method also accepts an optional second dataset argument to
accommodate different categories of data profiling, e.g.:
* profiles generated from a single dataset: schema inference, validation
rules inference, statistical profiles, data integrity reports
* differential profiles that need a second dataset for comparison:
differential statistical profiles, data drift reports
Data validators that support generating multiple categories of data
profiles should also take in a `profile_list` argument that lists the
subset of profiles to be generated. If not supplied, the behavior is
implementation specific, but it is recommended to provide a good default
(e.g. a single default data profile type may be generated and returned,
or all available data profiles may be generated and returned as a single
result).
Args:
dataset: Target dataset to be profiled.
comparison_dataset: Optional second dataset to be used for data
comparison profiles (e.g data drift reports).
profile_list: Optional list identifying the categories of data
profiles to be generated.
**kwargs: Implementation specific keyword arguments.
Raises:
NotImplementedError: if data profiling is not supported by this
data validator.
"""
raise NotImplementedError(
f"Data profiling is not supported by the {self.__class__} data "
f"validator."
)
data_validation(self, dataset, comparison_dataset=None, check_list=None, **kwargs)
Run data validation checks on a dataset.
This method should be implemented by data validators that support running data quality checks an input dataset (e.g. data integrity checks, data drift checks).
This method also accepts an optional second dataset argument to accommodate different categories of data validation tests, e.g.:
- single dataset checks: data integrity checks (e.g. missing values, conflicting labels, mixed data types etc.)
- checks that compare two datasets: data drift checks (e.g. new labels, feature drift, label drift etc.)
Data validators that support running multiple categories of data
integrity checks should also take in a check_list
argument that
lists the subset of checks to be performed. If not supplied, the
behavior is implementation specific, but it is recommended to provide a
good default (e.g. a single default validation check may be performed,
or all available validation checks may be performed and their results
returned as a list of objects).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Any |
Target dataset to be validated. |
required |
comparison_dataset |
Optional[Any] |
Optional second dataset to be used for data comparison checks (e.g data drift checks). |
None |
check_list |
Optional[Sequence[str]] |
Optional list identifying the data checks to be performed. |
None |
**kwargs |
Any |
Implementation specific keyword arguments. |
{} |
Exceptions:
Type | Description |
---|---|
NotImplementedError |
if data validation is not supported by this data validator. |
Source code in zenml/data_validators/base_data_validator.py
def data_validation(
self,
dataset: Any,
comparison_dataset: Optional[Any] = None,
check_list: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Any:
"""Run data validation checks on a dataset.
This method should be implemented by data validators that support
running data quality checks an input dataset (e.g. data integrity
checks, data drift checks).
This method also accepts an optional second dataset argument to
accommodate different categories of data validation tests, e.g.:
* single dataset checks: data integrity checks (e.g. missing
values, conflicting labels, mixed data types etc.)
* checks that compare two datasets: data drift checks (e.g. new labels,
feature drift, label drift etc.)
Data validators that support running multiple categories of data
integrity checks should also take in a `check_list` argument that
lists the subset of checks to be performed. If not supplied, the
behavior is implementation specific, but it is recommended to provide a
good default (e.g. a single default validation check may be performed,
or all available validation checks may be performed and their results
returned as a list of objects).
Args:
dataset: Target dataset to be validated.
comparison_dataset: Optional second dataset to be used for data
comparison checks (e.g data drift checks).
check_list: Optional list identifying the data checks to
be performed.
**kwargs: Implementation specific keyword arguments.
Raises:
NotImplementedError: if data validation is not
supported by this data validator.
"""
raise NotImplementedError(
f"Data validation not implemented for {self}."
)
get_active_data_validator()
classmethod
Get the data validator registered in the active stack.
Returns:
Type | Description |
---|---|
BaseDataValidator |
The data validator registered in the active stack. |
Exceptions:
Type | Description |
---|---|
TypeError |
if a data validator is not part of the active stack. |
Source code in zenml/data_validators/base_data_validator.py
@classmethod
def get_active_data_validator(cls) -> "BaseDataValidator":
"""Get the data validator registered in the active stack.
Returns:
The data validator registered in the active stack.
Raises:
TypeError: if a data validator is not part of the
active stack.
"""
flavor: BaseDataValidatorFlavor = cls.FLAVOR()
client = Client(skip_client_check=True) # type: ignore[call-arg]
data_validator = client.active_stack.data_validator
if not data_validator or not isinstance(data_validator, cls):
raise TypeError(
f"The active stack needs to have a {cls.NAME} data "
f"validator component registered to be able to run data validation "
f"actions with {cls.NAME}. You can create a new stack with "
f"a {cls.NAME} data validator component or update your "
f"active stack to add this component, e.g.:\n\n"
f" `zenml data-validator register {flavor.name} "
f"--flavor={flavor.name} ...`\n"
f" `zenml stack register <STACK-NAME> -dv {flavor.name} ...`\n"
f" or:\n"
f" `zenml stack update -dv {flavor.name}`\n\n"
)
return data_validator
model_validation(self, dataset, model, comparison_dataset=None, check_list=None, **kwargs)
Run model validation checks.
This method should be implemented by data validators that support running model validation checks (e.g. confusion matrix validation, performance reports, model error analyses, etc).
Unlike data_validation
, model validation checks require that a model
be present as an active component during the validation process.
This method also accepts an optional second dataset argument to accommodate different categories of data validation tests, e.g.:
- single dataset tests: confusion matrix validation, performance reports, model error analyses, etc
- model comparison tests: tests that identify changes in a model behavior by comparing how it performs on two different datasets.
Data validators that support running multiple categories of model
validation checks should also take in a check_list
argument that
lists the subset of checks to be performed. If not supplied, the
behavior is implementation specific, but it is recommended to provide a
good default (e.g. a single default validation check may be performed,
or all available validation checks may be performed and their results
returned as a list of objects).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Any |
Target dataset to be validated. |
required |
model |
Any |
Target model to be validated. |
required |
comparison_dataset |
Optional[Any] |
Optional second dataset to be used for model comparison checks (e.g model performance comparison checks). |
None |
check_list |
Optional[Sequence[str]] |
Optional list identifying the model validation checks to be performed. |
None |
**kwargs |
Any |
Implementation specific keyword arguments. |
{} |
Exceptions:
Type | Description |
---|---|
NotImplementedError |
if model validation is not supported by this data validator. |
Source code in zenml/data_validators/base_data_validator.py
def model_validation(
self,
dataset: Any,
model: Any,
comparison_dataset: Optional[Any] = None,
check_list: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Any:
"""Run model validation checks.
This method should be implemented by data validators that support
running model validation checks (e.g. confusion matrix validation,
performance reports, model error analyses, etc).
Unlike `data_validation`, model validation checks require that a model
be present as an active component during the validation process.
This method also accepts an optional second dataset argument to
accommodate different categories of data validation tests, e.g.:
* single dataset tests: confusion matrix validation,
performance reports, model error analyses, etc
* model comparison tests: tests that identify changes in a model
behavior by comparing how it performs on two different datasets.
Data validators that support running multiple categories of model
validation checks should also take in a `check_list` argument that
lists the subset of checks to be performed. If not supplied, the
behavior is implementation specific, but it is recommended to provide a
good default (e.g. a single default validation check may be performed,
or all available validation checks may be performed and their results
returned as a list of objects).
Args:
dataset: Target dataset to be validated.
model: Target model to be validated.
comparison_dataset: Optional second dataset to be used for model
comparison checks (e.g model performance comparison checks).
check_list: Optional list identifying the model validation checks to
be performed.
**kwargs: Implementation specific keyword arguments.
Raises:
NotImplementedError: if model validation is not supported by this
data validator.
"""
raise NotImplementedError(
f"Model validation not implemented for {self}."
)
BaseDataValidatorConfig (StackComponentConfig)
pydantic-model
Base config for all data validators.
Source code in zenml/data_validators/base_data_validator.py
class BaseDataValidatorConfig(StackComponentConfig):
"""Base config for all data validators."""
BaseDataValidatorFlavor (Flavor)
Base class for data validator flavors.
Source code in zenml/data_validators/base_data_validator.py
class BaseDataValidatorFlavor(Flavor):
"""Base class for data validator flavors."""
@property
def type(self) -> StackComponentType:
"""The type of the component.
Returns:
The type of the component.
"""
return StackComponentType.DATA_VALIDATOR
@property
def config_class(self) -> Type[BaseDataValidatorConfig]:
"""Config class for data validator.
Returns:
Config class for data validator.
"""
return BaseDataValidatorConfig
@property
def implementation_class(self) -> Type[BaseDataValidator]:
"""Implementation for data validator.
Returns:
Implementation for data validator.
"""
return BaseDataValidator
config_class: Type[zenml.data_validators.base_data_validator.BaseDataValidatorConfig]
property
readonly
Config class for data validator.
Returns:
Type | Description |
---|---|
Type[zenml.data_validators.base_data_validator.BaseDataValidatorConfig] |
Config class for data validator. |
implementation_class: Type[zenml.data_validators.base_data_validator.BaseDataValidator]
property
readonly
Implementation for data validator.
Returns:
Type | Description |
---|---|
Type[zenml.data_validators.base_data_validator.BaseDataValidator] |
Implementation for data validator. |
type: StackComponentType
property
readonly
The type of the component.
Returns:
Type | Description |
---|---|
StackComponentType |
The type of the component. |