Skip to content

Models

zenml.models special

Initialization for ZenML models submodule.

base_models

Base domain model definitions.

DomainModel (BaseModel) pydantic-model

Base domain model.

Used as a base class for all domain models that have the following common characteristics:

  • are uniquely identified by an UUID
  • have a creation timestamp and a last modified timestamp
Source code in zenml/models/base_models.py
class DomainModel(BaseModel):
    """Base domain model.

    Used as a base class for all domain models that have the following common
    characteristics:

      * are uniquely identified by an UUID
      * have a creation timestamp and a last modified timestamp
    """

    def __hash__(self) -> int:
        """Implementation of hash magic method.

        Returns:
            Hash of the UUID.
        """
        return hash((type(self),) + tuple([self.id]))

    def __eq__(self, other: Any) -> bool:
        """Implementation of equality magic method.

        Args:
            other: The other object to compare to.

        Returns:
            True if the other object is of the same type and has the same UUID.
        """
        return self.id == other.id if isinstance(other, DomainModel) else False

    id: UUID = Field(default_factory=uuid4, title="The unique resource id.")
    created: datetime = Field(
        default_factory=datetime.now,
        title="Time when this resource was created.",
    )
    updated: datetime = Field(
        default_factory=datetime.now,
        title="Time when this resource was last updated.",
    )
__eq__(self, other) special

Implementation of equality magic method.

Parameters:

Name Type Description Default
other Any

The other object to compare to.

required

Returns:

Type Description
bool

True if the other object is of the same type and has the same UUID.

Source code in zenml/models/base_models.py
def __eq__(self, other: Any) -> bool:
    """Implementation of equality magic method.

    Args:
        other: The other object to compare to.

    Returns:
        True if the other object is of the same type and has the same UUID.
    """
    return self.id == other.id if isinstance(other, DomainModel) else False
__hash__(self) special

Implementation of hash magic method.

Returns:

Type Description
int

Hash of the UUID.

Source code in zenml/models/base_models.py
def __hash__(self) -> int:
    """Implementation of hash magic method.

    Returns:
        Hash of the UUID.
    """
    return hash((type(self),) + tuple([self.id]))

ProjectScopedDomainModel (UserOwnedDomainModel) pydantic-model

Base project-scoped domain model.

Used as a base class for all domain models that are project-scoped.

Source code in zenml/models/base_models.py
class ProjectScopedDomainModel(UserOwnedDomainModel):
    """Base project-scoped domain model.

    Used as a base class for all domain models that are project-scoped.
    """

    project: UUID = Field(title="The project to which this resource belongs.")

ShareableProjectScopedDomainModel (ProjectScopedDomainModel) pydantic-model

Base shareable project-scoped domain model.

Used as a base class for all domain models that are project-scoped and are shareable.

Source code in zenml/models/base_models.py
class ShareableProjectScopedDomainModel(ProjectScopedDomainModel):
    """Base shareable project-scoped domain model.

    Used as a base class for all domain models that are project-scoped and are
    shareable.
    """

    is_shared: bool = Field(
        default=False,
        title=(
            "Flag describing if this resource is shared with other users in "
            "the same project."
        ),
    )

UserOwnedDomainModel (DomainModel) pydantic-model

Base user-owned domain model.

Used as a base class for all domain models that are "owned" by a user.

Source code in zenml/models/base_models.py
class UserOwnedDomainModel(DomainModel):
    """Base user-owned domain model.

    Used as a base class for all domain models that are "owned" by a user.
    """

    user: UUID = Field(
        title="The id of the user that created this resource.",
    )

component_model

Model definition for stack components.

ComponentModel (ShareableProjectScopedDomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain Model describing the Stack Component.

Source code in zenml/models/component_model.py
class ComponentModel(
    ShareableProjectScopedDomainModel, AnalyticsTrackedModelMixin
):
    """Domain Model describing the Stack Component."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "id",
        "type",
        "flavor",
        "project",
        "user",
        "is_shared",
    ]

    id: UUID = Field(
        default_factory=uuid4, title="The unique id of the component."
    )
    name: str = Field(
        title="The name of the stack component.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )
    type: StackComponentType = Field(
        title="The type of the stack component.",
    )
    flavor: str = Field(
        title="The flavor of the stack component.",
    )
    configuration: Dict[
        str, Any
    ] = Field(  # Json representation of the configuration
        title="The stack component configuration.",
    )

    class Config:
        """Example of a json-serialized instance."""

        schema_extra = {
            "example": {
                "id": "5e4286b5-51f4-4286-b1f8-b0143e9a27ce",
                "name": "vertex_prd_orchestrator",
                "type": "orchestrator",
                "flavor": "vertex",
                "configuration": {"location": "europe-west3"},
                "project": "da63ad01-9117-4082-8a99-557ca5a7d324",
                "user": "43d73159-04fe-418b-b604-b769dd5b771b",
                "created": "2022-08-12T07:12:44.931Z",
                "updated": "2022-08-12T07:12:44.931Z",
            }
        }

    def to_hydrated_model(self) -> "HydratedComponentModel":
        """Converts the `ComponentModel` into a `HydratedComponentModel`.

        Returns:
            The hydrated component model.
        """
        zen_store = GlobalConfiguration().zen_store

        project = zen_store.get_project(self.project)
        user = zen_store.get_user(self.user)

        return HydratedComponentModel(
            id=self.id,
            name=self.name,
            type=self.type,
            flavor=self.flavor,
            configuration=self.configuration,
            project=project,
            user=user,
            is_shared=self.is_shared,
            created=self.created,
            updated=self.updated,
        )
Config

Example of a json-serialized instance.

Source code in zenml/models/component_model.py
class Config:
    """Example of a json-serialized instance."""

    schema_extra = {
        "example": {
            "id": "5e4286b5-51f4-4286-b1f8-b0143e9a27ce",
            "name": "vertex_prd_orchestrator",
            "type": "orchestrator",
            "flavor": "vertex",
            "configuration": {"location": "europe-west3"},
            "project": "da63ad01-9117-4082-8a99-557ca5a7d324",
            "user": "43d73159-04fe-418b-b604-b769dd5b771b",
            "created": "2022-08-12T07:12:44.931Z",
            "updated": "2022-08-12T07:12:44.931Z",
        }
    }
to_hydrated_model(self)

Converts the ComponentModel into a HydratedComponentModel.

Returns:

Type Description
HydratedComponentModel

The hydrated component model.

Source code in zenml/models/component_model.py
def to_hydrated_model(self) -> "HydratedComponentModel":
    """Converts the `ComponentModel` into a `HydratedComponentModel`.

    Returns:
        The hydrated component model.
    """
    zen_store = GlobalConfiguration().zen_store

    project = zen_store.get_project(self.project)
    user = zen_store.get_user(self.user)

    return HydratedComponentModel(
        id=self.id,
        name=self.name,
        type=self.type,
        flavor=self.flavor,
        configuration=self.configuration,
        project=project,
        user=user,
        is_shared=self.is_shared,
        created=self.created,
        updated=self.updated,
    )

HydratedComponentModel (ComponentModel) pydantic-model

Component model with User and Project fully hydrated.

Source code in zenml/models/component_model.py
class HydratedComponentModel(ComponentModel):
    """Component model with User and Project fully hydrated."""

    # TODO: before ignoring the typing error, think of a better way to do this
    project: ProjectModel = Field(title="The project that contains this stack.")  # type: ignore[assignment]
    user: UserModel = Field(  # type: ignore[assignment]
        title="The user that created this stack.",
    )

    class Config:
        """Example of a json-serialized instance."""

        schema_extra = {
            "example": {
                "id": "5e4286b5-51f4-4286-b1f8-b0143e9a27ce",
                "name": "vertex_prd_orchestrator",
                "type": "orchestrator",
                "flavor": "vertex",
                "configuration": {"location": "europe-west3"},
                "project": {
                    "id": "da63ad01-9117-4082-8a99-557ca5a7d324",
                    "name": "default",
                    "description": "Best project.",
                    "created": "2022-09-15T11:43:29.987627",
                    "updated": "2022-09-15T11:43:29.987627",
                },
                "user": {
                    "id": "43d73159-04fe-418b-b604-b769dd5b771b",
                    "name": "default",
                    "created": "2022-09-15T11:43:29.987627",
                    "updated": "2022-09-15T11:43:29.987627",
                },
                "created": "2022-09-15T11:43:29.987627",
                "updated": "2022-09-15T11:43:29.987627",
            }
        }
Config

Example of a json-serialized instance.

Source code in zenml/models/component_model.py
class Config:
    """Example of a json-serialized instance."""

    schema_extra = {
        "example": {
            "id": "5e4286b5-51f4-4286-b1f8-b0143e9a27ce",
            "name": "vertex_prd_orchestrator",
            "type": "orchestrator",
            "flavor": "vertex",
            "configuration": {"location": "europe-west3"},
            "project": "da63ad01-9117-4082-8a99-557ca5a7d324",
            "user": "43d73159-04fe-418b-b604-b769dd5b771b",
            "created": "2022-08-12T07:12:44.931Z",
            "updated": "2022-08-12T07:12:44.931Z",
        }
    }

constants

Constants used by ZenML domain models.

flavor_models

Model definitions for stack component flavors.

FlavorModel (ProjectScopedDomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain model representing the custom implementation of a flavor.

Source code in zenml/models/flavor_models.py
class FlavorModel(ProjectScopedDomainModel, AnalyticsTrackedModelMixin):
    """Domain model representing the custom implementation of a flavor."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "id",
        "type",
        "integration",
        "project",
        "user",
    ]

    name: str = Field(
        title="The name of the Flavor.",
    )
    type: StackComponentType = Field(
        title="The type of the Flavor.",
    )
    config_schema: str = Field(
        title="The JSON schema of this flavor's corresponding configuration."
    )
    source: str = Field(
        title="The path to the module which contains this Flavor."
    )
    integration: Optional[str] = Field(
        title="The name of the integration that the Flavor belongs to."
    )

pipeline_models

Model definitions for pipelines, runs, steps, and artifacts.

ArtifactModel (DomainModel) pydantic-model

Domain Model representing an artifact.

Source code in zenml/models/pipeline_models.py
class ArtifactModel(DomainModel):
    """Domain Model representing an artifact."""

    name: str  # Name of the output in the parent step

    parent_step_id: UUID
    producer_step_id: UUID

    type: ArtifactType
    uri: str
    materializer: str
    data_type: str
    is_cached: bool

    # IDs in MLMD - needed for some metadata store methods
    mlmd_id: int
    mlmd_parent_step_id: int
    mlmd_producer_step_id: int

PipelineModel (ProjectScopedDomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain model representing a pipeline.

Source code in zenml/models/pipeline_models.py
class PipelineModel(ProjectScopedDomainModel, AnalyticsTrackedModelMixin):
    """Domain model representing a pipeline."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = ["id", "project", "user"]

    name: str = Field(
        title="The name of the pipeline.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )

    docstring: Optional[str]
    spec: PipelineSpec

PipelineRunModel (ProjectScopedDomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain Model representing a pipeline run.

Source code in zenml/models/pipeline_models.py
class PipelineRunModel(ProjectScopedDomainModel, AnalyticsTrackedModelMixin):
    """Domain Model representing a pipeline run."""

    name: str = Field(
        title="The name of the pipeline run.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )

    stack_id: Optional[UUID]  # Might become None if the stack is deleted.
    pipeline_id: Optional[UUID]  # Unlisted runs have this as None.

    pipeline_configuration: Dict[str, Any]
    num_steps: int
    zenml_version: Optional[str] = current_zenml_version
    git_sha: Optional[str] = Field(default_factory=get_git_sha)

    # ID in MLMD - needed for some metadata store methods.
    mlmd_id: Optional[int]  # Modeled as Optional, so we can remove it later.

StepRunModel (DomainModel) pydantic-model

Domain Model representing a step in a pipeline run.

Source code in zenml/models/pipeline_models.py
class StepRunModel(DomainModel):
    """Domain Model representing a step in a pipeline run."""

    name: str = Field(
        title="The name of the pipeline run step.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )

    pipeline_run_id: UUID
    parent_step_ids: List[UUID]

    entrypoint_name: str
    parameters: Dict[str, str]
    step_configuration: Dict[str, Any]
    docstring: Optional[str]

    # IDs in MLMD - needed for some metadata store methods
    mlmd_id: int
    mlmd_parent_step_ids: List[int]

get_git_sha(clean=True)

Returns the current git HEAD SHA.

If the current working directory is not inside a git repo, this will return None.

Parameters:

Name Type Description Default
clean bool

If True and there any untracked files or files in the index or working tree, this function will return None.

True

Returns:

Type Description
Optional[str]

The current git HEAD SHA or None if the current working directory is not inside a git repo.

Source code in zenml/models/pipeline_models.py
def get_git_sha(clean: bool = True) -> Optional[str]:
    """Returns the current git HEAD SHA.

    If the current working directory is not inside a git repo, this will return
    `None`.

    Args:
        clean: If `True` and there any untracked files or files in the index or
            working tree, this function will return `None`.

    Returns:
        The current git HEAD SHA or `None` if the current working directory is
        not inside a git repo.
    """
    try:
        from git.exc import InvalidGitRepositoryError
        from git.repo.base import Repo
    except ImportError:
        return None

    try:
        repo = Repo(search_parent_directories=True)
    except InvalidGitRepositoryError:
        return None

    if clean and repo.is_dirty(untracked_files=True):
        return None
    return cast(str, repo.head.object.hexsha)

project_models

Model definitions for code projects.

ProjectModel (DomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain model for projects.

Source code in zenml/models/project_models.py
class ProjectModel(DomainModel, AnalyticsTrackedModelMixin):
    """Domain model for projects."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "id",
    ]

    name: str = Field(
        title="The unique name of the project.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )
    description: str = Field(
        default="",
        title="The description of the project.",
        max_length=MODEL_DESCRIPTIVE_FIELD_MAX_LENGTH,
    )

server_models

Model definitions for code projects.

ServerDatabaseType (StrEnum)

Enum for server database types.

Source code in zenml/models/server_models.py
class ServerDatabaseType(StrEnum):
    """Enum for server database types."""

    SQLITE = "sqlite"
    MYSQL = "mysql"
    OTHER = "other"

ServerDeploymentType (StrEnum)

Enum for server deployment types.

Source code in zenml/models/server_models.py
class ServerDeploymentType(StrEnum):
    """Enum for server deployment types."""

    LOCAL = "local"
    DOCKER = "docker"
    KUBERNETES = "kubernetes"
    AWS = "aws"
    GCP = "gcp"
    AZURE = "azure"
    OTHER = "other"

ServerModel (BaseModel) pydantic-model

Domain model for ZenML servers.

Source code in zenml/models/server_models.py
class ServerModel(BaseModel):
    """Domain model for ZenML servers."""

    id: UUID = Field(default_factory=uuid4, title="The unique server id.")

    version: str = Field(
        title="The ZenML version that the server is running.",
    )
    deployment_type: ServerDeploymentType = Field(
        ServerDeploymentType.OTHER,
        title="The ZenML server deployment type.",
    )
    database_type: ServerDatabaseType = Field(
        ServerDatabaseType.OTHER,
        title="The database type that the server is using.",
    )

    def is_local(self) -> bool:
        """Return whether the server is running locally.

        Returns:
            True if the server is running locally, False otherwise.
        """
        from zenml.config.global_config import GlobalConfiguration

        # Local ZenML servers are identifiable by the fact that their
        # server ID is the same as the local client (user) ID.
        return self.id == GlobalConfiguration().user_id
is_local(self)

Return whether the server is running locally.

Returns:

Type Description
bool

True if the server is running locally, False otherwise.

Source code in zenml/models/server_models.py
def is_local(self) -> bool:
    """Return whether the server is running locally.

    Returns:
        True if the server is running locally, False otherwise.
    """
    from zenml.config.global_config import GlobalConfiguration

    # Local ZenML servers are identifiable by the fact that their
    # server ID is the same as the local client (user) ID.
    return self.id == GlobalConfiguration().user_id

stack_models

Model definitions for stack.

HydratedStackModel (StackModel) pydantic-model

Stack model with Components, User and Project fully hydrated.

Source code in zenml/models/stack_models.py
class HydratedStackModel(StackModel):
    """Stack model with Components, User and Project fully hydrated."""

    components: Dict[StackComponentType, List[ComponentModel]] = Field(  # type: ignore[assignment]
        title="A mapping of stack component types to the actual"
        "instances of components of this type."
    )
    project: ProjectModel = Field(title="The project that contains this stack.")  # type: ignore[assignment]
    user: UserModel = Field(  # type: ignore[assignment]
        title="The user that created this stack.",
    )

    class Config:
        """Example of a json-serialized instance."""

        schema_extra = {
            "example": {
                "id": "cbc7d4fd-8c88-49dd-ab12-d998e4fafe22",
                "name": "default",
                "description": "",
                "components": {
                    "artifact_store": [
                        {
                            "id": "55a32b96-7995-4622-8474-12e7c94f3054",
                            "name": "default",
                            "type": "artifact_store",
                            "flavor": "local",
                            "configuration": {
                                "path": "../zenml/local_stores/default_local_store"
                            },
                            "user": "ae1fd828-fb3b-48e8-a31a-f3ecb3cdb294",
                            "is_shared": "False",
                            "project": "c5600721-8432-436d-ac59-a47aec6dec0f",
                            "created": "2022-09-15T11:43:29.987627",
                            "updated": "2022-09-15T11:43:29.987627",
                        }
                    ],
                    "orchestrator": [
                        {
                            "id": "67441c8b-e4e7-439b-bad3-e5883659d387",
                            "name": "default",
                            "type": "orchestrator",
                            "flavor": "local",
                            "configuration": {},
                            "user": "ae1fd828-fb3b-48e8-a31a-f3ecb3cdb294",
                            "is_shared": "False",
                            "project": "c5600721-8432-436d-ac59-a47aec6dec0f",
                            "created": "2022-09-15T11:43:29.987627",
                            "updated": "2022-09-15T11:43:29.987627",
                        }
                    ],
                },
                "is_shared": "False",
                "project": {
                    "id": "c5600721-8432-436d-ac59-a47aec6dec0f",
                    "name": "default",
                    "description": "",
                    "created": "2022-09-15T11:43:29.987627",
                    "updated": "2022-09-15T11:43:29.987627",
                },
                "user": {
                    "id": "ae1fd828-fb3b-48e8-a31a-f3ecb3cdb294",
                    "name": "default",
                    "full_name": "",
                    "email": "",
                    "active": "True",
                    "created": "2022-09-15T11:43:29.987627",
                    "updated": "2022-09-15T11:43:29.987627",
                },
                "created": "2022-09-15T11:43:29.987627",
                "updated": "2022-09-15T11:43:29.987627",
            }
        }

    def to_yaml(self) -> Dict[str, Any]:
        """Create yaml representation of the Stack Model.

        Returns:
            The yaml representation of the Stack Model.
        """
        component_data = {}
        for component_type, components_list in self.components.items():
            component_dict = json.loads(components_list[0].json())
            component_dict.pop("project")  # Not needed in the yaml repr
            component_dict.pop("created")  # Not needed in the yaml repr
            component_dict.pop("updated")  # Not needed in the yaml repr
            component_data[component_type.value] = component_dict

        # write zenml version and stack dict to YAML
        yaml_data = {
            "stack_name": self.name,
            "components": component_data,
        }

        return yaml_data

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Add the stack components to the stack analytics metadata.

        Returns:
            Dict of analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata.update({ct: c[0].flavor for ct, c in self.components.items()})
        return metadata
Config

Example of a json-serialized instance.

Source code in zenml/models/stack_models.py
class Config:
    """Example of a json-serialized instance."""

    schema_extra = {
        "example": {
            "id": "cbc7d4fd-8c88-49dd-ab12-d998e4fafe22",
            "name": "default",
            "description": "",
            "components": {
                "artifact_store": ["55a32b96-7995-4622-8474-12e7c94f3054"],
                "orchestrator": ["67441c8b-e4e7-439b-bad3-e5883659d387"],
            },
            "is_shared": "False",
            "project": "c5600721-8432-436d-ac59-a47aec6dec0f",
            "user": "ae1fd828-fb3b-48e8-a31a-f3ecb3cdb294",
            "created": "2022-09-15T11:43:29.994722",
            "updated": "2022-09-15T11:43:29.994722",
        }
    }
get_analytics_metadata(self)

Add the stack components to the stack analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in zenml/models/stack_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Add the stack components to the stack analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata.update({ct: c[0].flavor for ct, c in self.components.items()})
    return metadata
to_yaml(self)

Create yaml representation of the Stack Model.

Returns:

Type Description
Dict[str, Any]

The yaml representation of the Stack Model.

Source code in zenml/models/stack_models.py
def to_yaml(self) -> Dict[str, Any]:
    """Create yaml representation of the Stack Model.

    Returns:
        The yaml representation of the Stack Model.
    """
    component_data = {}
    for component_type, components_list in self.components.items():
        component_dict = json.loads(components_list[0].json())
        component_dict.pop("project")  # Not needed in the yaml repr
        component_dict.pop("created")  # Not needed in the yaml repr
        component_dict.pop("updated")  # Not needed in the yaml repr
        component_data[component_type.value] = component_dict

    # write zenml version and stack dict to YAML
    yaml_data = {
        "stack_name": self.name,
        "components": component_data,
    }

    return yaml_data

StackModel (ShareableProjectScopedDomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain Model describing the Stack.

Source code in zenml/models/stack_models.py
class StackModel(ShareableProjectScopedDomainModel, AnalyticsTrackedModelMixin):
    """Domain Model describing the Stack."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "id",
        "project",
        "user",
        "is_shared",
    ]

    name: str = Field(
        title="The name of the stack.", max_length=MODEL_NAME_FIELD_MAX_LENGTH
    )
    description: str = Field(
        default="",
        title="The description of the stack",
        max_length=MODEL_DESCRIPTIVE_FIELD_MAX_LENGTH,
    )
    components: Dict[StackComponentType, List[UUID]] = Field(
        title=(
            "A mapping of stack component types to the id's of"
            "instances of components of this type."
        )
    )

    class Config:
        """Example of a json-serialized instance."""

        schema_extra = {
            "example": {
                "id": "cbc7d4fd-8c88-49dd-ab12-d998e4fafe22",
                "name": "default",
                "description": "",
                "components": {
                    "artifact_store": ["55a32b96-7995-4622-8474-12e7c94f3054"],
                    "orchestrator": ["67441c8b-e4e7-439b-bad3-e5883659d387"],
                },
                "is_shared": "False",
                "project": "c5600721-8432-436d-ac59-a47aec6dec0f",
                "user": "ae1fd828-fb3b-48e8-a31a-f3ecb3cdb294",
                "created": "2022-09-15T11:43:29.994722",
                "updated": "2022-09-15T11:43:29.994722",
            }
        }

    @property
    def is_valid(self) -> bool:
        """Check if the stack is valid.

        Returns:
            True if the stack is valid, False otherwise.
        """
        if (
            StackComponentType.ARTIFACT_STORE
            and StackComponentType.ORCHESTRATOR in self.components.keys()
        ):
            return True
        else:
            return False

    def to_hydrated_model(self) -> "HydratedStackModel":
        """Create a hydrated version of the stack model.

        Returns:
            A hydrated version of the stack model.
        """
        zen_store = GlobalConfiguration().zen_store

        components = {}
        for comp_type, comp_id_list in self.components.items():
            components[comp_type] = [
                zen_store.get_stack_component(c_id) for c_id in comp_id_list
            ]

        project = zen_store.get_project(self.project)
        user = zen_store.get_user(self.user)

        return HydratedStackModel(
            id=self.id,
            name=self.name,
            description=self.description,
            components=components,
            project=project,
            user=user,
            is_shared=self.is_shared,
            created=self.created,
            updated=self.updated,
        )

    def get_analytics_metadata(self) -> Dict[str, Any]:
        """Add the stack components to the stack analytics metadata.

        Returns:
            Dict of analytics metadata.
        """
        metadata = super().get_analytics_metadata()
        metadata.update({ct: c[0] for ct, c in self.components.items()})
        return metadata
is_valid: bool property readonly

Check if the stack is valid.

Returns:

Type Description
bool

True if the stack is valid, False otherwise.

Config

Example of a json-serialized instance.

Source code in zenml/models/stack_models.py
class Config:
    """Example of a json-serialized instance."""

    schema_extra = {
        "example": {
            "id": "cbc7d4fd-8c88-49dd-ab12-d998e4fafe22",
            "name": "default",
            "description": "",
            "components": {
                "artifact_store": ["55a32b96-7995-4622-8474-12e7c94f3054"],
                "orchestrator": ["67441c8b-e4e7-439b-bad3-e5883659d387"],
            },
            "is_shared": "False",
            "project": "c5600721-8432-436d-ac59-a47aec6dec0f",
            "user": "ae1fd828-fb3b-48e8-a31a-f3ecb3cdb294",
            "created": "2022-09-15T11:43:29.994722",
            "updated": "2022-09-15T11:43:29.994722",
        }
    }
get_analytics_metadata(self)

Add the stack components to the stack analytics metadata.

Returns:

Type Description
Dict[str, Any]

Dict of analytics metadata.

Source code in zenml/models/stack_models.py
def get_analytics_metadata(self) -> Dict[str, Any]:
    """Add the stack components to the stack analytics metadata.

    Returns:
        Dict of analytics metadata.
    """
    metadata = super().get_analytics_metadata()
    metadata.update({ct: c[0] for ct, c in self.components.items()})
    return metadata
to_hydrated_model(self)

Create a hydrated version of the stack model.

Returns:

Type Description
HydratedStackModel

A hydrated version of the stack model.

Source code in zenml/models/stack_models.py
def to_hydrated_model(self) -> "HydratedStackModel":
    """Create a hydrated version of the stack model.

    Returns:
        A hydrated version of the stack model.
    """
    zen_store = GlobalConfiguration().zen_store

    components = {}
    for comp_type, comp_id_list in self.components.items():
        components[comp_type] = [
            zen_store.get_stack_component(c_id) for c_id in comp_id_list
        ]

    project = zen_store.get_project(self.project)
    user = zen_store.get_user(self.user)

    return HydratedStackModel(
        id=self.id,
        name=self.name,
        description=self.description,
        components=components,
        project=project,
        user=user,
        is_shared=self.is_shared,
        created=self.created,
        updated=self.updated,
    )

user_management_models

Model definitions for users, teams, and roles.

JWTToken (BaseModel) pydantic-model

Pydantic object representing a JWT token.

Attributes:

Name Type Description
token

The JWT token.

token_type JWTTokenType

The type of token.

Source code in zenml/models/user_management_models.py
class JWTToken(BaseModel):
    """Pydantic object representing a JWT token.

    Attributes:
        token: The JWT token.
        token_type: The type of token.
    """

    JWT_ALGORITHM: ClassVar[str] = "HS256"

    token_type: JWTTokenType
    user_id: UUID

    @classmethod
    def decode(cls, token_type: JWTTokenType, token: str) -> "JWTToken":
        """Decodes a JWT access token.

        Decodes a JWT access token and returns a `JWTToken` object with the
        information retrieved from its subject claim.

        Args:
            token_type: The type of token.
            token: The encoded JWT token.

        Returns:
            The decoded JWT access token.

        Raises:
            AuthorizationException: If the token is invalid.
        """
        # import here to keep these dependencies out of the client
        from jose import JWTError, jwt  # type: ignore[import]

        try:
            payload = jwt.decode(
                token,
                GlobalConfiguration().jwt_secret_key,
                algorithms=[cls.JWT_ALGORITHM],
            )
        except JWTError as e:
            raise AuthorizationException(f"Invalid JWT token: {e}") from e

        subject: str = payload.get("sub")
        if subject is None:
            raise AuthorizationException(
                "Invalid JWT token: the subject claim is missing"
            )

        try:
            return cls(token_type=token_type, user_id=UUID(subject))
        except ValueError as e:
            raise AuthorizationException(
                f"Invalid JWT token: could not decode subject claim: {e}"
            ) from e

    def encode(self, expire_minutes: Optional[int] = None) -> str:
        """Creates a JWT access token.

        Generates and returns a JWT access token with the subject claim set to
        contain the information in this Pydantic object.

        Args:
            expire_minutes: Number of minutes the token should be valid. If not
                provided, the token will not be set to expire.

        Returns:
            The generated access token.
        """
        # import here to keep these dependencies out of the client
        from jose import jwt

        claims: Dict[str, Any] = {
            "sub": str(self.user_id),
        }

        if expire_minutes:
            expire = datetime.utcnow() + timedelta(minutes=expire_minutes)
            claims["exp"] = expire

        token: str = jwt.encode(
            claims,
            GlobalConfiguration().jwt_secret_key,
            algorithm=self.JWT_ALGORITHM,
        )
        return token
decode(token_type, token) classmethod

Decodes a JWT access token.

Decodes a JWT access token and returns a JWTToken object with the information retrieved from its subject claim.

Parameters:

Name Type Description Default
token_type JWTTokenType

The type of token.

required
token str

The encoded JWT token.

required

Returns:

Type Description
JWTToken

The decoded JWT access token.

Exceptions:

Type Description
AuthorizationException

If the token is invalid.

Source code in zenml/models/user_management_models.py
@classmethod
def decode(cls, token_type: JWTTokenType, token: str) -> "JWTToken":
    """Decodes a JWT access token.

    Decodes a JWT access token and returns a `JWTToken` object with the
    information retrieved from its subject claim.

    Args:
        token_type: The type of token.
        token: The encoded JWT token.

    Returns:
        The decoded JWT access token.

    Raises:
        AuthorizationException: If the token is invalid.
    """
    # import here to keep these dependencies out of the client
    from jose import JWTError, jwt  # type: ignore[import]

    try:
        payload = jwt.decode(
            token,
            GlobalConfiguration().jwt_secret_key,
            algorithms=[cls.JWT_ALGORITHM],
        )
    except JWTError as e:
        raise AuthorizationException(f"Invalid JWT token: {e}") from e

    subject: str = payload.get("sub")
    if subject is None:
        raise AuthorizationException(
            "Invalid JWT token: the subject claim is missing"
        )

    try:
        return cls(token_type=token_type, user_id=UUID(subject))
    except ValueError as e:
        raise AuthorizationException(
            f"Invalid JWT token: could not decode subject claim: {e}"
        ) from e
encode(self, expire_minutes=None)

Creates a JWT access token.

Generates and returns a JWT access token with the subject claim set to contain the information in this Pydantic object.

Parameters:

Name Type Description Default
expire_minutes Optional[int]

Number of minutes the token should be valid. If not provided, the token will not be set to expire.

None

Returns:

Type Description
str

The generated access token.

Source code in zenml/models/user_management_models.py
def encode(self, expire_minutes: Optional[int] = None) -> str:
    """Creates a JWT access token.

    Generates and returns a JWT access token with the subject claim set to
    contain the information in this Pydantic object.

    Args:
        expire_minutes: Number of minutes the token should be valid. If not
            provided, the token will not be set to expire.

    Returns:
        The generated access token.
    """
    # import here to keep these dependencies out of the client
    from jose import jwt

    claims: Dict[str, Any] = {
        "sub": str(self.user_id),
    }

    if expire_minutes:
        expire = datetime.utcnow() + timedelta(minutes=expire_minutes)
        claims["exp"] = expire

    token: str = jwt.encode(
        claims,
        GlobalConfiguration().jwt_secret_key,
        algorithm=self.JWT_ALGORITHM,
    )
    return token

JWTTokenType (StrEnum)

The type of JWT token.

Source code in zenml/models/user_management_models.py
class JWTTokenType(StrEnum):
    """The type of JWT token."""

    ACCESS_TOKEN = "access_token"

RoleAssignmentModel (DomainModel) pydantic-model

Domain model for role assignments.

Source code in zenml/models/user_management_models.py
class RoleAssignmentModel(DomainModel):
    """Domain model for role assignments."""

    role: UUID = Field(title="The role.")
    project: Optional[UUID] = Field(
        None, title="The project that the role is limited to."
    )
    team: Optional[UUID] = Field(
        None, title="The team that the role is assigned to."
    )
    user: Optional[UUID] = Field(
        None, title="The user that the role is assigned to."
    )

    @root_validator
    def ensure_single_entity(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Validates that either `user` or `team` is set.

        Args:
            values: The values to validate.

        Returns:
            The validated values.

        Raises:
            ValueError: If neither `user` nor `team` is set.
        """
        user = values.get("user", None)
        team = values.get("team", None)
        if user and team:
            raise ValueError("Only `user` or `team` is allowed.")

        if not (user or team):
            raise ValueError("Missing `user` or `team` for role assignment.")

        return values
ensure_single_entity(values) classmethod

Validates that either user or team is set.

Parameters:

Name Type Description Default
values Dict[str, Any]

The values to validate.

required

Returns:

Type Description
Dict[str, Any]

The validated values.

Exceptions:

Type Description
ValueError

If neither user nor team is set.

Source code in zenml/models/user_management_models.py
@root_validator
def ensure_single_entity(cls, values: Dict[str, Any]) -> Dict[str, Any]:
    """Validates that either `user` or `team` is set.

    Args:
        values: The values to validate.

    Returns:
        The validated values.

    Raises:
        ValueError: If neither `user` nor `team` is set.
    """
    user = values.get("user", None)
    team = values.get("team", None)
    if user and team:
        raise ValueError("Only `user` or `team` is allowed.")

    if not (user or team):
        raise ValueError("Missing `user` or `team` for role assignment.")

    return values

RoleModel (DomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain model for roles.

Source code in zenml/models/user_management_models.py
class RoleModel(DomainModel, AnalyticsTrackedModelMixin):
    """Domain model for roles."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = ["id"]

    name: str = Field(
        title="The unique name of the role.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )

TeamModel (DomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain model for teams.

Source code in zenml/models/user_management_models.py
class TeamModel(DomainModel, AnalyticsTrackedModelMixin):
    """Domain model for teams."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = ["id"]

    name: str = Field(
        title="The unique name of the team.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )

UserModel (DomainModel, AnalyticsTrackedModelMixin) pydantic-model

Domain model for user accounts.

Source code in zenml/models/user_management_models.py
class UserModel(DomainModel, AnalyticsTrackedModelMixin):
    """Domain model for user accounts."""

    ANALYTICS_FIELDS: ClassVar[List[str]] = [
        "id",
        "name",
        "full_name",
        "active",
        "email_opted_in",
    ]

    name: str = Field(
        default="",
        title="The unique username for the account.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )
    full_name: str = Field(
        default="",
        title="The full name for the account owner.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )
    email: Optional[str] = Field(
        default="",
        title="The email address associated with the account.",
        max_length=MODEL_NAME_FIELD_MAX_LENGTH,
    )
    email_opted_in: Optional[bool] = Field(
        title="Whether the user agreed to share their email.",
        description="`null` if not answered, `true` if agreed, "
        "`false` if skipped.",
    )
    active: bool = Field(default=False, title="Active account.")
    password: Optional[SecretStr] = Field(default=None, exclude=True)
    activation_token: Optional[SecretStr] = Field(default=None, exclude=True)

    @classmethod
    def _get_crypt_context(cls) -> "CryptContext":
        """Returns the password encryption context.

        Returns:
            The password encryption context.
        """
        from passlib.context import CryptContext

        return CryptContext(schemes=["bcrypt"], deprecated="auto")

    @classmethod
    def verify_password(
        cls, plain_password: str, user: Optional["UserModel"] = None
    ) -> bool:
        """Verifies a given plain password against the stored password.

        Args:
            plain_password: Input password to be verified.
            user: User for which the password is to be verified.

        Returns:
            True if the passwords match.
        """
        # even when the user or password is not set, we still want to execute
        # the password hash verification to protect against response discrepancy
        # attacks (https://cwe.mitre.org/data/definitions/204.html)
        hash: Optional[str] = None
        if user is not None and user.password is not None and user.active:
            hash = user.get_hashed_password()
        pwd_context = cls._get_crypt_context()
        return cast(bool, pwd_context.verify(plain_password, hash))

    def get_password(self) -> Optional[str]:
        """Get the password.

        Returns:
            The password as a plain string, if it exists.
        """
        if self.password is None:
            return None
        return self.password.get_secret_value()

    @classmethod
    def _is_hashed_secret(cls, secret: SecretStr) -> bool:
        """Checks if a secret value is already hashed.

        Args:
            secret: The secret value to check.

        Returns:
            True if the secret value is hashed, otherwise False.
        """
        return (
            re.match(r"^\$2[ayb]\$.{56}$", secret.get_secret_value())
            is not None
        )

    @classmethod
    def _get_hashed_secret(cls, secret: Optional[SecretStr]) -> Optional[str]:
        """Hashes the input secret and returns the hash value, if supplied and if not already hashed.

        Args:
            secret: The secret value to hash.

        Returns:
            The secret hash value, or None if no secret was supplied.
        """
        if secret is None:
            return None
        if cls._is_hashed_secret(secret):
            return secret.get_secret_value()
        pwd_context = cls._get_crypt_context()
        return cast(str, pwd_context.hash(secret.get_secret_value()))

    def get_hashed_password(self) -> Optional[str]:
        """Returns the hashed password, if configured.

        Returns:
            The hashed password.
        """
        return self._get_hashed_secret(self.password)

    @classmethod
    def verify_access_token(cls, token: str) -> Optional["UserModel"]:
        """Verifies an access token.

        Verifies an access token and returns the user that was used to generate
        it if the token is valid and None otherwise.

        Args:
            token: The access token to verify.

        Returns:
            The user that generated the token if valid, None otherwise.
        """
        try:
            access_token = JWTToken.decode(
                token_type=JWTTokenType.ACCESS_TOKEN, token=token
            )
        except AuthorizationException:
            return None

        zen_store = GlobalConfiguration().zen_store
        try:
            user = zen_store.get_user(user_name_or_id=access_token.user_id)
        except KeyError:
            return None

        if access_token.user_id == user.id and user.active:
            return user

        return None

    def generate_access_token(self) -> str:
        """Generates an access token.

        Generates an access token and returns it.

        Returns:
            The generated access token.
        """
        return JWTToken(
            token_type=JWTTokenType.ACCESS_TOKEN, user_id=self.id
        ).encode()

    def get_activation_token(self) -> Optional[str]:
        """Get the activation token.

        Returns:
            The activation token as a plain string, if it exists.
        """
        if self.activation_token is None:
            return None
        return self.activation_token.get_secret_value()

    def get_hashed_activation_token(self) -> Optional[str]:
        """Returns the hashed activation token, if configured.

        Returns:
            The hashed activation token.
        """
        return self._get_hashed_secret(self.activation_token)

    @classmethod
    def verify_activation_token(
        cls, activation_token: str, user: Optional["UserModel"] = None
    ) -> bool:
        """Verifies a given activation token against the stored activation token.

        Args:
            activation_token: Input activation token to be verified.
            user: User for which the activation token is to be verified.

        Returns:
            True if the token is valid.
        """
        # even when the user or token is not set, we still want to execute the
        # token hash verification to protect against response discrepancy
        # attacks (https://cwe.mitre.org/data/definitions/204.html)
        hash: Optional[str] = None
        if (
            user is not None
            and user.activation_token is not None
            and not user.active
        ):
            hash = user.get_hashed_activation_token()
        pwd_context = cls._get_crypt_context()
        return cast(bool, pwd_context.verify(activation_token, hash))

    def generate_activation_token(self) -> SecretStr:
        """Generates and stores a new activation token.

        Returns:
            The generated activation token.
        """
        self.activation_token = SecretStr(token_hex(32))
        return self.activation_token

    class Config:
        """Pydantic configuration class."""

        # Validate attributes when assigning them
        validate_assignment = True
        # Forbid extra attributes to prevent unexpected behavior
        extra = "forbid"
        underscore_attrs_are_private = True
email_opted_in: bool pydantic-field

null if not answered, true if agreed, false if skipped.

Config

Pydantic configuration class.

Source code in zenml/models/user_management_models.py
class Config:
    """Pydantic configuration class."""

    # Validate attributes when assigning them
    validate_assignment = True
    # Forbid extra attributes to prevent unexpected behavior
    extra = "forbid"
    underscore_attrs_are_private = True
generate_access_token(self)

Generates an access token.

Generates an access token and returns it.

Returns:

Type Description
str

The generated access token.

Source code in zenml/models/user_management_models.py
def generate_access_token(self) -> str:
    """Generates an access token.

    Generates an access token and returns it.

    Returns:
        The generated access token.
    """
    return JWTToken(
        token_type=JWTTokenType.ACCESS_TOKEN, user_id=self.id
    ).encode()
generate_activation_token(self)

Generates and stores a new activation token.

Returns:

Type Description
SecretStr

The generated activation token.

Source code in zenml/models/user_management_models.py
def generate_activation_token(self) -> SecretStr:
    """Generates and stores a new activation token.

    Returns:
        The generated activation token.
    """
    self.activation_token = SecretStr(token_hex(32))
    return self.activation_token
get_activation_token(self)

Get the activation token.

Returns:

Type Description
Optional[str]

The activation token as a plain string, if it exists.

Source code in zenml/models/user_management_models.py
def get_activation_token(self) -> Optional[str]:
    """Get the activation token.

    Returns:
        The activation token as a plain string, if it exists.
    """
    if self.activation_token is None:
        return None
    return self.activation_token.get_secret_value()
get_hashed_activation_token(self)

Returns the hashed activation token, if configured.

Returns:

Type Description
Optional[str]

The hashed activation token.

Source code in zenml/models/user_management_models.py
def get_hashed_activation_token(self) -> Optional[str]:
    """Returns the hashed activation token, if configured.

    Returns:
        The hashed activation token.
    """
    return self._get_hashed_secret(self.activation_token)
get_hashed_password(self)

Returns the hashed password, if configured.

Returns:

Type Description
Optional[str]

The hashed password.

Source code in zenml/models/user_management_models.py
def get_hashed_password(self) -> Optional[str]:
    """Returns the hashed password, if configured.

    Returns:
        The hashed password.
    """
    return self._get_hashed_secret(self.password)
get_password(self)

Get the password.

Returns:

Type Description
Optional[str]

The password as a plain string, if it exists.

Source code in zenml/models/user_management_models.py
def get_password(self) -> Optional[str]:
    """Get the password.

    Returns:
        The password as a plain string, if it exists.
    """
    if self.password is None:
        return None
    return self.password.get_secret_value()
verify_access_token(token) classmethod

Verifies an access token.

Verifies an access token and returns the user that was used to generate it if the token is valid and None otherwise.

Parameters:

Name Type Description Default
token str

The access token to verify.

required

Returns:

Type Description
Optional[UserModel]

The user that generated the token if valid, None otherwise.

Source code in zenml/models/user_management_models.py
@classmethod
def verify_access_token(cls, token: str) -> Optional["UserModel"]:
    """Verifies an access token.

    Verifies an access token and returns the user that was used to generate
    it if the token is valid and None otherwise.

    Args:
        token: The access token to verify.

    Returns:
        The user that generated the token if valid, None otherwise.
    """
    try:
        access_token = JWTToken.decode(
            token_type=JWTTokenType.ACCESS_TOKEN, token=token
        )
    except AuthorizationException:
        return None

    zen_store = GlobalConfiguration().zen_store
    try:
        user = zen_store.get_user(user_name_or_id=access_token.user_id)
    except KeyError:
        return None

    if access_token.user_id == user.id and user.active:
        return user

    return None
verify_activation_token(activation_token, user=None) classmethod

Verifies a given activation token against the stored activation token.

Parameters:

Name Type Description Default
activation_token str

Input activation token to be verified.

required
user Optional[UserModel]

User for which the activation token is to be verified.

None

Returns:

Type Description
bool

True if the token is valid.

Source code in zenml/models/user_management_models.py
@classmethod
def verify_activation_token(
    cls, activation_token: str, user: Optional["UserModel"] = None
) -> bool:
    """Verifies a given activation token against the stored activation token.

    Args:
        activation_token: Input activation token to be verified.
        user: User for which the activation token is to be verified.

    Returns:
        True if the token is valid.
    """
    # even when the user or token is not set, we still want to execute the
    # token hash verification to protect against response discrepancy
    # attacks (https://cwe.mitre.org/data/definitions/204.html)
    hash: Optional[str] = None
    if (
        user is not None
        and user.activation_token is not None
        and not user.active
    ):
        hash = user.get_hashed_activation_token()
    pwd_context = cls._get_crypt_context()
    return cast(bool, pwd_context.verify(activation_token, hash))
verify_password(plain_password, user=None) classmethod

Verifies a given plain password against the stored password.

Parameters:

Name Type Description Default
plain_password str

Input password to be verified.

required
user Optional[UserModel]

User for which the password is to be verified.

None

Returns:

Type Description
bool

True if the passwords match.

Source code in zenml/models/user_management_models.py
@classmethod
def verify_password(
    cls, plain_password: str, user: Optional["UserModel"] = None
) -> bool:
    """Verifies a given plain password against the stored password.

    Args:
        plain_password: Input password to be verified.
        user: User for which the password is to be verified.

    Returns:
        True if the passwords match.
    """
    # even when the user or password is not set, we still want to execute
    # the password hash verification to protect against response discrepancy
    # attacks (https://cwe.mitre.org/data/definitions/204.html)
    hash: Optional[str] = None
    if user is not None and user.password is not None and user.active:
        hash = user.get_hashed_password()
    pwd_context = cls._get_crypt_context()
    return cast(bool, pwd_context.verify(plain_password, hash))